Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Interface Chimie.

Статті в журналах з теми "Interface Chimie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Interface Chimie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Michou, M., and V. H. Peuch. "Échanges en surface dans le modèle de chimie transport multi-échelles MOCAGE." Revue des sciences de l'eau 15 (April 12, 2005): 173–203. http://dx.doi.org/10.7202/705492ar.

Повний текст джерела
Анотація:
Les échanges en surface dans le Modèle de Chimie Transport (MCT) multi-échelles MOCAGE de Météo-France comprennent à la fois les flux d'émissions et de dépôt sec d'espèces gazeuses. Une interface 2D a été développée entre MOCAGE et le modèle de prévisions météorologiques opérationnel français ARPEGE dans le but de calculer des flux à la surface réalistes Pour les émissions, un inventaire global est employé pour le moment; cet inventaire a été construit essentiellement à partir des inventaires des programmes IGAC/GEIA (International Global Atmospheric Chemistry / Global Emission Inventory Activity) et EDGAR (Emission Database for Global Atmospheric Research qui ont des résolutions temporelles annuelles, sai-sonnières ou mensuelles et une résolution spatiale de un degré. Le dépôt sec d'espèces gazeuses, y compris l'ozone, le dioxyde de soufre, les composés azotés, les composés organiques à longue et à courte durée de vie, a été paramétrisé selon [Wesely, 1989]. Le modèle calcule la vitesse de dépôt à partir de valeurs de trois résistances en série, les résistances aérodynamique, laminaire et de la surface. Ces résistances sont calculées en utilisant les champs de surface d'ARPEGE. Les champs liés à la végétation, tels l'indice foliaire, sont prescrits avec une résolution de un degré sur le globe et de cinq minutes sur l'Europe. Un certain nombre de modifications a été apporté à la paramétrisation de [Wesely, 1989], par exemple pour la formulation de la résistance stomatale et celle de la résistance de surface sur les surfaces mouillées. Les valeurs calculées de vitesse de dépôt ont été comparées à des observations et leurs distributions spatiales et temporelles ont été analysées sur deux saisons opposées (hiver et été, sur les différents domaines de MOCAGE, de résolution allant de 2 degrés pour le globe à 0.25 degrés pour la France.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Solladié-Cavallo, Arlette. "Chimie organique aux interfaces." Comptes Rendus Chimie 6, no. 5-6 (May 2003): 515–16. http://dx.doi.org/10.1016/s1631-0748(03)00093-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mucci, Alfonso. "Chimie des Milieux aquatiques. Chimie des eaux naturelles et des interfaces dans l'environment." Geochimica et Cosmochimica Acta 61, no. 10 (May 1997): 2158–59. http://dx.doi.org/10.1016/s0016-7037(97)83239-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tardy, Yves. "Chimie des milieux aquatiques. Chimie des eaux naturelles et des interfaces dans l'environnement." Geochimica et Cosmochimica Acta 57, no. 7 (April 1993): 1638. http://dx.doi.org/10.1016/0016-7037(93)90028-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vialetto, Jacopo. "Novel Insights on the Three-dimensional Shape of Microgels at Fluid Interfaces." CHIMIA 76, no. 10 (October 26, 2022): 852. http://dx.doi.org/10.2533/chimia.2022.852.

Повний текст джерела
Анотація:
Mechanically soft colloids (microgels) adsorbed at the interface between two fluids offer superior advantages over hard counterparts for a variety of applications ranging from foams/emulsion stabilization to the assembly of two-dimensional (2D) materials. Particle deformability and compressibility impart additional responses to microgel-laden interfaces that can be controlled on-demand by varying single-particle properties (e.g. crosslinking content and polymer density profile) and/or external parameters (e.g. interfacial compression and tension, temperature, oil polarity). In order to understand how single-particle softness influences the resulting material properties, a detailed quantification of the microgel’s 3D conformation when confined at the fluid interface is of utmost importance. This article describes how different methodologies can be used to visualize, and in some case quantify, the conformation of adsorbed microgels, putting particular emphasis on the multiple advantages offered by in situ atomic force microscopy imaging at the fluid interface. The influence of the internal particle architecture, as well as that of temperature, interfacial tension and solubility in the organic phase, will be discussed. Finally, some perspectives on how softness can be exploited to tune the structural and mechanical properties of microgel monolayers will be provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schaming, Delphine, Imren Hatay, Fernando Cortez, Astrid Olaya, Manuel A. Méndez, Pei Yu Ge, Haiqiang Deng, Patrick Voyame, Zahra Nazemi, and Hubert Girault. "Artificial Photosynthesis at Soft Interfaces." CHIMIA International Journal for Chemistry 65, no. 5 (May 26, 2011): 356–59. http://dx.doi.org/10.2533/chimia.2011.356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hennig, Andreas, Sheshanath Bhosale, Naomi Sakai, and Stefan Matile. "CD Methods Development at the Bio-Nano Interface." CHIMIA International Journal for Chemistry 62, no. 6 (June 25, 2008): 493–96. http://dx.doi.org/10.2533/chimia.2008.493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaldre, Dainis, Fabrice Gallou, Christof Sparr, and Michael Parmentier. "Interface-rich Aqueous Systems for Sustainable Chemical Synthesis." CHIMIA International Journal for Chemistry 73, no. 9 (September 18, 2019): 714–19. http://dx.doi.org/10.2533/chimia.2019.714.

Повний текст джерела
Анотація:
Mimicking an enzyme's exquisite activity and selectivity is a long-standing goal for sustainable chemical method development in aqueous media. The use of interface-rich aqueous systems, such as single-chain polymers, micelles and vesicle membranes recently emerged as strategy to emulate the compartmentalization of natural systems. In aqueous solution, aggregates such as micelles or microemulsion droplets are formed, providing reaction environments different from bulk solutions that frequently improve selectivity and accelerate reaction rates for a wide array of chemical transformations. We present here selected examples of interface-rich aqueous systems and discuss the advantages they offer for chemical synthesis. In particular metal-catalyzed cross-coupling reactions are highlighted and future challenges to perform reactions in interface-rich aqueous media are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bobisch, Christian A., and Rolf Möller. "Electron Transport at Surfaces and Interfaces." CHIMIA International Journal for Chemistry 66, no. 1 (February 29, 2012): 23–30. http://dx.doi.org/10.2533/chimia.2012.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schwanitz, Konrad, Eric Mankel, Ralf Hunger, Thomas Mayer, and Wolfram Jaegermann. "Photoelectron Spectroscopy at the Solid–Liquid Interface of Dye–Sensitized Solar Cells: Unique Experiments with the Solid–Liquid Interface Analysis System SoLiAS at BESSY." CHIMIA International Journal for Chemistry 61, no. 12 (December 19, 2007): 796–800. http://dx.doi.org/10.2533/chimia.2007.796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Schlüter, Dieter A. "Progress in Synthetic 2D Polymers Obtained at the Air/Water Interface." CHIMIA International Journal for Chemistry 73, no. 6 (July 26, 2019): 487–92. http://dx.doi.org/10.2533/chimia.2019.487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bürgi, Thomas. "Shining Light at Working Interfaces and Chiral Nanoparticles." CHIMIA International Journal for Chemistry 65, no. 3 (March 30, 2011): 157–67. http://dx.doi.org/10.2533/chimia.2011.157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Amstad, Esther. "Leveraging Liquid–Liquid Interfaces to Assemble Responsive Vesicles." CHIMIA International Journal for Chemistry 68, no. 11 (November 26, 2014): 819. http://dx.doi.org/10.2533/chimia.2014.819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Nüesch, Frank A. "Interface Dipoles for Tuning Energy Level Alignment in Organic Thin Film Devices." CHIMIA International Journal for Chemistry 67, no. 11 (November 27, 2013): 796–803. http://dx.doi.org/10.2533/chimia.2013.796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Natterodt, JensC, Alke Petri-Fink, Christoph Weder, and JustinO Zoppe. "Cellulose Nanocrystals: Surface Modification, Applications and Opportunities at Interfaces." CHIMIA International Journal for Chemistry 71, no. 6 (June 28, 2017): 376–83. http://dx.doi.org/10.2533/chimia.2017.376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Wu, Shang-Jung, and ArdemisA Boghossian. "Living on the Edge: Re-shaping the Interface of Synthetic Biology and Nanotechnology." CHIMIA International Journal for Chemistry 70, no. 11 (November 30, 2016): 773–79. http://dx.doi.org/10.2533/chimia.2016.773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhang, Seraphine B. X. Y., and Christophe Copéret. "Non-Oxidative Coupling of Methane: Interplay of Catalyst Interface and Gas Phase Mechanisms." CHIMIA 77, no. 4 (April 26, 2023): 206. http://dx.doi.org/10.2533/chimia.2023.206.

Повний текст джерела
Анотація:
Non-oxidative coupling of methane (NOCM) is a sought-after reaction that has been studied for decades. Harsh reaction conditions (T >800°C) in the face of limited catalyst stability lead to rapid catalyst deactivation and strong coking, preventing application thus far. Recent reports have shown the significance of an interplay of catalyst nature and reaction conditions, whereas metal carbides have prevailed to play a crucial role which involves incorporation of carbidic carbon in C2Hx and aromatic products. This perspective gives an overview of proposed mechanistic pathways and considerations about experiment conditions in order to foster a rational catalyst design platform for NOCM.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Popa, Ionel, Rémi Longtin, Plinio Maroni, Georg Papastavrou, and Michal Borkovec. "Adsorption and Self-Organization of Dendrimers at Water–Solid Interfaces." CHIMIA International Journal for Chemistry 63, no. 5 (May 27, 2009): 279–82. http://dx.doi.org/10.2533/chimia.2009.279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Treu, Sigfried, D. Peter Sanderson, Roman Rozin, and Ravi Sharma. "Design process and decision rationale models for the N-Chime interface system." ACM SIGCHI Bulletin 22, no. 1 (June 1990): 73–79. http://dx.doi.org/10.1145/101288.101304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Treu, S., DP Sanderson, R. Rozin, and R. Sharma. "High-level, three-pronged design methodology for N-CHIME interface system software." Information and Software Technology 33, no. 5 (June 1991): 306–20. http://dx.doi.org/10.1016/0950-5849(91)90099-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Godineau, Edouard, Fabrice Gallou, Olivier Enger, Franziska Ewald, Christian Herber, Stefan Hildbrand, Niklaus Künzle, et al. "How Can Academia Help Industry Reduce the Footprint of Chemicals Manufacture?" CHIMIA 77, no. 3 (March 29, 2023): 159. http://dx.doi.org/10.2533/chimia.2023.159.

Повний текст джерела
Анотація:
Industrial representatives from the Swiss chemistry ecosystem met to formulate unmet needs in the field of sustainability and share the content of the exchange. The aim is to spark inspiration and trigger ambitious and pre-competitive projects collectively at the interface of the academic and industrial worlds, with the hope to profoundly change the current practices and provide an answer to some of the most urgent environmental challenges.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Rühs, Patrick A., R. Fredrik Inglis, and Peter Fischer. "Interfacial Rheology of Bacterial Biofilms at Air/Water and Oil/Water Interfaces." CHIMIA International Journal for Chemistry 68, no. 4 (April 30, 2014): 273. http://dx.doi.org/10.2533/chimia.2014.273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

De Feyter, Steven, Hong Xu, and Kunal Mali. "Dynamics in Self-assembled Organic Monolayers at the Liquid/Solid Interface Revealed by Scanning Tunneling Microscopy." CHIMIA International Journal for Chemistry 66, no. 1 (February 29, 2012): 38–43. http://dx.doi.org/10.2533/chimia.2012.38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Cléry, Antoine, Laurent Gillioz, Cristina K. X. Nguyen, and Frédéric H. T. Allain. "A Step-by-Step Guide to Study Protein–RNA Interactions." CHIMIA International Journal for Chemistry 73, no. 5 (May 29, 2019): 406–14. http://dx.doi.org/10.2533/chimia.2019.406.

Повний текст джерела
Анотація:
Protein–RNA complex formation is at the center of RNA metabolism and leads to the modulation of protein and RNA functions. We propose here a step-by-step guide to investigate these interactions including the identification of the protein and RNA parts involved in complex formation, the determination of the affinity of the complex and the characterization of the protein–RNA interface at amino acid and nucleotide level. Moreover, we briefly review the methods that are the most often used to obtain this information using primarily examples from our lab and finally mention what we perceive as the next challenges in the field.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Stegemann, Bert, Daniel Sixtensson, Thomas Lussky, Ulrike Bloeck, and Manfred Schmidt. "Ultrahigh Vacuum Preparation and Passivation of Abrupt SiO2/Si(111) Interfaces." CHIMIA International Journal for Chemistry 61, no. 12 (December 19, 2007): 826–30. http://dx.doi.org/10.2533/chimia.2007.826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Pham, Duc T., Hubert Keller, Stephan Breuer, Sascha Huemann, Nguyen T. N. Hai, Caroline Zoerlein, Klaus Wandelt, and Peter Broekmann. "Anion/Cation Layers at Electrified Interfaces: A Comprehensive STM, XRD and XPS Case Study." CHIMIA International Journal for Chemistry 63, no. 3 (March 25, 2009): 115–21. http://dx.doi.org/10.2533/chimia.2009.115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Isa, Lucio, Esther Amstad, Marcus Textor, and Erik Reimhult. "Self-Assembly of Iron Oxide-Poly(ethylene glycol) Core–Shell Nanoparticles at Liquid–Liquid Interfaces." CHIMIA International Journal for Chemistry 64, no. 3 (March 31, 2010): 145–49. http://dx.doi.org/10.2533/chimia.2010.145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Isa, Lucio. "Adsorption and Microstructure of Core-Shell Nanoparticles at Liquid-Liquid Interfaces: An X-ray Reflectivity Study." CHIMIA International Journal for Chemistry 67, no. 4 (April 24, 2013): 297. http://dx.doi.org/10.2533/chimia.2013.297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Fedoseeva, Marina, Jakob Grilj, Oksana Kel, Marius Koch, Romain Letrun, Vesna Markovic, Irina Petkova, et al. "Photoinduced Electron Transfer Reactions: From the Elucidation of Old Problems in Bulk Solutions Towards the Exploration of Interfaces." CHIMIA International Journal for Chemistry 65, no. 5 (May 26, 2011): 350–52. http://dx.doi.org/10.2533/chimia.2011.350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Castiglioni, Luca, Michael Greif, Dominik Leuenberger, Silvan Roth, Jürg Osterwalder, and Matthias Hengsberger. "Time-Resolved Photoelectron Spectroscopy to Probe Ultrafast Charge Transfer and Electron Dynamics in Solid Surface Systems and at Metal- Molecule Interfaces." CHIMIA International Journal for Chemistry 65, no. 5 (May 26, 2011): 342–45. http://dx.doi.org/10.2533/chimia.2011.342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Isa, Lucio. "Freeze-fracture Shadow-casting (FreSCa) Cryo-SEM as a Tool to Investigate the Wetting of Micro- and Nanoparticles at Liquid–Liquid Interfaces." CHIMIA International Journal for Chemistry 67, no. 4 (April 24, 2013): 231–35. http://dx.doi.org/10.2533/chimia.2013.231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Foppa, Lucas, Kim Larmier, and Aleix Comas-Vives. "What Can We Learn from First Principles Multi-Scale Models in Catalysis? The Role of the Ni/Al2O3 Interface in Water-Gas Shift and Dry Reforming as a Case Study." CHIMIA International Journal for Chemistry 73, no. 4 (April 24, 2019): 239–44. http://dx.doi.org/10.2533/chimia.2019.239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Pujal, Josep-Maria, Santiago Roura, Ana M. Muñoz-Marmol, Jose-Luis Mate, and Antoni Bayes-Genis. "Fetal-maternal interface: A chronicle of allogeneic coexistence." Chimerism 3, no. 1 (January 2012): 18–23. http://dx.doi.org/10.4161/chim.19439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Dufrêche, Jean-François. "Preface." Pure and Applied Chemistry 85, no. 1 (January 1, 2013): iv. http://dx.doi.org/10.1351/pac20138501iv.

Повний текст джерела
Анотація:
The 32nd International Conference on Solution Chemistry (ICSC-32) was held 28 August-2 September 2011 in La Grande Motte, France. This conference series covers a wide range of topics related to solution chemistry, such as- thermodynamics, kinetics, and structure- polymers, colloids, interfaces, and membranes- bioinorganic, biophysical, and pharmaceutical problems- supramolecular assemblies and nanostructures- analytical and environmental aspects- solvents and solutions under extreme conditionsFive plenary lectures were given: “Electrochemistry, the challenge of 21st century: From living cells to energy production”, by Dr. Christian Amatore, Paris, France; “Ultrafast studies on chemical and biological systems”, by Prof. Majed Chergui, Lausanne, Switzerland; “Modelling ionic liquids”, by Prof. Paul Madden, Oxford, UK; “Structure and dynamics of liquids and solutions in confinement”, by Prof. Toshio Yamaguchi, Fukuoka, Japan; “Natural ionic liquids and green solution chemistry”, by Prof. Dr. Werner Kunz, Regensburg, Germany.Two special lectures were given in the frame of the “Année Internationale de la Chimie”: “Solution chemistry and preservation of archeological wood: The case of Vasa”, by Prof. Ingmar Persson, Uppsala, Sweden; and “Molecular gastronomy: A solution chemistry problem”, by Hervé This, INRA, France.Twenty-one papers based on lectures presented at the ICSC-32 are included in this issue of Pure and Applied Chemistry. These contributions feature the major themes of the conference, serve as a representative view of current activities in the field of solution chemistry, and demonstrate that solutions still prove to be challenging targets for contemporary physical and chemical research.Jean-François DufrêcheConference Editor
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sanctis, Shawn, Rudolf C. Hoffmann, Michael Bruns, and Jörg J. Schneider. "Metal Oxide Semiconductors: Direct Photopatterning of Solution-Processed Amorphous Indium Zinc Oxide and Zinc Tin Oxide Semiconductors-A Chimie Douce Molecular Precursor Approach to Thin Film Electronic Oxides (Adv. Mater. Interfaces 15/2018)." Advanced Materials Interfaces 5, no. 15 (August 2018): 1870073. http://dx.doi.org/10.1002/admi.201870073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bandura, K., A. N. Bender, J. F. Cliche, T. de Haan, M. A. Dobbs, A. J. Gilbert, S. Griffin, et al. "ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System." Journal of Astronomical Instrumentation 05, no. 04 (December 2016): 1641005. http://dx.doi.org/10.1142/s2251171716410051.

Повний текст джерела
Анотація:
We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

"Methods for Characterizing Polymer Surfaces and Interfaces." CHIMIA 44, no. 10 (October 31, 1990): 312. http://dx.doi.org/10.2533/chimia.1990.312.

Повний текст джерела
Анотація:
The behavior of polymer molecules at surfaces and interfaces has been receiving a considerable amount of attention over the past few years. Numerous developments have been made theoretically using simulations and analytic approaches. Experimentally, advances have been made in the development of new techniques and the use of old techniques not commonly used in the investigation of polymers to probe the interfacial and near surface behavior of polymers. In this article, some of the experimental developments that have been made recently will be discussed. The approach will be to focus on the behavior of thin films of diblock copolymers and diblock copolymers at the interface between immiscible polymers, describing the different techniques used to study these problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

"Polymers, Colloids & Interfaces: Abstracts PCI01?PCI65." CHIMIA International Journal for Chemistry 67, no. 7 (August 21, 2013): 589–605. http://dx.doi.org/10.2533/chimia.2013.589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

"Research at the Laboratory for Photonics and Interfaces." CHIMIA 50, no. 12 (December 18, 1996): 583. http://dx.doi.org/10.2533/chimia.1996.583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

"Structure and Activity of Microbial Communities in Sediments." CHIMIA 51, no. 12 (December 17, 1997): 878. http://dx.doi.org/10.2533/chimia.1997.878.

Повний текст джерела
Анотація:
Mineralization of organic matter in sediments are driven by a dense microbial population. Large chemical concentration gradients perpendicular to the interface are developed. Concentration profiles at the sediment-water interface can be measured in situ with miniaturized ion-selective electrodes and fluxes, and reaction rates can be calculated with this information. Direct flux measurements in benthic chambers are performed with isotope tracers to investigate the cycling of nutrients such as nitrogen and sulfur. With the development of molecular genetics new tools have become available to obtain information on the location and activity of microbial communities in the sediment. This opens a fascinating field for collaboration between geochemists and microbiologists. Flux measurements based on microsensors and in situ incubation techniques can now be related to microbiological information. In this contribution we give an overview of the current state of research in sensor development, incubation techniques, and molecular genetics at EAWAG.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Colombo, Luciano. "TRASPORTO DI CALORE ATTRAVERSO UN’INTERFACCIA: UN PROBLEMA CLASSICO RIVISITATO IN CHIAVE MODERNA." Istituto Lombardo - Accademia di Scienze e Lettere - Rendiconti di Scienze, March 26, 2020. http://dx.doi.org/10.4081/scie.2017.601.

Повний текст джерела
Анотація:
I describe a set of computational experiments using molecular dynamics simulations, showing that the interface between two solid materials can be described as an autonomous thermodynamical system. By making use of the Gibbs description for such an interface, I discuss a robust nonequilibrium thermodynamics theoretical framework providing information about its corresponding thermal boundary resistance. In particular, I show that the termal resistance of a junction between two pure solid materials can be regarded as an interface property, depending solely on the interface temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

"Electrochemical Sensor Research at the Laboratoire d'Electrochimie of the EPFL." CHIMIA 53, no. 3 (March 31, 1999): 103. http://dx.doi.org/10.2533/chimia.1999.103.

Повний текст джерела
Анотація:
This review presents some recent developments in the field of electroanalytical sensors. We first explain the working principle of electrochemistry at the interface between two immiscible electrolyte solutions (ITIES), illustrated by the example of copper transferring through a water/1,2-dichloroethane interface when the ionophore 1,4,7,10-tetrathiacyclododecane is present in the organic phase. The obtained results show that assisted ion-transfer reactions take place with both CuI and CuII, but that the interfacial process is complicated by the fact that CuI disproportionates in water and that CuII can be reduced in the organic phase.Based on the same experimental methodology, a new type of amperometric detector for non-redox ions has been developed using a composite polymer membrane supporting a gelified organic phase that can incorporate an ionophore such as valinomycin. We report here the use of a (o-nitrophenyloctylether)-(poy(vinyl chloride) (NPOE-PVC) gel micro-interface as a detector for cations and anions in ion-exchange chromatography. The main advantage of this approach is that selectivity and sensitivity can be tailored by the choice of the ionophore and by the polarisation potential.This ion detector has also been incorporated in a miniaturised total-analysis system (µ-TAS) fabricated in a polymer sheet by UV-laser photoablation. This microfabrication technique is used for the prototyping of a disposable capillary-electrophoresis microsystem comprising on-chip injector, separation column and electrochemical detector. This system is further used with built-in carbon-ink electrodes for the detection of electroactive species. These microsystems are now under development for immuno-sensor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

"Using Structural Information of Peptides, Derived from NMR Spectroscopy, in Pharmaceutical Chemistry." CHIMIA 54, no. 11 (November 29, 2000): 627. http://dx.doi.org/10.2533/chimia.2000.627.

Повний текст джерела
Анотація:
The significance of information gained from the solution structure of peptides for pharmaceutical research is demonstrated with two examples: the neuropeptide Y (NPY) hormone system and a undecapeptide designed for use as a chemical sensor. In the case of NPY, the structure of the homodimer and the mode of membrane association was determined. Thereby, it was discovered that the membrane/NPY interface is formed by the same hydrophobic residues that constitute the homodimer interface. Furthermore, in the membrane-bound state, the C-terminal helix is stabilized, which is of special functional importance for the C-terminal tetrapeptide. Receptor-subtype specificity of NPY mutants may be explained through pre-orientation of residues relative to the different membrane compartments. In the case of the undecapeptide designed for use in a chemical sensor, structural information from NMR helped us to design and optimize a peptide whose unligated form is unstructured in solution but adopts a unique helical fold upon addition of sulfate. The sulfate binding pocket is formed by the N-terminal first turn.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

"Self-replicating Reverse Micelles." CHIMIA 45, no. 9 (September 25, 1991): 266. http://dx.doi.org/10.2533/chimia.1991.266.

Повний текст джерела
Анотація:
Conditions are described, under which the hydrolysis of octyl octanoate (O-OA) takes place at the interface of reverse micelles fanned by sodium octanoate (OA) in isooctane. Since the micelle-mediated hydrolysis affords fresh OA, which spontaneously assemble into new micelles, the reaction can be seen as a self-replicating process. The kinetics and the spectroscopy of this self-replication process are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

"Microstructure-Property Control in Functional Materials by Multilayer Design." CHIMIA 76, no. 3 (March 30, 2022): 223. http://dx.doi.org/10.2533/chimia.2022.223.

Повний текст джерела
Анотація:
Smart microstructure and interface design in nanomultilayers allows to tailor physical properties like thermal stability, thermal conductivity and directional metal outflow for targeted applications. In this work, selected examples of nanomultilayer systems, constituted of alternating nanolayers of metals and/or nitrides, as precisely fabricated with variable textures, microstructures, grain sizes and internal stresses are presented. The role of the microstructure and stress state on selected functional properties is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

"Characterization of Low Temperature Soluble Polyaniline." CHIMIA 47, no. 12 (December 22, 1993): 490. http://dx.doi.org/10.2533/chimia.1993.490.

Повний текст джерела
Анотація:
Because the charging of polyaniline films occurs in the bulk of the material rather than exclusively at the polymer-electrolyte interface, the use of thick polymer films for battery applications is justifiable. Here, we present a method for producing soluble polyaniline which can be cast to form free-standing films. Investigation by scanning electron microsopy (SEM) has shown that these films are significantly more compact than those made by standard electropolymerization.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

"Role of Particle-Matrix Interface in the Deformation and Fracture Behaviour of Filled Epoxy Resins." CHIMIA 44, no. 11 (November 28, 1990): 354. http://dx.doi.org/10.2533/chimia.1990.354.

Повний текст джерела
Анотація:
As a result of their superior mechanical, chemical, and electrical properties particulate-filled epoxies are finding widespread use in the fabrication of a large number of engineering components, one important example being as electrical insulators for the power industry. Since these materials are mainly subjected to continuous mechanical loads (in addition to a continuous dielectrical stress), there is an apparent need first to understand and then to predict the processes of deformation and fracture during long-term loading conditions. A few years ago, the respective material science knowledge was very limited, and design was mainly based on experience and purely empirical work. During recent years, however, a rather comprehensive understanding of the short and long-term deformation and fracture behaviour of these brittle, highly cross-linked polymers, especially of silica-filled anhydride-cured epoxies, has been accumulated. This holds particularly for the understanding of their creep behaviour, i.e. the deformation-induced volume damage and the mechanisms which are responsible for creep failure. In this article, a survey will given on the applications, and the deformation and fracture behaviour of particulate-epoxies. In particular, the role of particle-matrix interface in connexion with deformation, fracture, and creep behaviour and the related deformation-induced volume damage is discussed. A complete understanding of the role of the particle-matrix interface is still lacking and, therefore, a coherent description is not possible, and the true practical value of a filler surface treatment is not yet known. However, the following can be said: local as well as global debonding between matrix and filler should be prevented; local debonding tends to act as a critical flaw (in a fracture mechanics sense) and leads to brittle failure. Global debonding is equivalent to creep damage and leads to premature failure of the respective component.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

"Stereochemistry at the Interface between Crystals and Biology: Extended Abstract of the 1998 Prelog Lecture." CHIMIA 53, no. 4 (April 27, 1999): 157. http://dx.doi.org/10.2533/chimia.1999.157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

"Atmospheric Pollution: The Role of Heterogeneous Chemical Reactions." CHIMIA 50, no. 5 (May 29, 1996): 199. http://dx.doi.org/10.2533/chimia.1996.199.

Повний текст джерела
Анотація:
The chemical kinetics of heterogeneous chemical reactions of importance in the atmosphere are discussed using six examples: 1) water vapor and 2) HCl interacting with ice, 3) ClONO2 + HCl on ice, 4) HONO + HCl on H2SO4 and ice, 5) HNO3 reacting on dry CaCO3 powder and 6) reactions of HNO3, N2O5; ClONO2, ClNO2 on salts such as NaCl and KBr. Quantitative results of uptake coefficients are presented and the importance of ionic displacement reactions at the interface is stressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

"IR Spectra Simulation and Information Processing on the WWW." CHIMIA 52, no. 11 (November 25, 1998): 678. http://dx.doi.org/10.2533/chimia.1998.678.

Повний текст джерела
Анотація:
Substance identification by IR-spectroscopic methods generally is performed by comparing the measured spectrum with a reference spectrum from a database. If the desired spectrum is not contained in the database, another method of substance identification has to be found.Based on neural network techniques, we have developed a method which provides rapid access to simulated reference spectra. Within the scope of the 'TeleSpec-Telecooperation in Spectroscopy'-Project, this algorithm has been made available through a WWW interface. With a JAVA-enabled Web browser, interactive spectra prediction experiments can be performed.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії