Книги з теми "INTERFACE TEMPERATURE"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: INTERFACE TEMPERATURE.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-44 книг для дослідження на тему "INTERFACE TEMPERATURE".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Toner, Edwina. 3-2-1 temperature sensing interface. [S.l: The Author], 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

A, Patkós, United States. National Aeronautics and Space Administration., and Fermi National Accelerator Laboratory, eds. Chiral interface at the finite temperature transition point of QCD. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

H, Fabik Richard, and Lewis Research Center, eds. Using silicon diodes for detecting the liquid-vapor interface in hydrogen. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration., ed. Adaptive control of interface by temperature and interface profile feedback in transparent multi-zone crystal growth furnace: Final technical report for NCC3 150. [Washington, DC: National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Benjamin Chi-Pui. Temperature gradient-driven Marangoni convection of a spherical liquid-liquid interface under reduced gravity conditions. Ottawa: National Library of Canada, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bell, L. D. Evidence of momentum conservation at a nonepitaxial metal/semiconductor interface using ballistic electron emission microscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bell, L. D. Evidence of momentum conservation at a nonepitaxial metal/semiconductor interface using ballistic electron emission microscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

C, Gillies Daniel, Lehoczky S. L, and United States. National Aeronautics and Space Administration., eds. Fluctuations of thermal conductivity and morphological stability. [Washington, DC: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. National Aeronautics and Space Administration., ed. Final technical report on cooperative agreeement NCC 3-109: Temperature and melt solid interface control during crystal growth. [Washington, DC: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1935-, Aboudi Jacob, Arnold S. M, and NASA Glenn Research Center, eds. The effect of interface roughness and oxide film thickness on the inelastic response of thermal barrier coatings to thermal cycling. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

United States. National Aeronautics and Space Administration., ed. Determination of stress intensity factor distributions for "interface" cracks in incompressible, dissimilar materials: Summary report : reporting period - 8/15/94 - 12/31/97 : grant no. NAG-1-1622-Supl. 1-5*. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

C, Knox J., and George C. Marshall Space Flight Center., eds. Computer-Aided System Engineering and Analysis (CASE/A): User's manual, version 5.0. [Huntsville], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

L, Shindé Subhash, and Rudman David Albert, eds. Interfaces in high-Tc superconducting systems. New York: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

L, Shindé Subhash, and Rudman David A, eds. Interfaces in high-T(subscript c) superconducting systems. New York: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Symposium, F. on High Temperature Superconductor Thin Films: Growth Mechanisms-Interfaces-Multilayers (1996 Strasbourg France). High temperature superconductor thin films--growth mechanisms-interfaces-multilayers: Proceedings of Symposium F on High Temperature Superconductor Thin Films--Growth Mechanisms-Interfaces-Multilayers of the 1996 E-MRS Spring Conference, Strasbourg, France, June 4-7, 1996. Amsterdam: Elsevier, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Elliott, Edward George. Constructing an educational bioreactor with temperature, optical density, pH urea and glucose sensors interfaced to a BBC microcomputer. [S.l: The Author], 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

O, Andriyko Yuriy, Nauer Gerhard E, and SpringerLink (Online service), eds. Many-electron Electrochemical Processes: Reactions in Molten Salts, Room-Temperature Ionic Liquids and Ionic Solutions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

George C. Marshall Space Flight Center., ed. Transport phenomena in the micropores of plug-type phase separators. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

United States. National Aeronautics and Space Administration., ed. "Creep of refractory fibers and modeling of metal and ceramic matrix composite creep behavior": (NCC-3-119), project closing report. [Washington, DC: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

National Aeronautics and Space Administration (NASA) Staff. Temperature and Melt Solid Interface Control During Crystal Growth. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Dalbey, Robert Z. Interface characterization of Cu-Cu and Cu-Ag-Cu low temperature solid state bonds. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Otruba, Kathy. SCH5147 Super I/o with Temperature Sensing, PECI Interface, Auto Fan Control and Glue Logic - Product Brief. Microchip Technology Incorporated, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Inman, Ian A. Compacted Oxide Layer Formation Under Conditions of Limited Debris Retention at the Wear Interface During High Temperature Sliding Wear of Superalloys. Dissertation.com, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Inman, Ian A. Compacted oxide layer formation under conditions of limited debris retention at the wear interface during high temperature sliding wear of alloys. 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Totman, Ian William. The effect of conduction down the wall on the growth of a temperature interface in a stratified storage tank. 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

The effect of interface roughness and oxide film thickness on the inelastic response of thermal barrier coatings to thermal cycling. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Comparison of the Booster Interface Temperature in Stainless Steel (SS) V-Channel Versus the Aluminum (Al) y-Channel Primer Chamber Assemblies (PCAs). Volume 1; Technical Assessment Report. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Shinde, Subhash. Interfaces in High-Tc Superconducting Systems. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kresin, Vladimir, Sergei Ovchinnikov, and Stuart Wolf. Superconducting State. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198845331.001.0001.

Повний текст джерела
Анотація:
For the past almost fifty years, scientists have been trying to explain the phenomenon of superconductivity. The mechanism is the key ingredient of microscopic theory, which was developed by Bardeen, Cooper, and Schrieffer in 1957. The theory also introduced the basic concepts of pairing, coherence length, energy gap, and so on. Since then, microscopic theory has undergone an intensive development. This book provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, plasmons). In addition, the book contains descriptions of the properties of the key superconducting compounds that are of the most interest for science and applications. For many years, there has been a search for new materials with higher values of the main parameters, such as the critical temperature and critical current. At present, the possibility of observing superconductivity at room temperature has become perfectly realistic. That is why the book is especially concerned with high-Tc systems such as high-Tc oxides, hydrides with record values for critical temperature under high pressure, nanoclusters, and so on. A number of interesting novel superconducting systems have been discovered recently, including topological materials, interface systems, and intercalated graphene. The book contains rigorous derivations based on statistical mechanics and many-body theory. The book also provides qualitative explanations of the main concepts and results. This makes the book accessible and interesting for a broad audience.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Lee, Euisang. Temperature effects on surface energetic parameters evaluated at solid/liquid interfaces. 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cruz, Edisson, Norman Beltrán, and Reynaldo Condori. Diseño e implementación de un sistema de monitoreo y adquisición de datos de parámetros eléctricos y ambientales de un sistema fotovoltaico conectado a la red de 3kW. Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú, 2022. http://dx.doi.org/10.35622/inudi.b.003.

Повний текст джерела
Анотація:
En el presente trabajo de investigación se realizó el diseño e implementación de un sistema de monitoreo y adquisición de datos inalámbrico con un interfaz en LabVIEW en tiempo real para monitoreo de parámetros eléctricos en DC y ambientales de un SFCR de 3kW, El cual se llevó a cabo integrando dispositivos como un Raspberry pi 3B+, un Arduino Nano, usando como sensores de temperatura 03 PT100, como sensor de tensión un divisor de tensión, como sensor de corriente el ACS758, como sensor de irradiancia una celda calibrada y como interfaz gráfica y almacenamiento de datos un programa elaborado en LabVIEW, también se hizo el modelado e impresión en 3D de las piezas de la carcasa pudiendo así implementar un prototipo con un sujetador para riel DIN. Todo esto orientado bajo la norma IEC-61724-2017. En el periodo de prueba de 05 días nos entrega los siguientes resultados: Influencia de la temperatura en el módulo fotovoltaico, en el cual pudimos observar que las temperaturas de cada célula en el módulo no son iguales, teniendo una desviación de hasta 3C el cual ocasiona pérdidas por dispersión de parámetros. Influencia de la temperatura en el generador fotovoltaico, en el cual pudimos observar que la temperatura y la tensión en un sistema fotovoltaico son inversamente proporcionales y cuando más caliente esté un módulo fotovoltaico es menos eficiente, en este apartado se registró temperaturas de hasta 52.31C en la superficie del módulo fotovoltaico. Influencia de la irradiancia en el generador fotovoltaico, apartado en el cual observamos que la irradiancia y la corriente generada son directamente proporcionales, también se presentó eventos de irradiancia solar extrema, siendo el más alto y menos prolongado el día 17 de Junio del 2021, con un valor 1245.89[W/m2], una duración de 06 segundos, registrados a las 11:39:13 y el más prolongado, presentado el mismo día, con un valor de 1219.75[W/m2], una duración de 176 segundos registrados a las 11:34:17 segundos. Finalmente se concluye que los indicadores proporcionados sobre la energía generada por el SFRC bajo ciertas condiciones ambientales son confiables debido a lineamientos con la norma propuesta, calibración y validación de las lecturas de los sensores y demás componentes usados.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Interfacial Physical Chemistry of High-Temperature Melts. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Matsushita, Taishi, and Kusuhiro Mukai. Interfacial Physical Chemistry of High-Temperature Melts. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Matsushita, Taishi, and Kusuhiro Mukai. Interfacial Physical Chemistry of High-Temperature Melts. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Matsushita, Taishi, and Kusuhiro Mukai. Interfacial Physical Chemistry of High-Temperature Melts. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Matsushita, Taishi, and Kusuhiro Mukai. Interfacial Physical Chemistry of High-Temperature Melts. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Tripathy, Priyabrata. Extended-Temperature Single Port Fast Ethernet Copper PHY with RGMII/MII/RMII Interfaces. Microchip Technology Incorporated, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Tripathy, Priyabrata. Extended-Temperature Single Port Gigabit EthernetCopper PHY with GMII/RGMII/MII/RMII Interfaces. Microchip Technology Incorporated, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Habermeier, H. U., and M. L. Hitchman. High Temperature Superconductor Thin Films: Growth Mechanisms - Interfaces - Multilayers (European Materials Research Society Symposia Proceedings). Elsevier Science, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Andriiko, Aleksandr A., Yuriy O. Andriyko, and Gerhard E. Nauer. Many-electron Electrochemical Processes: Reactions in Molten Salts, Room-Temperature Ionic Liquids and Ionic Solutions. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Andriiko, Aleksandr A., Yuriy O. Andriyko, and Gerhard E. Nauer. Many-electron Electrochemical Processes: Reactions in Molten Salts, Room-Temperature Ionic Liquids and Ionic Solutions. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Andriiko, Aleksandr A., Yuriy O. Andriyko, and Gerhard E. Nauer. Many-electron Electrochemical Processes: Reactions in Molten Salts, Room-Temperature Ionic Liquids and Ionic Solutions. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Transport phenomena in the micropores of plug-type phase separators. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Eller, Jonathan R. Fahrenheit 451. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252036293.003.0046.

Повний текст джерела
Анотація:
This chapter examines the changes, revisions, delays, compromises, and other issues, not to mention Ray Bradbury's own concerns, that Fahrenheit 451 had to go through before it could be finally released. As early as January 18, 1953, Bradbury already had a working title—Fahrenheit 270—for a book that would allude to the temperature at which book paper burns. He began to work with Joe Mugnaini on cover illustrations. For his part, Don Congdon was able to convince Doubleday not to interfere with Ballantine's Fahrenheit collection while also handling media negotiations for a Bradbury Showcase concept that was still at play with CBS Television. This chapter provides the background for Fahrenheit 451 and looks at some of the people who worked behind the scenes, including Mugnaini, Congdon, and Stanley Kauffmann.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії