Добірка наукової літератури з теми "Intelligence reconfigurable"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intelligence reconfigurable".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Intelligence reconfigurable"
Ivchenko, Valeriy, Petr Krug, Ekaterina Matyukhina, and Sergey Pavelyev. "Mars-500 Program Space-Based Mobile Robot “Turist”." Applied Mechanics and Materials 789-790 (September 2015): 742–46. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.742.
Повний текст джерелаZhang, Hai-Tian, Tae Joon Park, A. N. M. Nafiul Islam, Dat S. J. Tran, Sukriti Manna, Qi Wang, Sandip Mondal, et al. "Reconfigurable perovskite nickelate electronics for artificial intelligence." Science 375, no. 6580 (February 4, 2022): 533–39. http://dx.doi.org/10.1126/science.abj7943.
Повний текст джерелаCrawford, Lara S., Minh Binh Do, Wheeler S. Ruml, Haitham Hindi, Craig Eldershaw, Rong Zhou, Lukas Kuhn, et al. "On-Line Reconfigurable Machines." AI Magazine 34, no. 3 (September 15, 2013): 73–88. http://dx.doi.org/10.1609/aimag.v34i3.2387.
Повний текст джерелаNa, Jin Hee, Ho Seok Ahn, Myoung Soo Park, and Jin Young Choi. "Development of Reconfigurable and Evolvable Architecture for Intelligence Implement." Journal of Fuzzy Logic and Intelligent Systems 15, no. 7 (December 1, 2005): 823–27. http://dx.doi.org/10.5391/jkiis.2005.15.7.823.
Повний текст джерелаGoyal, K. K., P. K. Jain, and M. Jain. "Applying Swarm Intelligence to Design the Reconfigurable Flow Lines." International Journal of Simulation Modelling 12, no. 1 (March 15, 2013): 17–26. http://dx.doi.org/10.2507/ijsimm12(1)2.220.
Повний текст джерелаKhan, Arsalan H., Zhang Weiguo, Shi Jingping, and Zeashan H. Khan. "Optimized Reconfigurable Modular Flight Control Design using Swarm Intelligence." Procedia Engineering 24 (2011): 621–28. http://dx.doi.org/10.1016/j.proeng.2011.11.2706.
Повний текст джерелаWei, Shaojun. "Reconfigurable computing: a promising microchip architecture for artificial intelligence." Journal of Semiconductors 41, no. 2 (February 2020): 020301. http://dx.doi.org/10.1088/1674-4926/41/2/020301.
Повний текст джерелаLIU, YUBIN, RUOPENG WEI, HUIJUAN DONG, YANHE ZHU, and JIE ZHAO. "A DESIGNATION OF MODULAR MOBILE RECONFIGURABLE PLATFORM SYSTEM." Journal of Mechanics in Medicine and Biology 20, no. 09 (September 16, 2020): 2040006. http://dx.doi.org/10.1142/s0219519420400060.
Повний текст джерелаZhao, Tao, Bin Zi, Sen Qian, Zeqiang Yin, and Dan Zhang. "Typical configuration analysis of a modular reconfigurable cable-driven parallel robot." International Journal of Advanced Robotic Systems 16, no. 2 (March 1, 2019): 172988141983475. http://dx.doi.org/10.1177/1729881419834756.
Повний текст джерелаIgnatov, Alexander, Valeriy Ivchenko, Petr Krug, Ekaterina Matyukhina, and Sergey Pavelyev. "The Technologies for Remote Reconfiguration of Artificial Intelligence of Robotic Systems in Case of Mission or Driving Conditions Change." Applied Mechanics and Materials 851 (August 2016): 477–83. http://dx.doi.org/10.4028/www.scientific.net/amm.851.477.
Повний текст джерелаДисертації з теми "Intelligence reconfigurable"
He, Haibo. "Dynamically Self-reconfigurable Systems for Machine Intelligence." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1152717376.
Повний текст джерелаBailey, Scott P. "Neural network design on the SRC-6 reconfigurable computer." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FBailey.pdf.
Повний текст джерелаThesis Advisor(s): Douglas J. Fouts. "December 2006." Includes bibliographical references (p. 105-106). Also available in print.
Vasilko, Milan. "Design synthesis for dynamically reconfigurable logic systems." Thesis, Bournemouth University, 2000. http://eprints.bournemouth.ac.uk/291/.
Повний текст джерелаUpperman, Gary J. "Implementation of a cyclostationary spectral analysis algorithm on an SRC reconfigurable computer for real-time signal processing." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://bosun.nps.edu/uhtbin/hyperion-image.exe/08Mar%5FUpperman%5FGary.pdf.
Повний текст джерелаThesis Advisor(s): Fouts, Douglas J. ; Pace, Phillip E. "March 2008." Description based on title screen as viewed on May 16, 2008. Includes bibliographical references (p. 101-102). Also available in print.
Heath, Gerhardus. "Dynamic reconfigurable platform for swarm robotics." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6814.
Повний текст джерелаENGLISH ABSTRACT: Swarm intelligence research was inspired by biological systems in nature. Working ants and bees has captivated researchers for centuries, with the ant playing a major role in shaping the future of robotic swarm applications. The ants foraging activity can be adapted for different applications of robotic swarm intelligence. Numerous researchers have conducted theoretical analysis and experiments on the ants foraging activities and communication styles. Combining this information with modern reconfigurable computing opens the door to more complex behaviour with improved system dynamics. Reconfigurable computing has numerous applications in swarm intelligence such as true hardware parallel processing, dynamic power save algorithms and dynamic peripheral changes to the CPU core. In this research a brief study is made of swarm intelligence and its applications. The ants' foraging activities were studied in greater detail with the emphasis on a layered control system designed implementation in a robotic agent. The robotic agent’s hardware was designed using a partial self reconfigurable FPGA as the main building element. The hardware was designed with the emphasis on system flexibility for swarm application drawing attention to power reduction and battery life. All of this was packaged into a differential drive chassis designed specifically for this project.
AFRIKAANSE OPSOMMING: Die motivering vir swerm robotika kom van die natuur. Vir eeue fassineer swerm insekte soos bye en miere navorsers. Dit is verstommend hoe ’n groep klein en nietige insekte sulke groot take kan verrig. Die mier speel ‘n belangrike rol en is die sentrale tema van menige publikasies. Die mier se kos-soek aktiwiteit kan aangepas word vir swerm robotika toepassings. Hierdie aktiwiteit vervat verskeie sleutel konsepte wat belangrik is vir robotika toepassings. Deur bv. die mier se aktiwiteite te kombineer met dinamies herkonfigureerbare hardeware, kan meer komplekse gedrag bestudeer word. Die stelsel dinamika verbeter ook, aangesien dit nou moontlik is om sekere take in parallel uit te voer. Deur ’n interne prosesseerder in die herkonfigureerbare hardeware in te sluit, is dit nou vir die stelsel moontlik om homself te verander tydens taak verrigting. Komplekse krag bestuur gedrag is ook moontlik deurdat die prosesseerder die spoed en rand apparaat kan verander soos benodig. ‘n Verdere voordeel is dat die stelsel aanpasbaar is en dus vir verskeie navorsingsprojekte gebruik kan word. In hierdie navorsing word ’n literatuur studie van swerm robotika gemaak en word daar ook na toepassings gekyk. Met die klem op praktiese implementering, word die mier se kos-soek aktiwiteit in detail ondersoek deur gebruik te maak van ’n laag beheerstelsel. In hierdie laag beheerstelsel verteenwoordig elke laag ’n hoër vlak gedrag. Stelsel aanpasbaarheid en lae kragverbruik speel ’n deurslaggewende rol in die ontwerp, en om hierdie rede vorm ’n FPGA die hart van die sisteem.
Filho, Jonas Gomes. "Aplicação de técnicas de reconfiguração dinâmica a projeto de máquina de vetor suporte (SVM)." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-12082010-174825/.
Повний текст джерелаSupport Vector Machines have been largely used in different applications, due to their high classifying capability without errors (generalization capability) and the advantage of not depending on the initial conditions. Among the developed algorithms for the SVM training, the Sequential Minimal Optimization (SMO) is one of the fastest and the one of the most efficient algorithms for executing this task. Important dedicated hardware implementations of the training phase of the SVM have been proposed for digital FPGA. Most of them are very restricted about the quantity of input samples to be trained due to the fact that they implement numeric solutions. Only two works with implementation in the SMO algorithm for the SVM training in hardware have been reported recently, and just one is able to train an important quantity of input samples, however it is restricted for only one specific benchmark. In the last decade, with the technology based on static memory (SRAM), FPGAs has provided a unique aspect of flexibility: the capability of dynamic reconfiguration, which involves altering the programmed design at run-time and allows area\'s saving. In addition, although leading to some time penalty, the execution time is still faster when compared with purely software solutions. In this work we present a totally hardware general-purpose implementation of the SMO algorithm. In this general-purpose approach, training of examples with different number of samples and elements are possible, and, motivated by the sequential nature of some of the SMO tasks, a dynamically reconfigurable architecture is developed. A study of the general-purpose implementation with fixed-point codification is presented, as well as the quantization effects. The architecture is implemented in the Xilinx Virtex-IV XC4VLX25 device, and timing and area data are provided. Synthesis details are exploited. A simulation using dynamic circuit switching is carried out in order to validate the systems dynamic reconfiguration aspects. The architecture was tested in the training of three different benchmarks; the training on the reconfigurable hardware was accelerated up to 30 times when compared with software solution, and studies points to an area saving up to 22.38% depending on the synthesis and implementation methodologies adopted in the project.
Omar, Tariq Ali. "Une architecture mixte logicielle et matérielle pour le contrôle intelligent en temps réel." Grenoble INPG, 2006. http://www.theses.fr/2006INPG0089.
Повний текст джерелаAutonomous intelligent control system for a dynamic and dangerous environment necessitates the capacity to identify the failure threats and to plan the real-time responses that ensure safety and goal achievement by the autonomous system. We propose a real-time intelligent control architecture called ORICA. It consists of an AI reasoning subsystem and a real-time response execution subsystem. The AI reasoning subsystem models the temporal and logical characteristics of the environment and plans the system responses. The real-time subsystem, which is composed of a software section and a hardware section, executes these responses to avoid failure of the autonomous system. Its performance behavior is unparalleled by the previous classical approaches (pure hardware or pure software). The software section uses behavior switching according to the frequency of external events and a unique reconfigurable intelligence behavior has been implemented in hardware section, using a reprogrammable chip (FPGA)
Jaeck, Vincent. "Développement d’antennes de communication reconfigurables en bande C pour munitions intelligentes." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S104/document.
Повний текст джерелаNowadays wireless communications have become a useful and universal mean to exchange a wide range of information between different systems, some of them being moving, as UAVs among others. In this context we consider here the link between a projectile and a base station. The shape of the structure and the aerodynamic constraints involve the use of patch antennas in the conical front part. This class of antenna is easy to be integrated into the platform as a conformal array, while respecting space constraint. Communications have to be reliable and discrete in disturbed or hostile environment. Antennas array radiation patterns must have some specific characteristics, in particular in the case of flying objects with spin which involves the use of a switched phased array considering its roll position. A fixed-radiation pattern antenna may presents a relevant level or gain toward the interlocutor, but also toward sensitive directions, in which may be located others systems, interfering with the current communication. The solution to switch on and off vertical sub-arrays to steer the beam in the azimuthal plane seem convenient ant fitting the requirements of rotating platform. A conical phased array was studied and two prototypes were manufactured, one at ISL. Sub-arrays are distributed around the conical shape in order to be able to radiate in each direction. Moreover, each sub-array are composed of three radiating elements allowing to steer the main antenna beam in many direction (along the projectile fuze axes). A beam forming network was developed to control the 12 radiating elements conical array. The antenna array and the feeding network were characterized independently in order to optimized the phase of each radiating element. Finally, measurements were done on the whole system in the DGA-MI and ISL anechoic chambers and are in good agreement with simulation results
Taghvaee, Hamidreza. "On scalable, reconfigurable, and intelligent metasurfaces." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672339.
Повний текст джерелаLa sisena generació (6G) de xarxes sense fils seran encara més denses i heterogènies que les xarxes de cinquena generació. Per tant, la arquitectura de les xarxes 6G necessitaran adaptar-se a necessitats de capacitat i qualitat de servei en constant canvi. Per servir aquestes necessitats creixents, s’han proposat diverses tecnologies com comunicacions a l’espectre visible, Light Fidelity (LiFi), superfícies reconfigurables intel·ligents (RIS, per les sigles en anglès), comunicacions a la banda dels THz, etc. En concret, les RIS han despertat interès degut a la seva capacitat de manipular de forma precisa i programàtica les senyals de ràdio generades per diversos transmissors o punts d’accés i dirigir-les a múltiples receptors. Les manipulacions esmentades inclouen l’absorció de certs components de les ones incidents, o el control de la seva direcció, polarització, fase, o amplitud de forma selectiva en freqüència. En aquest context, les metasuperfícies (MSs) són part essencial de les RIS com a estructures artificials i planars que implementen la funció electromagnètica u òptica que la RIS necessita, que pot ser fins i tot anti-natural i atípica. Així doncs, els RIS consisteixen de dispositius que controlen les ones electromagnètiques (que podrien ser MS) co-integrades amb dispositius que doten a la MS de reconfigurabilitat i intel·ligència. Les MS, perla seva banda, estan composades de elements menor de la longitud d’ona que es coneixen coma “unit cells” o “meta-atoms”. El problema radica en que la promesa de les RIS, però, comporta una complexitat a nivell de MS que no és trivial. Per una banda, el rendiment de la RIS depèn de la mida de les unit cells, el número d’estats que pugui prendre la unit cell, o la mida de la MS completa. D’altra banda, hi ha problemes de costos i consum energètic associat amb la fabricació i operació de les RIS, que també depenen dels factors abans esmentats. Aquesta tesi té com a objectiu adreçar aquests problemes proposant un mètode per dimensionar les RIS mitjançant un anàlisi de l’escalabilitat de les MS programables, en un procés orientat a disseny. A més a més, s’espera que les MS tendeixen a tenir errors a mesura que es tornin més sofisticades i integrin més dispositius de control, sensat, o sintonització. No obstant, l’impacte d’aquests errors en el rendiment de les MS no està entesa del tot. En aquest aspecte, la tesi proposa un marc de treball per avaluar l’impacte de les fallades en el rendiment de MS programables, en un procés que distingeix els tipus d’error i la seva distribució espacial. Més enllà d’això, la complexitat de construir les RIS es pot amortitzar amb l’ús de dites RIS per manejar múltiples usuaris simultàniament. En aquesta direcció, la tesi introdueix un a tècnica de programació de les RIS basat en les lleis de la conservació dels moments i de la superposició d’ones, la qual dota a la MS la capacitat de generar i manejar múltiples feixos de manera independent. Finalment, tècniques d’aprenentatge automàtic en general, i les xarxes neuronals en particular, podrien ser útils en aquest context per mitjà de la seva capacitat d’aprendre relacions complexes entre conjunts de dades d’entrada i sortida així com de resoldre equacions diferencials sense tot el càlcul numèric associat. En aquesta direcció, la tesi proposa una solució basada en xarxes neuronals que estima, de manera acurada, el diagrama de radiació i/o diverses mètriques d’interès de la resposta d’una MS, amb l’objectiu d’ajudar en el disseny i programació de MS complexes
Arquitectura de Computadors
Nguyen, Trong duc. "Conception d'antenne intelligente reconfigurable pour la radio cognitive." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00859818.
Повний текст джерелаКниги з теми "Intelligence reconfigurable"
Hamlin, Gregory J. Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics. Boston, MA: Springer US, 1998.
Знайти повний текст джерелаC, Sanderson A., ed. Tetrobot: A modular approach to reconfigurable parallel robotics. Boston: Kluwer Academic Publishers, 1998.
Знайти повний текст джерелаZhang, Hongliang, Boya Di, Lingyang Song, and Zhu Han. Reconfigurable Intelligent Surface-Empowered 6G. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73499-2.
Повний текст джерелаSanderson, Arthur C., and Gregory J. Hamlin. Tetrobot A Modular Approach to Reconfigurable Parallel Robotics (The International Series in Engineering and Computer Science). Springer, 1997.
Знайти повний текст джерелаH/W ro chaegusŏng kanŭng han chʻasedae chinŭnghyŏng tʻonghap tanmallyong SoC e kwanhan yŏnʼgu =: A study on the H/W reconfigurable SoC for next generation intelligent integrated terminal. [Seoul]: Chŏngbo Tʻongsinbu, 2006.
Знайти повний текст джерелаH/W ro chae kusŏng kanŭnghan chʻa sedae chinŭnghyŏng tʻonghap tanmallyong SoC e kwanhan yŏnʼgu =: A study on the H/W reconfigurable SoC for next generation intelligent integrated terminal. [Seoul]: Chŏngbo Tʻongsinbu, 2006.
Знайти повний текст джерелаЧастини книг з теми "Intelligence reconfigurable"
Støy, Kasper. "Reconfigurable Robots." In Springer Handbook of Computational Intelligence, 1407–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43505-2_73.
Повний текст джерелаMurata, Satoshi, Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita, and Shigeru Kokaji. "Self-Reconfigurable Robots: Platforms for Emerging Functionality." In Embodied Artificial Intelligence, 312–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27833-7_24.
Повний текст джерелаSingh, Pramod, and Rekha Aggarwal. "An insight into reconfigurable antenna design." In Artificial Intelligence and Speech Technology, 329–38. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003150664-36.
Повний текст джерелаStamatopoulou, Ioanna, Petros Kefalas, and Marian Gheorghe. "Specification of Reconfigurable MAS: A Hybrid Formal Approach." In Advances in Artificial Intelligence, 592–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11752912_76.
Повний текст джерелаRodríguez, Miguel A. Vega, Juan A. Gómez Pulido, Juan M. Sánchez Pérez, José M. Granado Criado, and Manuel Rubio del Solar. "Reconfigurable Computing and Parallelism for Implementing and Accelerating Evolutionary Algorithms." In Studies in Computational Intelligence, 71–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32839-4_4.
Повний текст джерелаMarusak, Piotr M. "Easily Reconfigurable Analytical Fuzzy Predictive Controllers: Actuator Faults Handling." In Advances in Computation and Intelligence, 396–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92137-0_44.
Повний текст джерелаMermoud, Grégory, Andres Upegui, Carlos-Andres Peña, and Eduardo Sanchez. "A Dynamically-Reconfigurable FPGA Platform for Evolving Fuzzy Systems." In Computational Intelligence and Bioinspired Systems, 572–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11494669_70.
Повний текст джерелаValsamos, Harry, Vassilis Moulianitis, and Nikos Aspragathos. "Rapid Evaluation of Reconfigurable Robots Anatomies Using Computational Intelligence." In Knowledge-Based and Intelligent Information and Engineering Systems, 341–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15390-7_35.
Повний текст джерелаBaldini, Gianmarco, Raimondo Giuliani, and Dimitrios Symeonidis. "Reconfigurable Radio Systems for Public Safety Based on Low-Cost Platforms." In Intelligence and Security Informatics, 237–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89900-6_24.
Повний текст джерелаLi, Hui-Ya, Yao-Jung Yeh, Wen-Jyi Hwang, and Cheng-Tsun Yang. "High Speed k-Winner-Take-ALL Competitive Learning in Reconfigurable Hardware." In Next-Generation Applied Intelligence, 594–603. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02568-6_60.
Повний текст джерелаТези доповідей конференцій з теми "Intelligence reconfigurable"
Shao, Xingyue, Chengbin Lian, Zhang Ren, and Peng Qi. "Swarm Intelligence Based Reconfigurable Control Allocation." In 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). IEEE, 2013. http://dx.doi.org/10.1109/imccc.2013.333.
Повний текст джерелаCieszewski, Radoslaw. "Accelerating artificial intelligence with reconfigurable computing." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2012, edited by Ryszard S. Romaniuk. SPIE, 2012. http://dx.doi.org/10.1117/12.2000098.
Повний текст джерелаPoskar, C. Hart, Peter J. Czezowski, and Robert D. McLeod. "A computational intelligence based coarse-grained reconfigurable element." In the 1999 ACM/SIGDA seventh international symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/296399.296504.
Повний текст джерелаMarcenaro, L. "A distributed dynamic reconfigurable system for ambient intelligence." In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030047.
Повний текст джерелаAngliss, Brian E., and H. Scott Hinton. "A Token-based Dynamically Reconfigurable Optical Backplane." In Optics in Computing. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oc.1997.othd.17.
Повний текст джерелаChen, Shih-Yu, Gwo Giun Chris Lee, Tai-Ping Wang, Chin-Wei Huang, Jia-Hong Chen, and Chang-Ling Tsai. "Reconfigurable Edge via Analytics Architecture." In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2019. http://dx.doi.org/10.1109/aicas.2019.8771528.
Повний текст джерелаHou, Ziye, Yong Pan, Jiang Xiong, Yue Zeng, and Chuanpeng Shen. "A frequency reconfigurable antenna for intelligent mobile robot." In 2021 13th International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2021. http://dx.doi.org/10.1109/icaci52617.2021.9435896.
Повний текст джерелаHai, Yulin, Xiaodong Zhao, and Yongqiang Liu. "Reconfigurable Computing Availability and Developing Trends." In 2015 11th International Conference on Computational Intelligence and Security (CIS). IEEE, 2015. http://dx.doi.org/10.1109/cis.2015.41.
Повний текст джерелаSchagaev, Igor, Thomas Kaegi, and Jurg Gutknecht. "ERA: Evolving Reconfigurable Architecture." In 2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, 2010. http://dx.doi.org/10.1109/snpd.2010.40.
Повний текст джерелаZhen-Yong, Wang, Yuan Quan, and Wu Fei. "Analysis and Implementation of Intelligent Reconfigurable Terminal Modulation." In 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2016. http://dx.doi.org/10.1109/cicn.2016.55.
Повний текст джерелаЗвіти організацій з теми "Intelligence reconfigurable"
Mavris, Dimitri N., and Yongchang Li. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada537316.
Повний текст джерелаMavris, Dimitri N., and Yongchang Li. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems. Fort Belvoir, VA: Defense Technical Information Center, December 2009. http://dx.doi.org/10.21236/ada512564.
Повний текст джерелаMavris, Dimitri N. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada506740.
Повний текст джерелаMavris, Dimitri N. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada508366.
Повний текст джерела