Добірка наукової літератури з теми "Integrated quantum nanophotonics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Integrated quantum nanophotonics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Integrated quantum nanophotonics"

1

Osborne, Ian S. "Integrated quantum nanophotonics." Science 354, no. 6314 (November 17, 2016): 843.11–845. http://dx.doi.org/10.1126/science.354.6314.843-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hausmann, Birgit J. M., Brendan Shields, Qimin Quan, Patrick Maletinsky, Murray McCutcheon, Jennifer T. Choy, Tom M. Babinec, et al. "Integrated Diamond Networks for Quantum Nanophotonics." Nano Letters 12, no. 3 (February 27, 2012): 1578–82. http://dx.doi.org/10.1021/nl204449n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Altug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.

Повний текст джерела
Анотація:
Nanophotonics excels at confining light into nanoscale optical mode volumes and generating dramatically enhanced light matter interactions. These unique aspects have been unveiling a plethora of fundamentally new optical phenomena, yet a critical issue ahead for nanophotonics is the development of novel devices and applications that can take advantage of these nano-scale effects. It is expected that nanophotonics will lead to disruptive technologies in energy harvesting, quantum and integrated photonics, optical computing and including biosensing. To this end, our research is focused on the application of nanophotonics to introduce powerful biosensors that can have impact on a wide range of areas including basic research in life sciences, early disease diagnostics, safety and point-of-care testing. In particular, we exploit nanophotonics and its integration with microfluidics to address key challenges of current biosensors and develop devices that can enable label-free, ultra-sensitive, multiplexed, rapid and real-time measurements on biomolecules, pathogens and living systems. In this talk I will present some of our recent work on nanophotonic meta surfaces for biosensing and bioimaging as well as their applications in real-world settings.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Yueyang, David Sharp, Abhi Saxena, Hao Nguyen, Brandi M. Cossairt, and Arka Majumdar. "Integrated Quantum Nanophotonics with Solution‐Processed Materials." Advanced Quantum Technologies 5, no. 1 (November 20, 2021): 2100078. http://dx.doi.org/10.1002/qute.202100078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pérez, Daniel, Ivana Gasulla, and José Capmany. "Programmable multifunctional integrated nanophotonics." Nanophotonics 7, no. 8 (July 28, 2018): 1351–71. http://dx.doi.org/10.1515/nanoph-2018-0051.

Повний текст джерела
Анотація:
AbstractProgrammable multifunctional integrated nanophotonics (PMIN) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that can be elaborated for basic or more complex operations in many application fields. The interest in PMIN is driven by the surge of a considerable number of emerging applications in the fields of telecommunications, quantum information processing, sensing and neurophotonics that will be calling for flexible, reconfigurable, low-cost, compact and low-power-consuming devices, much in the same way as how field programmable gate array (FPGA) devices operate in electronics. The success of PMIN relies on the research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated waveguide meshes provide regular and periodic geometries, formed by replicating a unit cell, which can take the form of a square, hexagon or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach-Zehnder interferometer (MZI) or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we review the recent advances reported in the field of PMIN and, especially, in those based on integrated photonic waveguide meshes, both from the theoretical as well as from the experimental point of view. We pay special attention to outlining the design principles, material platforms, synthesis algorithms and practical constraints of these structures and discuss their applicability to different fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vaidya, V. D., B. Morrison, L. G. Helt, R. Shahrokshahi, D. H. Mahler, M. J. Collins, K. Tan, et al. "Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device." Science Advances 6, no. 39 (September 2020): eaba9186. http://dx.doi.org/10.1126/sciadv.aba9186.

Повний текст джерела
Анотація:
We report demonstrations of both quadrature-squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number–resolving transition-edge sensors. We measure 1.0(1) decibels of broadband quadrature squeezing (~4 decibels inferred on-chip) and 1.5(3) decibels of photon number difference squeezing (~7 decibels inferred on-chip). Nearly single temporal mode operation is achieved, with measured raw unheralded second-order correlations g(2) as high as 1.95(1). Multiphoton events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sipahigil, A., R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, et al. "An integrated diamond nanophotonics platform for quantum-optical networks." Science 354, no. 6314 (October 13, 2016): 847–50. http://dx.doi.org/10.1126/science.aah6875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roques-Carmes, Charles, Steven E. Kooi, Yi Yang, Nicholas Rivera, Phillip D. Keathley, John D. Joannopoulos, Steven G. Johnson, Ido Kaminer, Karl K. Berggren, and Marin Soljačić. "Free-electron–light interactions in nanophotonics." Applied Physics Reviews 10, no. 1 (March 2023): 011303. http://dx.doi.org/10.1063/5.0118096.

Повний текст джерела
Анотація:
When impinging on optical structures or passing in their vicinity, free electrons can spontaneously emit electromagnetic radiation, a phenomenon generally known as cathodoluminescence. Free-electron radiation comes in many guises: Cherenkov, transition, and Smith–Purcell radiation, but also electron scintillation, commonly referred to as incoherent cathodoluminescence. While those effects have been at the heart of many fundamental discoveries and technological developments in high-energy physics in the past century, their recent demonstration in photonic and nanophotonic systems has attracted a great deal of attention. Those developments arose from predictions that exploit nanophotonics for novel radiation regimes, now becoming accessible thanks to advances in nanofabrication. In general, the proper design of nanophotonic structures can enable shaping, control, and enhancement of free-electron radiation, for any of the above-mentioned effects. Free-electron radiation in nanophotonics opens the way to promising applications, such as widely tunable integrated light sources from x-ray to THz frequencies, miniaturized particle accelerators, and highly sensitive high-energy particle detectors. Here, we review the emerging field of free-electron radiation in nanophotonics. We first present a general, unified framework to describe free-electron light–matter interaction in arbitrary nanophotonic systems. We then show how this framework sheds light on the physical underpinnings of many methods in the field used to control and enhance free-electron radiation. Namely, the framework points to the central role played by the photonic eigenmodes in controlling the output properties of free-electron radiation (e.g., frequency, directionality, and polarization). We then review experimental techniques to characterize free-electron radiation in scanning and transmission electron microscopes, which have emerged as the central platforms for experimental realization of the phenomena described in this review. We further discuss various experimental methods to control and extract spectral, angular, and polarization-resolved information on free-electron radiation. We conclude this review by outlining novel directions for this field, including ultrafast and quantum effects in free-electron radiation, tunable short-wavelength emitters in the ultraviolet and soft x-ray regimes, and free-electron radiation from topological states in photonic crystals.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mattioli, Francesco, Sara Cibella, Alessandro Gaggero, Francesco Martini, and Roberto Leoni. "Waveguide-integrated niobium- nitride detectors for on-chip quantum nanophotonics." Nanotechnology 32, no. 10 (December 10, 2020): 104001. http://dx.doi.org/10.1088/1361-6528/abcc97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chin, Lip Ket, Yuzhi Shi, and Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications." Advanced Devices & Instrumentation 2020 (October 26, 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.

Повний текст джерела
Анотація:
Light-matter interactions have been explored for more than 40 years to achieve physical modulation of nanostructures or the manipulation of nanoparticle/biomolecule. Silicon photonics is a mature technology with standard fabrication techniques to fabricate micro- and nano-sized structures with a wide range of material properties (silicon oxides, silicon nitrides, p- and n-doping, etc.), high dielectric properties, high integration compatibility, and high biocompatibilities. Owing to these superior characteristics, silicon photonics is a promising approach to demonstrate optical force-based integrated devices and systems for practical applications. In this paper, we provide an overview of optical force in silicon nanophotonic and optomechanical systems and their latest technological development. First, we discuss various types of optical forces in light-matter interactions from particles or nanostructures. We then present particle manipulation in silicon nanophotonics and highlight its applications in biological and biomedical fields. Next, we discuss nanostructure mechanical modulation in silicon optomechanical devices, presenting their applications in photonic network, quantum physics, phonon manipulation, physical sensors, etc. Finally, we discuss the future perspective of optical force-based integrated silicon photonics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Integrated quantum nanophotonics"

1

Pierini, Stefano. "Experimental Study of Perovskite Nanocrystals as Single Photon Sources for Integrated Quantum Photonics." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0009.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude du couplage d'émetteurs de photons uniques avec des nanostructures photoniques en utilisant les propriétés du champ proche d'une structure photonique en vue de la réalisation d'une source à photons uniques intégrée et compacte pour des applications quantiques. La première partie de mon travail de thèse a été consacrée à l'optimisation des nanocristaux de pérovskites. Bien que les nanocristaux de pérovskites soient des sources de photons uniques très prometteuses, ils nécessitent encore des améliorations : dans ce travail, je passe en revue les principales propriétés de ces émetteurs et je présente une caractérisation complète des nanocristaux de pérovskites avec une photo-stabilité améliorée, un clignotement réduit et un fort dégroupement de photons. Dans la deuxième partie de la thèse, je me concentre sur le couplage des émetteurs quantiques avec diverses structures photoniques : à savoir les nanofibres optiques effilées et les guides d'ondes à échange d'ions. La méthode de fabrication et les propriétés optiques des nanofibres sont décrites en détail et le couplage d'un nanocristal de pérovskite unique avec une nanofibre est réalisé, ce qui constitue une preuve de principe d'une source hybride et intégrée de photons uniques. Enfin, je montre comment le champ proche autour des guides d'ondes d'échange d'ions peut être utilisé avec la polymérisation en champ proche pour piéger des émetteurs quantiques sur les guides d'ondes
This thesis is devoted to the study of the coupling of single-photon emitters with photonic nanostructures by using the properties of the near field of a photonic structure in view of the realization of a compact integrated single-photon source for quantum applications. The first part of my thesis work was consecrated to the optimization of perovskites nanocrystals. Although perovskites nanocrystals are very promising single-photon sources, they still need improvements: in this work, I review the main properties of these emitters and present a full characterization of perovskite nanocrystals with improved photo-stability, reduced blinking ad strong antibunching. In the second part of the thesis, I focus on the coupling of quantum emitters with various photonic structures: namely the tapered optical nanofibers and the ion-exchange waveguides. The fabrication method and the optical properties of the nanofibers are described in detail and the coupling of a single perovskite nanocrystal with a nanofiber is achieved, which constitutes a proof of principle of a hybrid integrated single-photon source. Finally, I show how the near field around ion Exchange waveguides can be employed together with near-field polymerizations to trap single-photon emitters onto the waveguides
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rahbany, Nancy. "Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0003/document.

Повний текст джерела
Анотація:
L'objectif de ce travail de thèse est d'étudier le couplage plasmon-émetteur dans des structures plasmoniques hybrides, visant à renforcer l’interaction lumière-matière à l'échelle nanométrique. Contrairement aux cavités optiques dont le volume de modes est limité par la diffraction, les cavités plasmoniques offrent un unique avantage d’efficacité du confinement sub-longueur d'onde. Cela peut conduire à l’accroissement de la fluorescence des émetteurs placés dans leur voisinage. Pour cela, nous proposons comme dispositif de focalisation une structure intégrée d’un réseau annulaire avec des nanoantennes afin de garantir une meilleure efficacité. Ce dispositif bénéficie du couplage entre des plasmons polaritons de surface (SPP) qui se propagent à partir du réseau et des plasmons localisés de surface (LSP) localisés aux niveaux des nanoantennes afin de parvenir à une augmentation de champ plus élevée. Nous présentons une étude de caractérisation de la plate-forme plasmonique constitué du réseau de diffraction métallique annulaire, d’une nanoantenne en étoile, et la structure intégrée réseau/nanoantenne. Nous montrons comment cette structure peut conduire à une plus grande émission des molécules de colorants ainsi que de centre SiV du diamant. La combinaison du confinement sub-longueur d'onde des LSP et l'énergie élevé des SPP dans notre structure conduit à une focalisation précise qui peut être mis en œuvre pour étudier le couplage plasmon-émetteur dans les régimes de couplage faibles et forts
There is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alton, Daniel James. "Interacting Single Atoms with Nanophotonics for Chip-Integrated Quantum Network." Thesis, 2013. https://thesis.library.caltech.edu/7832/7/Chapter_4.pdf.

Повний текст джерела
Анотація:
Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N >> 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N >> 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ~100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high controllability, with which we experimentally demonstrate a state-insensitive atom trap. We present initial investigations on nanophotonic crystal based structures as a platform for strong atom-photon interactions. The experimental advances and theoretical investigations carried out in this thesis provide a framework for and open the door to strong single atom-photon interactions using nanophotonics for chip-integrated quantum networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pazzagli, Sofia. "Organic nanocrystals and polymeric waveguides: a novel path towards integrated quantum nanophotonics." Doctoral thesis, 2018. http://hdl.handle.net/2158/1130778.

Повний текст джерела
Анотація:
Single photons are very robust carriers of quantum information, making single-photon emitters a fundamental resource in a wide range of proposed photonic technologies, ranging from quantum computing and secure communication schemes to metrology applications. A fundamental step is the realization of integrated quantum photonics circuit enabling single-photon emission, logical operations, routing and detection on the same platform. In this context, hybrid systems made of molecule-based single photon sources coupled to dielectric waveguides appear as ideal candidates. In particular, single Dibenzoterrylene (DBT) molecules embedded in a crystalline matrix of Anthracene (Ac) constitute an interesting alternative to more conventional emitters - such as quantum dots or colour centers in diamonds – due to their bright, stable and narrow lifetime-limited emission at cryogenic temperatures. In this thesis, we study possible platforms to integrate single DBT molecules into dielectric waveguides and provide efficient emission and collection of single photons. As a first step we demonstrate the potentiality of an hybrid device that combines layered DBT:Ac systems and dielectric chips consisting of silicon nitride ridge waveguides and grating far-field couplers. Despite the lack of control in the positioning of the DBT molecules on the chip, we show that coupling efficiencies measured for molecules in close proximity to the dielectric waveguides are comparable to those of other solid-state systems. As a second step, we develop a simple and cost-effective fabrication method to grow Ac crystal with sub-micrometric size and tunable concentration of DBT molecules. The newly developed DBT:Ac nanocrystals, that remarkably maintain the optical properties of the bulky system at both room and cryogenic temperature, are easier to manipulate and may allow the DBT:Ac system to be fully exploited as a nanoscale single photon source. Finally we investigate the integration of DBT:Ac nanocrystals into polymers, promising materials for integrated quantum circuitry due to the broad tunability of their electro-optical and mechanical properties and their easy structuration by means of well-established lithographic fabrication methods. In particular, we demonstrate that nanocrystal-polymer composites are compatible with usual fabrication process and can be efficiently structured both in 2D and 3D. We believe that the remarkable optical properties of the developed DBT-doped organic nanocrystals and their integration in writable polymeric structures may facilitate the transition of molecules from a proof-of-concept to practical realistic applications in quantum technologies.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Integrated quantum nanophotonics"

1

Lin, Lih Y. "Quantum Dot Nanophotonic Integrated Circuits." In Encyclopedia of Nanotechnology, 3389–99. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, Lih Y., Wafa’ T. Al-Jamal, and Kostas Kostarelos. "Quantum Dot Nanophotonic Integrated Circuits." In Encyclopedia of Nanotechnology, 2187–96. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mokkapati, S., H. Tan, and C. Jagadish. "Quantum Dot Integrated Optoelectronic Devices." In VLSI Micro- and Nanophotonics, 11‚Äì1–11‚Äì34. CRC Press, 2010. http://dx.doi.org/10.1201/b10371-19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chuen Lim, Han, and Mao Tong Liu. "Integrated nanophotonics for multi-user quantum key distribution networks." In Nanophotonics and Plasmonics, 305–44. CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Chapter 14: Integrated nanophotonics for multi‒user quantum key distribution networks." In Nanophotonics and Plasmonics, edited by Han Chuen Lim and Mao Tong Liu, 305–44. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suhara, Toshiaki, and Masahiro Uemukai. "Integrated photonic devices using semiconductor quantum-well structures." In Nano Biophotonics - Science and Technology, Proceedings of the 3rd International Nanophotonics Symposium Handai, 387–409. Elsevier, 2007. http://dx.doi.org/10.1016/s1574-0641(07)80031-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Asakawa, Kiyoshi, Nobuhiko Ozaki, Shunsuke Ohkouchi, Yoshimasa Sugimoto, and Naoki Ikeda. "Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits." In Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, 529–51. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-08-046325-4.00017-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Integrated quantum nanophotonics"

1

Bogdanov, Simeon, Mikhail Y. Shalaginov, Justus C. Ndukaife, Oksana A. Makarova, Alexey V. Akimov, Alexei S. Lagutchev, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. "Towards integrated plasmonic quantum devices (Conference Presentation)." In Quantum Nanophotonics, edited by Mark Lawrence and Jennifer A. Dionne. SPIE, 2017. http://dx.doi.org/10.1117/12.2274245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yamanaka, Takayuki, Dimitri Alexson, Michael A. Stroscio, Mitra Dutta, Jay Brown, Pierre Petroff, and James Speck. "GaN quantum dots: nanophotonics and nanophononics." In Integrated Optoelectronic Devices 2006, edited by Manijeh Razeghi and Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.641062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Giesz, Valérian, Niccolo Somaschi, Lorenzo De Santis, Simone Luca Portalupi, Christophe Arnold, Olivier Gazzano, Anna Nowak, et al. "Quantum dot based quantum optics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Malhotra, T., Y. Lai, M. Galli, D. Gerace, R. Boyd, and A. Badolato. "Integrated Nanophotonics for Quantum Photonics Devices." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.m6.61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thompson, Mark. "Silicon Integrated Quantum Photonics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/iprsn.2013.im4a.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abellan, C., W. Amaya, D. Tulli, M. W. Mitchell, and V. Pruneri. "Integrated Quantum Entropy Sources." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/iprsn.2018.iw2b.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lukin, Mikhail. "Quantum Interfaces Based on Nanophotonic Systems." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Goede, M., H. J. Snijders, P. Venderbosch, B. Kassenberg, N. Kannan, D. Smith, C. Taballione, J. P. Epping, H. H. van den Vlekkert, and J. J. Renema. "High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.itu4b.3.

Повний текст джерела
Анотація:
Reconfigurable photonic processors are crucial for photonic quantum computing. We report a low-loss, high-fidelity and universal 12-mode photonic processor at a wavelength of 940 nm, which is compatible with InGaAs quantum dot light sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marcucci, Giulia, Robert Boyd, and Claudio Conti. "Quantum Peregrine Soliton Generation." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/iprsn.2020.jm2e.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jeon, Woong Bae, Jong Sung Moon, Kyu-Young Kim, Young-Ho Ko, Christopher J. K. Richardson, Edo Waks, and Je-Hyung Kim. "Plug-and-Play Quantum Light Sources with Efficient Fiber-Interfacing Quantum Dots." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw2b.2.

Повний текст джерела
Анотація:
We demonstrate efficient fiber-interfacing photonic devices based on hole gratings producing a narrow directional beam that directly launch single photons from quantum dots into a standard single-mode fiber by matching the numerical aperture.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії