Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Interacting particles systems.

Книги з теми "Interacting particles systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 книг для дослідження на тему "Interacting particles systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kipnis, Claude. Scaling limits of interacting particle systems. New York: Springer, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salabura, Piotr. Vector mesons in strongly interacting systems. Kraków: Wydawn. Uniwersytetu Jagiellońskiego, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liggett, Thomas M. Interacting particle systems. Berlin: Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8542-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liggett, Thomas M. Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1938-, Arenhövel H., ed. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kipnis, Claude, and Claudio Landim. Scaling Limits of Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03752-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Papanicolaou, George, ed. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

George, Papanicolaou, and University of Minnesota. Institute for Mathematics and its Applications., eds. Hydrodynamic behavior and interacting particle systems. New York: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Papanicolaou, G. C. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Durrett, Rick, and Harry Kesten, eds. Random Walks, Brownian Motion, and Interacting Particle Systems. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0459-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Moral, Pierre. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. New York, NY: Springer New York, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Moral, Pierre Del. Feynman-Kac formulae: Genealogical and interacting particle systems with applications. New York: Springer-Verlag, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Jürgen, Tomas, and SpringerLink (Online service), eds. Micro-Macro-interaction: In Structured media and Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

1951-, Durrett Richard, Kesten Harry 1931-, and Spitzer Frank 1926-, eds. Random walks, Brownian motion, and interacting particle systems: A festschrift in honor of Frank Spitzer. Boston: Birkhäuser, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Andreani, L. C., and Elisa Molinari. Radiation matter interaction in confined system: Dedicated to the memory of Giovanna Panzarini. Bologna: Società Italiana di Fisica, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

1947-, Accardi L., Fagnola Franco, and Centro internazionale per la ricerca matematica (Trento, Italy), eds. Quantum interacting particle systems: Lecture notes of the Volterra-CIRM International School, Trento, Italy, 23-29 September 2000. River Edge, NJ: World Scientific Pub., 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Tripathi, Ratikanta. Universal parameterization of absorption cross sections: Light systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Herrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kipnis, Claude, and Claudio Landim. Scaling Limits of Interacting Particle Systems. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Morawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.

Повний текст джерела
Анотація:
In quantum statistics based on many-body Green’s functions, the effective medium is represented by the selfenergy. This book aims to discuss the selfenergy from this point of view. The knowledge of the exact selfenergy is equivalent to the knowledge of the exact correlation function from which one can evaluate any single-particle observable. Complete interpretations of the selfenergy are as rich as the properties of the many-body systems. It will be shown that classical features are helpful to understand the selfenergy, but in many cases we have to include additional aspects describing the internal dynamics of the interaction. The inductive presentation introduces the concept of Ludwig Boltzmann to describe correlations by the scattering of many particles from elementary principles up to refined approximations of many-body quantum systems. The ultimate goal is to contribute to the understanding of the time-dependent formation of correlations. Within this book an up-to-date most simple formalism of nonequilibrium Green’s functions is presented to cover different applications ranging from solid state physics (impurity scattering, semiconductor, superconductivity, Bose–Einstein condensation, spin-orbit coupled systems), plasma physics (screening, transport in magnetic fields), cold atoms in optical lattices up to nuclear reactions (heavy-ion collisions). Both possibilities are provided, to learn the quantum kinetic theory in terms of Green’s functions from the basics using experiences with phenomena, and experienced researchers can find a framework to develop and to apply the quantum many-body theory straight to versatile phenomena.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Interacting Bose-Fermi Systems in Nuclei. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Iachello, F. Interacting Bose-Fermi Systems in Nuclei. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Iachello, F. Interacting Bose-Fermi Systems in Nuclei. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Many Body Structure of Strongly Interacting Systems: Refereed and Selected Contributions from the Symposium "20 Years of Physics at the Mainz Microtron MAMI". Springer, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liggett, Thomas M. Interacting Particle Systems. Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Interacting Particle Systems. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Interacting particle systems. New York: Springer-Verlag, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Interacting particle systems. New York: Springer-Verlag, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Accardi, Luigi, and Franco Fagnola. Quantum Interacting Particle Systems. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/5055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Quantum Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Birkner, Matthias, Rongfeng Sun, and Jan M. Swart. Genealogies of Interacting Particle Systems. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/11439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Birkner, Matthias, Rongfeng Sun, and Jan M. Swart. Genealogies of Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Konno, N. Phase Transitions of Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Phase transitions of interacting particle systems. Singapore: World Scientific, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hydrodynamic Behavior and Interacting Particle Systems. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Interacting Particle Systems (Classics in Mathematics). Springer, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Griffeath, D. Additive and Cancellative Interacting Particle Systems. Springer London, Limited, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Phase Transitions of Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Random Matrix Theory, Interacting Particle Systems and Integrable Systems. Cambridge University Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Random Walks, Brownian Motion, and Interacting Particle Systems. Island Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Interacting Particle Systems at SaintFlour Probability at SaintFlour. Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kolanoski, Hermann, and Norbert Wermes. Particle Detectors. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198858362.001.0001.

Повний текст джерела
Анотація:
The book describes the fundamentals of particle detectors in their different forms as well as their applications, presenting the abundant material as clearly as possible and as deeply as needed for a thorough understanding. The target group for the book are both, students who want to get an introduction or wish to deepen their knowledge on the subject as well as lecturers and researchers who intend to extent their expertise. The book is also suited as a preparation for instrumental work in nuclear, particle and astroparticle physics and in many other fields (addressed in chapter 2). The detection of elementary particles, nuclei and high-energetic electromagnetic radiation, in this book commonly designated as ‘particles’, proceeds through interactions of the particles with matter. A detector records signals originating from the interactions occurring in or near the detector and (in general) feeds them into an electronic data acquisition system. The book describes the various steps in this process, beginning with the relevant interactions with matter, then proceeding to their exploitation for different detector types like tracking detectors, detectors for particle identification, detectors for energy measurements, detectors in astroparticle experiments, and ending with a discussion of signal processing and data acquisition. Besides the introductory and overview chapters (chapters 1 and 2), the book is divided into five subject areas: – fundamentals (chapters 3 to 5), – detection of tracks of charged particles (chapters 6 to 9), – phenomena and methods mainly applied for particle identification (chapters 10 to 14), – energy measurement (accelerator and non-accelerator experiments) (chapters 15, 16), – electronics and data acquisition (chapters 17 and 18). Comprehensive lists of literature, keywords and abbreviations can be found at the end of the book.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Moral, Pierre Del. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer New York, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Morawetz, Klaus. Scattering on a Single Impurity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0004.

Повний текст джерела
Анотація:
Evolution of a many-body system consists of permanent collisions among particles. Looking at the motion of a single particle, one can identify encounters by which a particle abruptly changes the direction of flight, these are seen as true collisions, and small-angle encounters, which in sum act as an applied force rather than randomising collisions. The scattering on impurities is used to introduce the mentioned mechanisms and, in particular, to show how they affect each other. Point impurities are assumed, i.e. impurities the potential of which is restricted to a single atomic site of the crystal lattice. In this case interaction potentials never overlap and many-body effects are due to nonlocal character of the quantum particle. To introduce elementary components of the formalism, in this chapter we first describe the interaction of an electron with a single impurity. Lippman–Schwinger equations are derived and the physics behind the collision delay, dissipativeness and optical theorems is explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Bertram, Albrecht, and Jürgen Tomas. Micro-Macro-Interactions: In Structured Media and Particle Systems. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Scaling Limits of Interacting Particle Systems Grundlehren Der Mathematischen Wissenschaften Springer. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Horing, Norman J. Morgenstern. Equations of Motion with Particle–Particle Interactions and Approximations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0008.

Повний текст джерела
Анотація:
Starting with the equation of motion for the field operator ψ(x,t) of an interacting many-particle system, the n-particle Green’s function (Gn) equation of motion is developed, with interparticle interactions generating an infinite chain of equations coupling it to (n+1)- and (n−1)-particle Green’s functions (Gn+1 and Gn−1, respectively). Particularly important are the one-particle Green’s function equation with its coupling to the two-particle Green’s function and the two-particle Green’s function equation with its coupling to the three-particle Green’s function. To develop solutions, it is necessary to introduce non-correlation decoupling procedures involving the Hartree and Hartree-Fock approximations for G2 in the G1 equation; and a similar factorization “ansatz” for G3 in the G2 equation, resulting in the Sum of Ladder Diagrams integral equation for G2, with multiple Born iterates and finite collisional lifetimes. Similar treatment of the G11-equation for the joint propagation of one-electron and one-hole subject to mutual Coulomb attraction leads to bound electron-hole exciton states having a discrete hydrogen like spectrum of energy eigenstates. Its role in single-particle propagation is also discussed in terms of one-electron self-energy Σ‎ and the T-matrix
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Повний текст джерела
Анотація:
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle sources leads to a chain of coupled Green’s function equations involving differing species of Green’s functions. For example, the 1-electron Green’s function equation is coupled to the 2-electron Green’s function (as earlier), also to the 1-electron/1-hole Green’s function, and to the Green’s function for 1-electron propagation influenced by a nontrivial phonon field. Similar remarks apply to the 1-hole Green’s function equation, and all others. Higher order Green’s function equations are derived by further variational differentiation with respect to sources, yielding additional couplings. Chapter 11 also introduces the 1-phonon Green’s function, emphasizing the role of electron coupling in phonon propagation, leading to dynamic, nonlocal electron screening of the phonon spectrum and hybridization of the ion and electron plasmons, a Bohm-Staver phonon mode, and the Kohn anomaly. Furthermore, the single-electron Green’s function with only phonon coupling can be rewritten, as usual, coupled to the 2-electron Green’s function with an effective time-dependent electron-electron interaction potential mediated by the 1-phonon Green’s function, leading to the polaron as an electron propagating jointly with its induced lattice polarization. An alternative formulation of the coupled Green’s function equations for the electron-hole-phonon model is applied in the development of a generalized shielded potential approximation, analysing its inverse dielectric screening response function and associated hybridized collective modes. A brief discussion of the (theoretical) origin of the exciton-plasmon interaction follows.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії