Добірка наукової літератури з теми "Integrated quantum nanophotonics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Integrated quantum nanophotonics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Integrated quantum nanophotonics"
Osborne, Ian S. "Integrated quantum nanophotonics." Science 354, no. 6314 (November 17, 2016): 843.11–845. http://dx.doi.org/10.1126/science.354.6314.843-k.
Повний текст джерелаHausmann, Birgit J. M., Brendan Shields, Qimin Quan, Patrick Maletinsky, Murray McCutcheon, Jennifer T. Choy, Tom M. Babinec, et al. "Integrated Diamond Networks for Quantum Nanophotonics." Nano Letters 12, no. 3 (February 27, 2012): 1578–82. http://dx.doi.org/10.1021/nl204449n.
Повний текст джерелаAltug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.
Повний текст джерелаChen, Yueyang, David Sharp, Abhi Saxena, Hao Nguyen, Brandi M. Cossairt, and Arka Majumdar. "Integrated Quantum Nanophotonics with Solution‐Processed Materials." Advanced Quantum Technologies 5, no. 1 (November 20, 2021): 2100078. http://dx.doi.org/10.1002/qute.202100078.
Повний текст джерелаPérez, Daniel, Ivana Gasulla, and José Capmany. "Programmable multifunctional integrated nanophotonics." Nanophotonics 7, no. 8 (July 28, 2018): 1351–71. http://dx.doi.org/10.1515/nanoph-2018-0051.
Повний текст джерелаVaidya, V. D., B. Morrison, L. G. Helt, R. Shahrokshahi, D. H. Mahler, M. J. Collins, K. Tan, et al. "Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device." Science Advances 6, no. 39 (September 2020): eaba9186. http://dx.doi.org/10.1126/sciadv.aba9186.
Повний текст джерелаSipahigil, A., R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, et al. "An integrated diamond nanophotonics platform for quantum-optical networks." Science 354, no. 6314 (October 13, 2016): 847–50. http://dx.doi.org/10.1126/science.aah6875.
Повний текст джерелаRoques-Carmes, Charles, Steven E. Kooi, Yi Yang, Nicholas Rivera, Phillip D. Keathley, John D. Joannopoulos, Steven G. Johnson, Ido Kaminer, Karl K. Berggren, and Marin Soljačić. "Free-electron–light interactions in nanophotonics." Applied Physics Reviews 10, no. 1 (March 2023): 011303. http://dx.doi.org/10.1063/5.0118096.
Повний текст джерелаMattioli, Francesco, Sara Cibella, Alessandro Gaggero, Francesco Martini, and Roberto Leoni. "Waveguide-integrated niobium- nitride detectors for on-chip quantum nanophotonics." Nanotechnology 32, no. 10 (December 10, 2020): 104001. http://dx.doi.org/10.1088/1361-6528/abcc97.
Повний текст джерелаChin, Lip Ket, Yuzhi Shi, and Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications." Advanced Devices & Instrumentation 2020 (October 26, 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.
Повний текст джерелаДисертації з теми "Integrated quantum nanophotonics"
Pierini, Stefano. "Experimental Study of Perovskite Nanocrystals as Single Photon Sources for Integrated Quantum Photonics." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0009.
Повний текст джерелаThis thesis is devoted to the study of the coupling of single-photon emitters with photonic nanostructures by using the properties of the near field of a photonic structure in view of the realization of a compact integrated single-photon source for quantum applications. The first part of my thesis work was consecrated to the optimization of perovskites nanocrystals. Although perovskites nanocrystals are very promising single-photon sources, they still need improvements: in this work, I review the main properties of these emitters and present a full characterization of perovskite nanocrystals with improved photo-stability, reduced blinking ad strong antibunching. In the second part of the thesis, I focus on the coupling of quantum emitters with various photonic structures: namely the tapered optical nanofibers and the ion-exchange waveguides. The fabrication method and the optical properties of the nanofibers are described in detail and the coupling of a single perovskite nanocrystal with a nanofiber is achieved, which constitutes a proof of principle of a hybrid integrated single-photon source. Finally, I show how the near field around ion Exchange waveguides can be employed together with near-field polymerizations to trap single-photon emitters onto the waveguides
Rahbany, Nancy. "Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0003/document.
Повний текст джерелаThere is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
Alton, Daniel James. "Interacting Single Atoms with Nanophotonics for Chip-Integrated Quantum Network." Thesis, 2013. https://thesis.library.caltech.edu/7832/7/Chapter_4.pdf.
Повний текст джерелаPazzagli, Sofia. "Organic nanocrystals and polymeric waveguides: a novel path towards integrated quantum nanophotonics." Doctoral thesis, 2018. http://hdl.handle.net/2158/1130778.
Повний текст джерелаЧастини книг з теми "Integrated quantum nanophotonics"
Lin, Lih Y. "Quantum Dot Nanophotonic Integrated Circuits." In Encyclopedia of Nanotechnology, 3389–99. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_193.
Повний текст джерелаLin, Lih Y., Wafa’ T. Al-Jamal, and Kostas Kostarelos. "Quantum Dot Nanophotonic Integrated Circuits." In Encyclopedia of Nanotechnology, 2187–96. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_193.
Повний текст джерелаMokkapati, S., H. Tan, and C. Jagadish. "Quantum Dot Integrated Optoelectronic Devices." In VLSI Micro- and Nanophotonics, 11‚Äì1–11‚Äì34. CRC Press, 2010. http://dx.doi.org/10.1201/b10371-19.
Повний текст джерелаChuen Lim, Han, and Mao Tong Liu. "Integrated nanophotonics for multi-user quantum key distribution networks." In Nanophotonics and Plasmonics, 305–44. CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-14.
Повний текст джерела"Chapter 14: Integrated nanophotonics for multi‒user quantum key distribution networks." In Nanophotonics and Plasmonics, edited by Han Chuen Lim and Mao Tong Liu, 305–44. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-18.
Повний текст джерелаSuhara, Toshiaki, and Masahiro Uemukai. "Integrated photonic devices using semiconductor quantum-well structures." In Nano Biophotonics - Science and Technology, Proceedings of the 3rd International Nanophotonics Symposium Handai, 387–409. Elsevier, 2007. http://dx.doi.org/10.1016/s1574-0641(07)80031-3.
Повний текст джерелаAsakawa, Kiyoshi, Nobuhiko Ozaki, Shunsuke Ohkouchi, Yoshimasa Sugimoto, and Naoki Ikeda. "Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits." In Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, 529–51. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-08-046325-4.00017-7.
Повний текст джерелаТези доповідей конференцій з теми "Integrated quantum nanophotonics"
Bogdanov, Simeon, Mikhail Y. Shalaginov, Justus C. Ndukaife, Oksana A. Makarova, Alexey V. Akimov, Alexei S. Lagutchev, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. "Towards integrated plasmonic quantum devices (Conference Presentation)." In Quantum Nanophotonics, edited by Mark Lawrence and Jennifer A. Dionne. SPIE, 2017. http://dx.doi.org/10.1117/12.2274245.
Повний текст джерелаYamanaka, Takayuki, Dimitri Alexson, Michael A. Stroscio, Mitra Dutta, Jay Brown, Pierre Petroff, and James Speck. "GaN quantum dots: nanophotonics and nanophononics." In Integrated Optoelectronic Devices 2006, edited by Manijeh Razeghi and Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.641062.
Повний текст джерелаGiesz, Valérian, Niccolo Somaschi, Lorenzo De Santis, Simone Luca Portalupi, Christophe Arnold, Olivier Gazzano, Anna Nowak, et al. "Quantum dot based quantum optics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.3.
Повний текст джерелаMalhotra, T., Y. Lai, M. Galli, D. Gerace, R. Boyd, and A. Badolato. "Integrated Nanophotonics for Quantum Photonics Devices." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.m6.61.
Повний текст джерелаThompson, Mark. "Silicon Integrated Quantum Photonics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/iprsn.2013.im4a.4.
Повний текст джерелаAbellan, C., W. Amaya, D. Tulli, M. W. Mitchell, and V. Pruneri. "Integrated Quantum Entropy Sources." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/iprsn.2018.iw2b.2.
Повний текст джерелаLukin, Mikhail. "Quantum Interfaces Based on Nanophotonic Systems." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.1.
Повний текст джерелаde Goede, M., H. J. Snijders, P. Venderbosch, B. Kassenberg, N. Kannan, D. Smith, C. Taballione, J. P. Epping, H. H. van den Vlekkert, and J. J. Renema. "High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.itu4b.3.
Повний текст джерелаMarcucci, Giulia, Robert Boyd, and Claudio Conti. "Quantum Peregrine Soliton Generation." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/iprsn.2020.jm2e.5.
Повний текст джерелаJeon, Woong Bae, Jong Sung Moon, Kyu-Young Kim, Young-Ho Ko, Christopher J. K. Richardson, Edo Waks, and Je-Hyung Kim. "Plug-and-Play Quantum Light Sources with Efficient Fiber-Interfacing Quantum Dots." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw2b.2.
Повний текст джерела