Добірка наукової літератури з теми "Interface neuronale"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interface neuronale".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interface neuronale"
Goto, Toichiro, Nahoko Kasai, Rick Lu, Roxana Filip, and Koji Sumitomo. "Scanning Electron Microscopy Observation of Interface Between Single Neurons and Conductive Surfaces." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3383–87. http://dx.doi.org/10.1166/jnn.2016.12311.
Повний текст джерелаWang, Xinyuan. "Intracortical Brain-machine Interface for Restoring Sensory Motor Function: Progress and Challenges." International Journal of Biology and Life Sciences 3, no. 2 (June 26, 2023): 31–38. http://dx.doi.org/10.54097/ijbls.v3i2.10514.
Повний текст джерелаBernardin, Evans, Christopher L. Frewin, Abhishek Dey, Richard Everly, Jawad Ul Hassan, Erik Janzén, Joe Pancrazio, and Stephen E. Saddow. "Development of an all-SiC neuronal interface device." MRS Advances 1, no. 55 (2016): 3679–84. http://dx.doi.org/10.1557/adv.2016.360.
Повний текст джерелаSahni, Deshdeepak, Andrew Jea, Javier A. Mata, Daniela C. Marcano, Ahilan Sivaganesan, Jacob M. Berlin, Claudio E. Tatsui, et al. "Biocompatibility of pristine graphene for neuronal interface." Journal of Neurosurgery: Pediatrics 11, no. 5 (May 2013): 575–83. http://dx.doi.org/10.3171/2013.1.peds12374.
Повний текст джерелаCao, Jiong, Jenni I. Viholainen, Caroline Dart, Helen K. Warwick, Mark L. Leyland, and Michael J. Courtney. "The PSD95–nNOS interface." Journal of Cell Biology 168, no. 1 (January 3, 2005): 117–26. http://dx.doi.org/10.1083/jcb.200407024.
Повний текст джерелаMacías Macías, José Manuel, Juan Alberto Ramírez Quintana, José Salvador Antonio Méndez Aguirre, Mario Ignacio Chacón Murguía, and Alma Delia Corral Sáenz. "Procesamiento embebido de p300 basado en red neuronal convolucional para interfaz cerebro-computadora ubicua." RECIBE, Revista ELECTRÓNICA DE COMPUTACIÓN, INFORMÁTICA, BIOMÉDICA Y ELECTRÓNICA 9, no. 2 (February 1, 2021): B1—B24. http://dx.doi.org/10.32870/recibe.v9i2.153.
Повний текст джерелаLiang, Elaine, Jiuyun Shi, and Bozhi Tian. "Freestanding nanomaterials for subcellular neuronal interfaces." iScience 25, no. 1 (January 2022): 103534. http://dx.doi.org/10.1016/j.isci.2021.103534.
Повний текст джерелаKeskinbora, Kadircan H., and Kader Keskinbora. "Ethical considerations on novel neuronal interfaces." Neurological Sciences 39, no. 4 (December 2, 2017): 607–13. http://dx.doi.org/10.1007/s10072-017-3209-x.
Повний текст джерелаPronker, Matti F., Roderick P. Tas, Hedwich C. Vlieg, and Bert J. C. Janssen. "Nogo Receptor crystal structures with a native disulfide pattern suggest a novel mode of self-interaction." Acta Crystallographica Section D Structural Biology 73, no. 11 (October 19, 2017): 860–76. http://dx.doi.org/10.1107/s2059798317013791.
Повний текст джерелаMilekovic, Tomislav, Anish A. Sarma, Daniel Bacher, John D. Simeral, Jad Saab, Chethan Pandarinath, Brittany L. Sorice, et al. "Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals." Journal of Neurophysiology 120, no. 1 (July 1, 2018): 343–60. http://dx.doi.org/10.1152/jn.00493.2017.
Повний текст джерелаДисертації з теми "Interface neuronale"
Dillen, Arnau. "Interface neuronale directe pour applications réelles." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1295.
Повний текст джерелаSince the inception of digital computers, creating intuitive user interfaces has been crucial. Effective and efficient user interfaces ensure usability, significantly influenced by the deployment environment and target demographic. Diverse interaction modalities are essential for inclusive device usability.Brain-computer interfaces (BCIs) enable interaction with devices through neural signals, promising enhanced interaction for individuals with paralysis and improving their autonomy and quality of life. This research project develops a proof-of-concept software using off-the-shelf hardware to control a robotic arm with BCI. The BCI system decodes user intentions from EEG signals to execute commands, focusing on the optimal design of a BCI control system for practical human-robot collaboration.The research established the following key objectives: developing a real-time motor imagery (MI) decoding strategy with fast decoding, minimal computational cost, and low calibration time; designing a control system to address low MI decoding accuracy while enhancing user experience; and developing an evaluation procedure to quantify system performance and inform improvements.The literature review identified issues like the prevalence of offline decoding and lack of standardized evaluation procedures for BCIs, and highlighted the limitations of using deep learning for MI decoding. This prompted a focus on off-the-shelf machine learning methods for EEG decoding.Initial development benchmarked various EEG decoding pipelines for neuroprostheses control, finding that standard common spatial patterns and linear discriminant analysis were practical despite user customization yielding optimal results. Another investigation reduced the number of sensors for MI decoding, using a 64-channel EEG device and demonstrating that reliable MI decoding can be achieved with just eight well-placed sensors. This feasibility of using low-density EEG devices with fewer than 32 electrodes reduces costs.A comprehensive evaluation framework for BCI control systems was developed, ensuring iterative software improvements and participant training. An augmented reality (AR) control system design was also described, integrating visual feedback with real-world overlays via a shared control approach using eye tracking for object selection and computer vision for spatial awareness.A user study compared the developed BCI control system to an eye-tracking-only control system. While eye tracking outperformed the BCI system, the study confirmed the feasibility of the BCI design for real-world applications with potential enhancements.Key findings include:- Eight well-placed EEG sensors are sufficient for adequate decoding performance, with a non-significant decrease in accuracy from 0.67 to 0.65 when reducing from 64 sensors to 8.- A shared control design informed by real-world contexts simplifies BCI decoding, and AR integration enhances the user interface. Only 2 MI classes are needed to achieve a success rate of 0.83 on evaluation tasks.- Despite eye tracking outperforming current BCI systems, BCIs are feasible for real-world use, with significantly higher efficiency in task completion time for the eye-tracking system.- Consumer-grade EEG devices are viable for EEG acquisition in BCI control systems, with all participants using the commercial EEG device successfully completing evaluation tasks, indicating further cost reductions beyond sensor reduction.Future research should integrate advanced EEG decoding methods like deep learning, transfer learning, and continual learning. Gamifying the calibration procedure may yield better training data and make the control system more attractive to users. Closer hardware-software integration through embedded decoding and built-in sensors in AR headsets should lead to a consumer-ready BCI control system for diverse applications
Besserve, Michel. "Analyse de la dynamique neuronale pour les Interfaces Cerveau-Machines : un retour aux sources." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00559128.
Повний текст джерелаBedez, Mathieu. "Modélisation multi-échelles et calculs parallèles appliqués à la simulation de l'activité neuronale." Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH9738/document.
Повний текст джерелаComputational Neuroscience helped develop mathematical and computational tools for the creation, then simulation models representing the behavior of certain components of our brain at the cellular level. These are helpful in understanding the physical and biochemical interactions between different neurons, instead of a faithful reproduction of various cognitive functions such as in the work on artificial intelligence. The construction of models describing the brain as a whole, using a homogenization microscopic data is newer, because it is necessary to take into account the geometric complexity of the various structures comprising the brain. There is therefore a long process of rebuilding to be done to achieve the simulations. From a mathematical point of view, the various models are described using ordinary differential equations, and partial differential equations. The major problem of these simulations is that the resolution time can become very important when important details on the solutions are required on time scales but also spatial. The purpose of this study is to investigate the various models describing the electrical activity of the brain, using innovative techniques of parallelization of computations, thereby saving time while obtaining highly accurate results. Four major themes will address this issue: description of the models, explaining parallelization tools, applications on both macroscopic models
Corlier-Bagdasaryan, Juliana. "Voluntary control of neural oscillations in the human brain." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066626/document.
Повний текст джерелаIntroduction. Animals and humans are capable to modulate their own brain activity if they are provided with real-time sensory feedback thereof. The range of controllable neural activities reaches from oscillatory brain rhythms, over hemodynamic response function to the firing of single neurons or even action-potential associated calcium signals. The voluntary control of neural activity facilitated by this ‘closed-loop’ experimental paradigm is at the very heart of the mind-body interaction and can be used to address philosophical questions. But as numerous successful applications of neurofeedback and brain-computer interfaces have demonstrated, it is also a powerful tool in motor rehabilitation, pain management, emotion regulation or memory improvement. Because most previous studies were conducted on humans using non-invasive recordings techniques, the neurophysiological mechanisms of neural self-regulation remained obscure. The main objective of the present work was thus to provide a better understanding of its underlying principles. Objectives. Following a multiscale theoretical framework of neural oscillations, the present investigation was largely guided by the following questions: 1) What are the physiological markers of successful control? 2) Are some regions or spatiotemporal scales more easily controllable than others? 3) Are training effects specific or generalized? and 4) What are subject-invariant successful cognitive strategies of neural self-control? To address these questions, we took advantage of intracerebral macro- and micro-electrode recordings in epileptic patients undergoing long-term monitoring in the presurgical context
Mora, Sánchez Aldo. "Cognitive brain-computer interfaces : From feature engineering to neurophenomenological validation." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS217.
Повний текст джерелаThis thesis aims at describing in detail the design, implementation and validation of cognitive brain-computer interfaces (cBCI). Chapter 1 introduces cBCI design and brain metastability. In Chapter 2, a specific cognitive function (Working Memory) is selected for the construction of a cBCI. In Chapter 3, we explore the use of spatio temporal properties of brain dynamics as biomarkers for cBCIs, and we address scientific questions concerning cognition-driven brain metastability. The BCI described in Chapter 2 continuously monitors Working Memory (WM) load in real-time. It relies on spectral properties of EEG as biomarkers. The applications may range from improved learning to security in industrial environments. To our knowledge, this represents the first cBCI research in which different key elements are included simultaneously: real-time tests, a cross-task, disentanglement of motor and cognitive confounders and neurophenomenological validation. In Chapter 3, we develop a data-driven framework for studying the spatio temporal structure of brain state switches under cognition, with two specific objectives. First, to identify and utilise patterns of brain activity elicited by cognition as descriptors in cBCIs. Second, to investigate how the brain self-organizes allowing different regions to engage and disengage in joint activity in a manner driven by cognition. Assuming brain metastability (in the context of statistical physics), we propose a set of local variables that are expected to be spatially and temporarily affected by cognitive states. We correlate these variables with cognitive conditions, such as high-WM load, Alzheimer disease, and positive emotional valence
Bonaccini, Calia Andrea. "Graphene field-effect transistors as flexible neural interfaces for intracortical electrophysiology." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671635.
Повний текст джерелаEn los últimos años se han producido nuevos desarrollos tecnológicos en el campo de los implantes neuronales para aplicaciones médicas. La comprensión del cerebro humano se considera uno de los mayores desafíos científicos de nuestro tiempo; como consecuencia, estamos siendo testigos de una intensificación de la investigación en el desarrollo de las interfaces cerebro-máquina (IMC) para leer y estimular la actividad cerebral. No obstante, los implantes neuronales actualmente disponibles ofrecen una eficacia clínica modesta, en parte debido a las limitaciones que plantea la invasividad de los materiales. Esos materiales comprometen la resolución de la interfaz, el rendimiento y la estabilidad a largo plazo de los implantes neurales. El desarrollo de una electrónica flexible que utilice materiales biocompatibles es clave para la realización de implantes neuronales mínimamente invasivos que puedan implantarse de forma crónica. Un campo de investigación muy prometedor es el uso de materiales bidimensionales, como el grafeno, para aplicaciones bioelectrónicas. El transistor de efecto de campo en solución de grafeno (gSGFET) es una de dichas nuevas tecnologías neurales emergentes. Estos dispositivos pueden superar las limitaciones mencionadas anteriormente gracias a las extraordinarias propiedades del grafeno, como su alta flexibilidad mecánica, estabilidad electroquímica, biocompatibilidad y sensibilidad. En esta tesis doctoral, se han fabricado matrices de gSGFET y se han optimizado iterativamente en términos de sensibilidad y relación señal/ruido, adoptando métodos de microfabricación a escala de oblea. Se ha caracterizado el ruido 1/f en los gSGFETs y optimizado haciendo un tratamiento UVO en la interfaz metal/grafeno y desacoplando el canal de grafeno del sustrato utilizando diferentes nanomateriales como la encapsulación con nitruro de boro hexagonal (hBN), monocapas autoensambladas y bicapas de grafeno. Además, se han fabricado con éxito sondas neurales epicorticales e intracorticales flexibles con matrices de gSGFET y se han utilizado durante las medidas de microelectrocorticografía in vivo en roedores. Se han insertado dispositivos intracorticales flexibles en el cerebro utilizando un protocolo de refuerzo de la capa posterior de los dispositivos con proteína de fibroína de seda biorresistente. Los resultados presentados en esta tesis demuestran la superior resolución espacio-temporal de los gSGFET en comparación con la tecnología estándar de microelectrodos; en particular, referente a la capacidad de mapear con alta fidelidad, la actividad de muy baja frecuencia (ISA, < 0,1 Hz) junto con las señales en el típico ancho de banda LFP. Hoy en día se sabe que la actividad cerebral de muy baja frecuencia, contribuye a la fisiopatología de varios trastornos neurológicos como el derrame cerebral, la lesión cerebral traumática, la migraña y la epilepsia. Sin embargo, esta actividad rara vez se registra debido a las limitaciones técnicas intrínsecas de los electrodos convencionales acoplados a la CA. Se han obtenido registros con sondas neuronales de profundidad de grafeno (gDNP) en modelos animales de epilepsia. Se detectó ISA a través de diferentes capas corticales y regiones subcorticales, registrando simultáneamente la actividad epiléptica en bandas de frecuencia más convencionales (1-600Hz). Además, se ha demostrado también la evaluación de la estabilidad y funcionalidad en registros crónicos, así como la biocompatibilidad del gDNP. La tecnología bioelectrónica basada en el grafeno aquí descrita tiene el potencial de convertirse en una herramienta de referencia para la electrofisiología de ancho de banda completo. Se prevé que esta tecnología tenga un gran impacto en una comunidad amplia y multidisciplinaria que incluya investigadores en neurotecnología, ingenieros biomédicos, neurocientíficos que estudien la dinámica cortical de banda ancha asociada con el comportamiento espontáneo y/o los estados cerebrales, así como investigadores clínicos interesados en la actividad de baja frecuencia en la epilepsia, los accidentes cerebrovasculares y la migraña.
Recent years have witnessed novel technology developments of neural implants for medical applications which are expected to pave the way to unveil functionalities of the central nervous system. Understanding the human brain is commonly considered one of the biggest scientific challenges of our time; as a consequence, we are witnessing an intensified research in the development of brain-machine-interfaces (BMIs), which would allow us to both read and stimulate brain activity. Nevertheless, currently available neural implants offer a modest clinical efficacy, partly due to the limitations posed by the invasiveness of the implants materials and technology and by the metals used at the electrical interface with the tissue. Such materials compromise the interfacing resolution, the performance and the long term stability of neural implants. Development of flexible electronics using biocompatible materials is key for the realisation of minimally invasive neural implants, which can be chronically implanted without causing rejection from the immune system. A relatively young yet very promising research field, that is increasingly drawing attention is the use of two dimensional materials, such as graphene, for bioelectronic applications. Graphene solution-gated field effect transistor (gSGFET) is one of several emerging new neural technologies. These devices can overcome the above-mentioned limitations thanks to the outstanding properties of graphene, such as mechanical flexibility, electrochemical inertness, biocompatibility and high sensitivity. In this PhD thesis, arrays of gSGFETs have been fabricated and iteratively optimized in terms of sensitivity and signal-to-noise ratio, adopting wafer-scale micro-fabrication methods. The 1/f noise in gSGFETs has been characterised and the optimisation of both, contact and channel noises was achieved by UVO-treatment at the metal/graphene interface, as well as by decoupling the graphene channel from the substrate, using different nanomaterials such as graphene encapsulation with hexagonal boron nitride (hBN), self assembled monolayers and double transferred graphene. Moreover, flexible and ultra-thin epicortical and intracortical neural probes, containing arrays of gSGFETs, have been successfully fabricated and used during in vivo microelectrocorticography recordings in anaesthesized and awake rodents. Flexible intracortical devices were inserted into the brain using a back-coating stiffening protocol with bioresobable silk fibroin protein, developed during this PhD thesis. The results presented in this PhD demonstrate the superior spatio-temporal resolution of gSGFETs compared to standard microelectordes technology; particularly the ability to map with high fidelity, infraslow activity (ISA, < 0.1 Hz) together with signals in the typical local field potential bandwidth. Today it is known that infraslow brain activity, including spreading depolarisations, contribute to the pathophysiology of several neurological disorders such as stroke, traumatic brain injury, migraine and epilepsy. However, this activity is seldom recorded due to intrinsic technical limitations of conventional AC-coupled electrodes. To demonstrate the usefulness of the developed flexible gSGFET arrays technology, recordings have been obtained with multichannel flexible graphene depth neural probes (gDNP) in relevant awake animal models of seizures and established epilepsy. ISA was detected and mapped through different cortical layers and subcortical regions, whilst simultaneously recording epileptiform activity in more conventional frequency bands (1-600Hz). Furthermore, the assessment of the long term recording stability and functionality, as well as biocompatibility of the gDNP has also been demonstrated as part of this thesis. The graphene based bioelectronic technology here described has the potential to become a gold standard tool for full bandwidth electrophysiology. This technology is envisioned to have a great impact on a broad and multidisciplinary community including neurotechnology researchers, biomedical engineers, neuroscientists studying wide-band cortical dynamics associated with spontaneous behaviour and/or brain states, as well as clinical researchers interested in the role of infraslow activity in epilepsy, stroke and migraine.
Brenner, Markus Simon. "Interface zwischen 2000-Transistoren-Chip und neuronaler Zellkultur." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962125865.
Повний текст джерелаMayne, Andrew Humphrey. "The development of a silicon based neuronal interface." Thesis, De Montfort University, 2002. http://hdl.handle.net/2086/13264.
Повний текст джерелаSchoonjans, Nathan. "Établissement d'une boucle de communication bidirectionnelle entre des neurones vivants et des neurones artificiels analogiques pour la conception de neurobiohybrides de nouvelle génération." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. https://pepite-depot.univ-lille.fr/ToutIDP/EDENGSYS/2023/2023ULILN056.pdf.
Повний текст джерелаNeurobiohybrids are systems composed of an artificial element, a living component and their interface. These powerful tools enable the functional connection of electronic elements and neuronal structures both in vitro and in vivo. Many neurobiohybrid systems, more commonly known as neuroprostheses, are used in medicine to improve the quality of life of patients with disabilities (deafness, visual impairment, paralysis) by enabling them to recover, at least partly, lost physiological functions. Current neuroprostheses are unidirectional (they stimulate OR record the activity of targeted neurons) and are particularly energy-intensive. Integrating a feedback loop into these systems so that they could communicate bidirectionally in real time with nerve tissues would improve their efficiency and effectiveness, while broadening the range of their therapeutic potential. The main difficulty to overcome for enabling such a loop is to find an autonomous and sufficiently miniaturized signal processing system. In 2017, the Circuits Systèmes Applications des Micro-ondes (CSAM) group at Lille's Institute of Electronics, Microelectronics and Nanotechnologies (IEMN) published an ultra-efficient artificial neuron in terms of energy consumption that could meet these needs. This neuron generates biomimetic action potentials of similar shape, amplitude and frequency compared to living neurons, and is entirely analog. In a previous PhD work, it was shown that such biomimetic action potentials can trigger electric activity in living neurons. Following this demonstration, the present work aims to establish the proof-of-concept of the complete bidirectional communication loop between living neurons and these artificial neurons. To reach this goal, three main objectives were set: 1- Optimize the design and technology of a neurobiohybrid interface; 2- Select living cells for in vitro use and characterize them both morphologically and functionally; 3- Establish a first bidirectional communication loop between these living neurons and artificial neurons through the neurobiohybrid interface. This manuscript presents the manufacturing and optimization steps of the interface, whose surface has been enhanced to optimize recording conditions in an electrolytic environment, notably by adding a passivation layer to isolate the access lines and by developing methods to optimize cell position on the electrodes. The electrically active cells chosen for this demonstration (murine pituitary endocrine GH4C1 cells, an established cell line, and human glutamatergic neurons derived from induced pluripotent stem cells) were characterized by patch-clamp, fluorescence imaging and calcium imaging. The first recordings of the electrical activity of GH4C1 cells grown in a neurobiohybrid interface were carried out on an electronic recording bench designed and optimized in-house for detecting very low amplitude signals. This work also led to the development of an electrical model implemented in LTSPICE software, integrating electrical signals emitted by GH4C1 cells as recorded through the neurobiohybrid interface. This enabled the establishment of a bidirectional communication loop between living and artificial neurons. To conclude, this work opens the way to a new generation of bidirectional neuroprostheses
Béhuret, Sébastien. "EXPLORATION PAR DES INTERFACES HYBRIDES DU CODE NEURONAL ET DES MÉCANISMES DE RÉGULATION DE L'INFORMATION SENSORIELLE DANS LE SYSTÈME VISUEL." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00714145.
Повний текст джерелаКниги з теми "Interface neuronale"
Mayne, Andrew Humphrey. The development of a silicon based neuronal interface. Leicester: De Montfort University, 2002.
Знайти повний текст джерелаJosé, Hanson Stephen, and Olson Carl R, eds. Connectionist modeling and brain function: The developing interface. Cambridge, Mass: MIT Press, 1990.
Знайти повний текст джерелаInternational Conference on Glial Interfaces (2nd 2001 Uppsala, Sweden). Glial interfaces in the nervous system: Role in repair and plasticity. Amsterdam: IOS Press, 2002.
Знайти повний текст джерелаVassanelli, Stefano. Implantable neural interfaces. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0050.
Повний текст джерела(Editor), Stephen J. Hanson, and Carl R. Olson (Editor), eds. Connectionist Modeling and Brain Function: A Developing Interface (Bradford Books). The MIT Press, 1990.
Знайти повний текст джерелаZilliox, Lindsay, and James W. Russell. Diabetic and Prediabetic Neuropathy. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0115.
Повний текст джерела(Editor), Hakan Aldskogius, ed. Glial Interfaces in the Nervous System: Role in Repair and Plasticity (Biomedical and Health Research, 47). Ios Pr Inc, 2002.
Знайти повний текст джерелаЧастини книг з теми "Interface neuronale"
Sanchez, Justin C., and José C. Principe. "Foundations of Neuronal Representations." In Brain-Machine Interface Engineering, 21–55. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01621-9_2.
Повний текст джерелаMercier, Frederic. "Astroglia as a modulation interface between meninges and neurons." In Glial ⇔ Neuronal Signaling, 125–61. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4020-7937-5_5.
Повний текст джерелаHuang, Jiaqi V., and Holger G. Krapp. "Neuronal Distance Estimation by a Fly-Robot Interface." In Biomimetic and Biohybrid Systems, 204–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63537-8_18.
Повний текст джерелаWarwick, Kevin. "A Tour of Some Brain/Neuronal–Computer Interfaces." In The International Library of Ethics, Law and Technology, 131–45. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8996-7_12.
Повний текст джерелаWörner, M., H. Rau, W. Probst, and H. Rahmann. "Stablility of Ganglioside Monolayers at a Liquid/Liquid Interface. A polarographic study of the Ca2+-effect." In Gangliosides and Modulation of Neuronal Functions, 185–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71932-5_15.
Повний текст джерелаEppler, Jochen M., Hans E. Plesser, Abigail Morrison, Markus Diesmann, and Marc-Oliver Gewaltig. "Multithreaded and Distributed Simulation of Large Biological Neuronal Networks." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 391–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75416-9_55.
Повний текст джерелаRand, David, and Yael Hanein. "Carbon Nanotubes for Neuron–Electrode Interface with Improved Mechanical Performance." In Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing, 1–12. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8038-0_1.
Повний текст джерелаSánchez-Morales, Laura N., Giner Alor-Hernández, Rosebet Miranda-Luna, Viviana Y. Rosales-Morales, and Cesar A. Cortes-Camarillo. "Generation of User Interfaces for Mobile Applications Using Neuronal Networks." In Management and Industrial Engineering, 211–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56871-3_11.
Повний текст джерелаBaun, Susanne. "Verteilungsprognosen im Rahmen der Interface-Modellierung zwischen Entwicklung und Einsatz neuronaler Modelle." In Verteilungsprognose für den Deutschen Aktienindex, 61–85. Wiesbaden: Deutscher Universitätsverlag, 1997. http://dx.doi.org/10.1007/978-3-663-09110-3_6.
Повний текст джерелаBiesemeier, Antje, Birgit Schröppel, Wilfried Nisch, and Claus J. Burkhardt. "FIBSEM Analysis of Interfaces Between Hard Technical Devices and Soft Neuronal Tissue." In Volume Microscopy, 201–20. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0691-9_11.
Повний текст джерелаТези доповідей конференцій з теми "Interface neuronale"
Jeong, Gaeun, June Sic Kim, Seokyun Ryun, and Chun Kee Chung. "Interference in tactile discrmination performance by neuronal modulation." In 2019 7th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2019. http://dx.doi.org/10.1109/iww-bci.2019.8737347.
Повний текст джерелаWang, Han, Udo Römer, Xinyue Lei, Yuan Wei, Amr Al Abed, Francois Ladouceur, Leonardo Silvestri, and Nigel Lovell. "Towards bi-directional electro-optic neuronal interfaces." In Biophotonics Australasia 2019, edited by Ewa M. Goldys and Brant C. Gibson. SPIE, 2019. http://dx.doi.org/10.1117/12.2539997.
Повний текст джерелаMorehead, Michael, Quinn Jones, Jared Blatt, Paul Holcomb, Juergen Schultz, Tom DeFanti, Mark Ellisman, Gianfranco Doretto, and George A. Spirou. "Poster: BrainTrek - An immersive environment for investigating neuronal tissue." In 2014 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 2014. http://dx.doi.org/10.1109/3dui.2014.6798868.
Повний текст джерелаKawana, A., and Y. Jimbo. "Neurointerface-interfaces of neuronal networks to electrical circuit." In Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291). IEEE, 1999. http://dx.doi.org/10.1109/memsys.1999.746744.
Повний текст джерелаNag, S., and D. Sharma. "Wirelessly powered stimulator and recorder for neuronal interfaces." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091358.
Повний текст джерелаMahmoudi, Babak, Jack DiGiovanna, Jose C. Principe, and Justin C. Sanchez. "Neuronal tuning in a brain-machine interface during Reinforcement Learning." In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4650210.
Повний текст джерелаDiGiovanna, Jack, Babak Mahmoudi, Jose Principe, and Justin Sanchez. "Quantifying neuronal importance in value-based Brain-Machine Interfaces." In 2009 4th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2009. http://dx.doi.org/10.1109/ner.2009.5109294.
Повний текст джерелаLanzani, Guglielmo. "Opto-neuronal Interfaces and the Perspective Toward Artificial Retina." In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.w3a.2.
Повний текст джерелаTeller, S., and J. Soriano. "Experiments on clustered neuronal networks." In PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES: Proceedings of the 12th Granada Seminar on Computational and Statistical Physics. AIP, 2013. http://dx.doi.org/10.1063/1.4776529.
Повний текст джерелаRoth, Daniel, Larrissa Brübach, Franziska Westermeier, Christian Schell, Tobias Feigl, and Marc Erich Latoschik. "A Social Interaction Interface Supporting Affective Augmentation Based on Neuronal Data." In SUI '19: Symposium on Spatial User Interaction. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357251.3360018.
Повний текст джерелаЗвіти організацій з теми "Interface neuronale"
Shea, Thomas B. Optimization of Neuronal-Computer Interface. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada515409.
Повний текст джерела