Дисертації з теми "Interacting particles systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Interacting particles systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Glass, K. "Dynamics of systems of interacting particles." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599435.
Повний текст джерелаFranz, Benjamin. "Recent modelling frameworks for systems of interacting particles." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ac76d159-4cdd-40c9-b378-6ea1faf48aed.
Повний текст джерелаRomanovsky, Igor Alexandrovich. "Novel properties of interacting particles in small low-dimensional systems." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07102006-041659/.
Повний текст джерелаLandman, Uzi, Committee Member ; Yannouleas, Constantine, Committee Member ; Bunimovich, Leonid, Committee Member ; Chou, Mei-Yin, Committee Member ; Pustilnik, Michael, Committee Member.
Jacquot, Stéphanie Mireille. "Large systems of interacting particles : the Marcus-Lushnikov process and the β-Laguerre ensemble". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610327.
Повний текст джерелаGeiger, Benjamin [Verfasser], and Klaus [Akademischer Betreuer] Richter. "From few to many particles: Semiclassical approaches to interacting quantum systems / Benjamin Geiger ; Betreuer: Klaus Richter." Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215906064/34.
Повний текст джерелаLafleche, Laurent. "Dynamique de systèmes à grand nombre de particules et systèmes dynamiques." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED010.
Повний текст джерелаIn this thesis, we study the behavior of solutions of partial differential equations that arise from the modeling of systems with a large number of particles. The dynamic of all these systems is driven by interaction between the particles and external and internal forces. However, we will consider different scales and travel from the quantum level of atoms to the macroscopic level of stars. We will see that differences emerge from the associated dynamics even though the main properties are conserved. In this journey, we will cross the path of various applications of these equations such as astrophysics, plasma, semi-conductors, biology, economy. This work is divided in three parts.In the first one, we study the semi classical behavior of the quantum Hartree equation and its limit to the kinetic Vlasov equation. Properties such as the propagation of moments and weighted Lebesgue norms and dispersive estimates are quantified uniformly in the Planck constant and used to establish stability estimates in a semiclassical analogue of the Wasserstein distance between the solutions of these two equations.In the second part, we investigate the long time behavior of macroscopic and kinetic models where the collision operatoris linear and has a heavy-tailed local equilibrium, such as the Fokker-Planck operator, the fractional Laplacian with a driftor a Linear Boltzmann operator. This let appear two main techniques, the entropy method and the positivity method.In the third part, we are interested in macroscopic models inspired from the Keller-Segel equation, and we study therange of parameters under which the system collapses, disperses or stabilizes. The first effect is studied using appropriate weights, the second using Wasserstein distances and the third using Lebesgue norms
Gracar, Peter. "Random interacting particle systems." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761028.
Повний текст джерелаDeshayes, Aurélia. "Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168/document.
Повний текст джерелаThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Wang, Hao Carleton University Dissertation Mathematics and Statistics. "Interacting branching particle systems and superprocesses." Ottawa, 1995.
Знайти повний текст джерелаDeshayes, Aurélia. "Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168.
Повний текст джерелаThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Stoica, Cristina. "Particle systems with quasihomogeneous interaction." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ52774.pdf.
Повний текст джерелаAhmed, Hashim Abdalla. "Particle interactions in multicomponent systems." Thesis, University of Bath, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235560.
Повний текст джерелаXu, Lihu. "Nonlinear problems in infinite interacting particle systems." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444071.
Повний текст джерелаMoreira, Adriana Gomes. "Nonequilibrium phase transitions in interacting particle systems." Universidade Federal de Minas Gerais, 1996. http://hdl.handle.net/1843/BUOS-9GJQ9K.
Повний текст джерелаEstudamos o processo de contato diluído (DCP) bidimensional. Desordem é introduzida na forma de diluição, com uma fração x de sítios sendo removida aleatoriamente da rede. Uma descrição qualitativa do diagrama de fases é obtida através da teoria de campo médio na aproximação de blocos. Simulações de Monte Carlo mostram que o deslocamento relativo do ponto crítico, [c(x) - c(0)]/c(0), para x pequeno, está de acordo com os resultados obtidos por campo médio. Os expoentes críticos relacionados com o parâmetro de ordem e a probabilidade de sobrevivência do modelo diluído são diferentes dos expoentes do modelo puro, como era esperado pelo critério de Harris. Usando simulações dependentes do tempo estudamos a evolução do modelo a partir de uma única semente. No modelo puro, o comportamento crítico é caracterizado por leis de potência descritas pelos expoentes críticos de percolação dirigida: em 2+1 dimensões, = 0,46, = 0,214, e z = 1,13. A presença de desordem causa uma mudan»ca drástica no comportamento crítico do modelo.Estudamos também o processo de contato de pares unidimensional utilizando o método de expansão em séries dependente do tempo. Estimativas razoáveis para a localização do ponto crítico foram obtidas.
Tran, Hong Quan. "Cutoff phenomenon for some interacting particle systems." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD007.
Повний текст джерелаOn a finite state space, an irreducible continuous-time Markov chain converges to its unique stationary measure, or in other words, mixes. The convergence is often measured by the total variation distance. In the modern theory of Markov Chains, we are interested in the case where the state space becomes large. When studying some models of card shuffling, Aldous, Diaconis, and Shashahani discovered a remarkable phenomenon now known as cutoff: as the state space becomes large, the distance between the chain and equilibrium stays close to its maximal value for a long time and then suddenly drops to near zero in a much shorter time scale. Since then, the cutoff phenomenon has been observed in many different contexts, such as birth and death chains, high-temperature spin systems, interacting particle systems, etc. Despite the accumulation of models, there is not yet a general theory to effectively predict cutoff. Instead, cutoff is proved model by model.In this thesis, we study three models : the one-dimensional Exclusion process with reservoirs, the Glauber-Exclusion process in the high-temperature regime, and the mean-field Zero-Range process with increasing sublinear potential. These three models all fall under the category of interacting particle systems. For each model, we establish cutoff and provide a sharp estimate on the spectral gap. We particularly focus on the information percolation framework introduced by Lubetzky and Sly, which allows us to show cutoff even without knowing the explicit formula of the invariant measure
Blanco-Mantecon, Mireia. "Interactions, particle size and surface effects in magnetic nanoparticle systems." Thesis, Bangor University, 2000. https://research.bangor.ac.uk/portal/en/theses/interactions-particle-size-and-surface-effects-in-magnetic-nanoparticle-systems(2f7d3ef7-ef4c-43b0-b3ad-9e5c68f629e5).html.
Повний текст джерелаStamm, Matthew T. "Particle Dynamics and Particle-Cell Interaction in Microfluidic Systems." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/308886.
Повний текст джерелаFernández, Lafuerza Luis Gonzalo. "Fluctuations in interacting-particle systems: a theoretical study." Doctoral thesis, Universitat de les Illes Balears, 2012. http://hdl.handle.net/10803/104264.
Повний текст джерелаFearon, Michael. "Theoretical studies of strongly interacting fine particle systems." Thesis, University of Central Lancashire, 1990. http://clok.uclan.ac.uk/20347/.
Повний текст джерелаKlauß, Tobias. "An Interacting Particle System for Collective Migration." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1228074229228-77328.
Повний текст джерелаCollective migration and swarming behavior are examples of self-organization and can be observed in various biological systems, such as in flocks of birds, schools of fish or populations of bacteria. In the center of this thesis lies a stochastic interacting particle system (IPS), which is a spatially discrete model with a continuous time scale that describes collective migration and which can be treated using analytical methods. The constructed model is not contained in any class of well-understood IPS’s. The largest part of this work is used to develop methods that can be used to study the long-term behavior of certain IPS’s. Thereby Gibbs-Measures play an important role and are related to temporally invariant measures. One can explain the properties of collective migration and propose a hypothesis for further analyses by a simulation study and by analysing the parameters migration velocity, sensitivity of individuals and (spatial) density of the initial distribution
Emerson, Zachery Ian. "Particle and bubble interactions in flotation systems." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Spring%20Dissertations/EMERSON_ZACHERY_45.pdf.
Повний текст джерелаGarrod, Barnaby G. "One-dimensional interacting particle systems as Pfaffian point processes." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/81054/.
Повний текст джерелаRau, Sebastian [Verfasser]. "Optimal Control of interacting Quantum Particle Systems / Sebastian Rau." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042308470/34.
Повний текст джерелаKerner, Joachim Friedrich. "Interacting many-particle systems on general compact quantum graphs." Thesis, University of London, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603454.
Повний текст джерелаMatveev, Konstantin. "q-deformed Interacting Particle Systems, RSKs and Random Polymers." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493453.
Повний текст джерелаMathematics
Bashiri, Kaveh [Verfasser]. "Gradient Flows, Metastability and Interacting Particle Systems / Kaveh Bashiri." Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1218301406/34.
Повний текст джерелаOduwole, Olayinka. "Particle interactions in a magnetophoretic system." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:f01cbb33-4dd4-4057-8891-7097e6493bce.
Повний текст джерелаCepeda, Chiluisa Eduardo. "Contribution à l'étude probabiliste et numérique d'équations homogènes issues de la physique statistique : coagulation-fragmentation." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00952117.
Повний текст джерелаBirmpa, Panagiota. "Quantification of mesoscopic and macroscopic fluctuations in interacting particle systems." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/76622/.
Повний текст джерелаLiang, Shu-Chien. "Studies on hydrodynamic interactions between particles in liquid-solid systems /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487930304685987.
Повний текст джерелаTaggi, Lorenzo. "Absorptionsphasenubergang für Irrfahrten mit Aktivierung und stochastische Zelluläre Automaten." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-208644.
Повний текст джерелаPérez, Jérôme. "Stabilite des systemes de particules en interactions gravitationnelle." Paris 7, 1995. http://www.theses.fr/1995PA077067.
Повний текст джерелаChung, Eunhyea. "Colloidal particle-surface interactions in atmospheric and aquatic systems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43728.
Повний текст джерелаRestrepo, Lopez Ricardo. "Topics in spatial and dynamical phase transitions of interacting particle systems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42729.
Повний текст джерелаLouis, Pierre-Yves, and Jean-Baptiste Rouquier. "Time-to-Coalescence for interacting particle systems : parallel versus sequential updating." Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2011/4945/.
Повний текст джерелаMujal, Torreblanca Pere. "Interacting ultracold few-boson systems." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668191.
Повний текст джерелаEn aquesta tesi, estudiarem les propietats físiques de diversos sistemes de pocs bosons ultrafreds depenent de les interaccions entre els seus constituents. Avui dia, a nivell experimental, es té un gran control amb una gran precisió de la geometria i les interaccions entre les partícules, fet que fa aquest sistemes excel·lents per comprovar de forma directa els principis de la mecànica quàntica. Un punt d'interès és comprovar l'evolució de les seves propietats amb el nombre de partícules. L'estudi teòric d'aquests sistemes pretén entendre a nivell microscòpic els resultats experimentals actuals i donar suport pels nous avenços experimentals. El mètode que farem servir serà la diagonalització exacta del hamiltonià del sistema. Com veurem, malgrat les millores que es poden implementar, ens trobarem amb la limitació de no poder estudiar sistemes de més d'unes quantes partícules. Els avantatges d'aquest mètode són diversos. En primer lloc, podrem obtenir no només l'estat fonamental del sistema sinó que també els primers estats excitats. En segon lloc, el mètode és variacional i sabem que convergeix cap a la solució exacta a mesura que ampliem l'espai de Hilbert en que diagonalitzem. A més a més, en tenir accés als estats del sistema, podem calcular qualsevol quantitat observable que sigui d'interès. Primerament, estudiarem un sistema de bosons sense espín atrapats en un potencial harmònic bidimensional. L'efecte de la trampa és de mantenir el sistema lligat. En haver-hi una interacció repulsiva, veurem com canvia l'espectre d'energia del sistema i també altres propietats. Per exemple, la seva densitat, que habitualment es pot mesurar, i també la funció de distribució de dos cossos, que va íntimament lligada a l'existència de correlacions. Tot seguit, ens centrarem en el cas particular de tenir només dos bosons en el sistema interaccionant a través d'una gran força repulsiva. Inspirats pel cas unidimensional en que té lloc el fenomen de la fermionització en el limit d'interacció molt forta, estudiarem si en el cas bidimensional hi queda cap reminiscència d'aquest efecte. En altres paraules, analitzarem si hi ha propietats dels dos bosons fortament interactuants en dues dimensions que siguin com les de fermions no interactuants en el mateix sistema. A continuació, tractarem el fenomen de la localització en un sistema unidimensional en el qual hi ha un potencial extern de tipus speckle que introdueix desordre en el sistema. Veurem que la localització és un fenomen robust en front de les interaccions repulsives. Per últim, estudiarem la influència de l'espín-òrbita en un sistema de bosons amb dues components de pseudoespín, associades, per exemple, a dos nivells hiperfins, atrapats en un potencial harmònic bidimensional. Presentarem un anàlisi exhaustiu dels efectes conjunts de la interacció i l'espín- òrbita en l'espectre i en les propietats del sistema. En particular, mostrarem l'existència d'un encreuament en l'estat fonamental del sistema susceptible de ser identificat experimentalment.
Kemgang, Ebenezer. "Dipolar particles under external fields." Electronic Thesis or Diss., Université de Lorraine, 2022. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2022_0099_KEMGANG.pdf.
Повний текст джерелаThis theoretical thesis work aims to understand the influence of external stimulus (magnetic field, gravity, confinement) as well as thermal effects on the self-assembly of magnetic dipolar particles. The fundamental interest of dipolar particles relies on the anisotropic and long range character of dipole-dipole interactions. Dipolar particles can be found on different length scales (molecular, colloidal or granular). Our models concern dipolar hard spheres, a reference system in condensed matter physics. A first goal is to predict the structure behaviors of the ground states of an assembly of N magnetic beads as the function of applied external fields. The manuscript starts with a bibliographic chapter gathering a brief background of the properties of magnetic particle systems and efficient optimization methods developed to achieve the first goal of the thesis. Afterward, we address a two-body problem where two magnetic particles are exposed to gravity and external magnetic fields near a substrate. There, the orientations of the magnetic moments are explored too. The dimerization conditions are predicted through a richphase diagram. A new dimeric phase is found where the dimer partially in contact with the substrate, forms a finite angle with the normal of the latter. The hindered dimerization regime seen at high gravity and magnetic fields can be generalized to the case where two polymer chains remain separate. Furthermore, it is shown that the fragmentation at high magnetic field of a single standing chain due to the gravity gives rise to many shorter chains that can be separate (or not). A monolayer appears as the final state of fragmentation of these columnar clusters at very large gravity. A second research axis is dedicated to the study of the influence of thermal fluctuations on the aggregation of confined particles by theory and simulations. It is shown that thermal fluctuations are crucial to drive ribbonizaton. The role of longitudinal confinement is decisive there too. The effect of chain length on the stability of the formed ribbons is discussed. Anew aggregation (ribbonization) mechanism is highlighted. This mechanism relies on quadrupolar effective inter-chain interactions stemming from correlated fluctuating curvatures
Brackstone, Mark Andrew. "Dynamic properties of models of modulated systems in condensed matter." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.255764.
Повний текст джерелаGhezzi, Flavio. "Experimental studies of two-dimensional colloidal systems." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266705.
Повний текст джерелаSpiteri, Ludovic. "Self-assembly of dipolar particles." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0261/document.
Повний текст джерелаThis thesis covers the self-assembly of dipolar (magnetic/dielectric) particles. These systems are abundant in condensed matter physics (magnetic molecules and nanoparticles, magnetic colloidal particles, magnetotactic bacteria, etc). They also represent a fundamental challenge owing to the both long range and anisotropic nature of the pair interaction. The main objective of this research work is to predict the microstructures of these systems by properly handling the intricate dipole-dipole interaction combined with steric and possibly confinement effects. Understanding and revisiting the interaction of dipolar filaments such as needles or chains made up of dipolar beads is a first important achievement in this thesis. Indeed, the chains are the fundamental building blocks of many dipolar systems especially under applied external magnetic field. Then, the columnar aggregation of dipolar chains is investigated which naturally leads to the study of the bulk dipolar crystals. A new phase is discovered there. The more generic case of helical chains is discussed by considering limiting situations such as straight linear chains and zigzag chains. The association of dipolar chains in two-dimensions forms ribbons then a monolayer with triangular lattice symmetry. The interesting response of such a layer to an imposed perpendicular magnetic is addressed as well. It is demonstrated that rhombicity can be induced that way. Finally, sedimenting paramagnetic particles in a tilted monolayer in presence of a magnetic field are investigated by experiments, theory and simulations. The gravity-mediated ordering is found to be a promising route to elaborate tailored two-dimensional patterns
Philipowski, Robert. "Stochastic interacting particle systems and nonlinear partial differential equations from fluid mechanics." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=986005622.
Повний текст джерелаPatil, Deepak C. "Particle Interactions in Industrial Granular Systems: Experiments, Theory, and Simulations." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/915.
Повний текст джерелаRawling, M. Carl. "Particle-water interactions of hydrophobic organic micropollutants in marine systems." Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/1926.
Повний текст джерелаSpiteri, Ludovic. "Self-assembly of dipolar particles." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0261.
Повний текст джерелаThis thesis covers the self-assembly of dipolar (magnetic/dielectric) particles. These systems are abundant in condensed matter physics (magnetic molecules and nanoparticles, magnetic colloidal particles, magnetotactic bacteria, etc). They also represent a fundamental challenge owing to the both long range and anisotropic nature of the pair interaction. The main objective of this research work is to predict the microstructures of these systems by properly handling the intricate dipole-dipole interaction combined with steric and possibly confinement effects. Understanding and revisiting the interaction of dipolar filaments such as needles or chains made up of dipolar beads is a first important achievement in this thesis. Indeed, the chains are the fundamental building blocks of many dipolar systems especially under applied external magnetic field. Then, the columnar aggregation of dipolar chains is investigated which naturally leads to the study of the bulk dipolar crystals. A new phase is discovered there. The more generic case of helical chains is discussed by considering limiting situations such as straight linear chains and zigzag chains. The association of dipolar chains in two-dimensions forms ribbons then a monolayer with triangular lattice symmetry. The interesting response of such a layer to an imposed perpendicular magnetic is addressed as well. It is demonstrated that rhombicity can be induced that way. Finally, sedimenting paramagnetic particles in a tilted monolayer in presence of a magnetic field are investigated by experiments, theory and simulations. The gravity-mediated ordering is found to be a promising route to elaborate tailored two-dimensional patterns
Olsson, Martin Wexö. "GPU based particle system." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3761.
Повний текст джерелаEzanno, François. "Systèmes de particules en interaction et modèles de déposition aléatoire." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00796271.
Повний текст джерелаPutan, Diana [Verfasser]. "Uniqueness of equilibrium states in some models of interacting particle systems / Diana Putan." Bielefeld : Universitätsbibliothek Bielefeld, 2014. http://d-nb.info/1057957062/34.
Повний текст джерелаBorrello, Davide. "Interacting particle systems : stochastic order, attractiveness and random walk on small world grahs." Rouen, 2009. http://www.theses.fr/2009ROUES032.
Повний текст джерелаThe main subject of the thesis is concerned with interacting particle systems, which are classes of spatio-temporal stochastic processes describing the evolution of particles in interaction with each other on a finite or infinite discrete space. In part I we investigate the stochastic order in a particle system with multiple births, deaths and jumps on the d-dimensional lattice. We give applications on biological models of spread of epidemics and metapopulations dynamics systems. In part II we analyse the coalescing random walk in a class of finite random graphs modeling social networks, the small world graphs
BORRELLO, DAVIDE. "Interacting particle systems: stochastic order, attractiveness and random walks on small world graphs." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7467.
Повний текст джерелаDworaczek, Guera Charlie. "Analyse asymptotiques d'intégrales multiples : au-delà des beta-ensembles classiques." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0036.
Повний текст джерелаThis thesis aims to extend mathematical techniques that extract the asymptotic behavior of certain multiple integrals as the number of integrals tends to infinity. A well-understood case is the partition function of classical beta-ensembles. Probabilistic techniques of large deviations and analysis of loop equations form the classical arsenal for its study and allow for a broad understanding of its asymptotic behavior. Non-trivial generalizations of this multiple integral are studied in this manuscript: the high-temperature regime of beta-ensembles and the sinh model. In the first model, the temperature proportional to the number of particles makes the entropy of the same order as the confining potential and the two-body interaction. This has multiple consequences: an unbounded support for the equilibrium measure contrary to the classical regime of beta-ensembles, and a much more delicate master operator to handle. A detailed study of its behavior allows for the demonstration of a central limit theorem and the asymptotic behavior of the logarithm of its partition function. This first result permits the study of certain aspects of so-called integrable physical systems like the Toda chain, and more specifically, its hydrodynamic limit. This second result finally extends the application of the method of loop equations to cases where particles do not concentrate on a compact set. Lastly, another model is studied, the sinh model. The study of this model is motivated by the quantum separation of variables method where such integrals appear. It constitutes a generalization of classical beta-ensembles where the confining effect is weaker than the interaction, and the latter is more complicated. The equilibrium measure is studied, leading to a certain verification of Lukyanov's conjecture on the quantum sinh-Gordon model in 1+1 dimensions and finite volume