Статті в журналах з теми "Inner Solar System"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Inner Solar System.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Inner Solar System".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Slater, Tim. "Inner solar system concepts." Physics Teacher 38, no. 5 (May 2000): 264–65. http://dx.doi.org/10.1119/1.880527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Greenstreet, Sarah. "Asteroids in the inner solar system." Physics Today 74, no. 7 (July 1, 2021): 42–47. http://dx.doi.org/10.1063/pt.3.4794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sylvan, Richard, Narayanan M. Komerath, Kirk Woellert, Mark Homnick, and Joseph E. Palaia. "The Emerging Inner Solar System Economy." World Futures Review 1, no. 2 (April 2009): 23–38. http://dx.doi.org/10.1177/194675670900100206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Donahue, T. M., T. I. Gombosi, and B. R. Sandel. "Cometesimals in the inner Solar System." Nature 330, no. 6148 (December 1987): 548–50. http://dx.doi.org/10.1038/330548a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mann, Ingrid, Edmond Murad, and Andrzej Czechowski. "Nanoparticles in the inner solar system." Planetary and Space Science 55, no. 9 (June 2007): 1000–1009. http://dx.doi.org/10.1016/j.pss.2006.11.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alexander, Conel M. O'D. "The origin of inner Solar System water." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2094 (April 17, 2017): 20150384. http://dx.doi.org/10.1098/rsta.2015.0384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2–4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt (‘classical’ model) or in the outer Solar System (5–15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3–7 AU in the Grand Tack model) and possibly close to where they are found today. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
7

Trinquier, Anne, Jean‐Louis Birck, and Claude J. Allegre. "Widespread54Cr Heterogeneity in the Inner Solar System." Astrophysical Journal 655, no. 2 (February 2007): 1179–85. http://dx.doi.org/10.1086/510360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hall, D. T., and D. E. Shemansky. "No cometesimals in the inner Solar System." Nature 335, no. 6189 (September 1988): 417–19. http://dx.doi.org/10.1038/335417a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Milgrom, Mordehai. "MOND effects in the inner Solar system." Monthly Notices of the Royal Astronomical Society 399, no. 1 (October 11, 2009): 474–86. http://dx.doi.org/10.1111/j.1365-2966.2009.15302.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chambers, John E. "Planetary accretion in the inner Solar System." Earth and Planetary Science Letters 223, no. 3-4 (July 2004): 241–52. http://dx.doi.org/10.1016/j.epsl.2004.04.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Elkins-Tanton, Linda T. "Magma Oceans in the Inner Solar System." Annual Review of Earth and Planetary Sciences 40, no. 1 (May 30, 2012): 113–39. http://dx.doi.org/10.1146/annurev-earth-042711-105503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Resnick, Andrew. "Airless bodies of the inner solar system." Contemporary Physics 61, no. 1 (January 2, 2020): 52–53. http://dx.doi.org/10.1080/00107514.2020.1736166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Byrne, Paul K. "A comparison of inner Solar System volcanism." Nature Astronomy 4, no. 4 (December 9, 2019): 321–27. http://dx.doi.org/10.1038/s41550-019-0944-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Batygin, Konstantin, Alessandro Morbidelli, and Mathew J. Holman. "CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM." Astrophysical Journal 799, no. 2 (January 21, 2015): 120. http://dx.doi.org/10.1088/0004-637x/799/2/120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Connors, Martin, R. Greg Stacey, Paul Wiegert, and Ramon Brasser. "Inner Solar System dynamical analogs of plutinos." Icarus 194, no. 2 (April 2008): 789–99. http://dx.doi.org/10.1016/j.icarus.2007.11.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hallis, L. J. "D/H ratios of the inner Solar System." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2094 (April 17, 2017): 20150390. http://dx.doi.org/10.1098/rsta.2015.0390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of −100‰ and −590‰. This homogeneity is in accord with the ‘Grand tack’ model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
17

Sarafian, Adam R., Erik H. Hauri, Francis M. McCubbin, Thomas J. Lapen, Eve L. Berger, Sune G. Nielsen, Horst R. Marschall, Glenn A. Gaetani, Kevin Righter, and Emily Sarafian. "Early accretion of water and volatile elements to the inner Solar System: evidence from angrites." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2094 (April 17, 2017): 20160209. http://dx.doi.org/10.1098/rsta.2016.0209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb– 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
18

Meech, Karen J., Bin Yang, Jan Kleyna, Olivier R. Hainaut, Svetlana Berdyugina, Jacqueline V. Keane, Marco Micheli, Alessandro Morbidelli, and Richard J. Wainscoat. "Inner solar system material discovered in the Oort cloud." Science Advances 2, no. 4 (April 2016): e1600038. http://dx.doi.org/10.1126/sciadv.1600038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.
19

Meech, Karen. "Origins of water in the Solar System leading to habitable worlds." Proceedings of the International Astronomical Union 11, A29B (August 2015): 400. http://dx.doi.org/10.1017/s1743921316005639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractLife on Earth depends on an aqueous biochemistry, and water is a key component of habitability on Earth and for likely other habitable environments in the solar system. While water is ubiquitous in the interstellar medium, and plays a key role in protoplanetary disk chemistry, the inner solar system is relatively dry. We now have evidence for potentially thousands of extrasolar planets, dozens of which may be located in their host stars habitable zones. Understanding how planets in the habitable zone accrete their water, is key to understanding the likelihood for habitability. Given that many disk models show that Earth formed inside the water-ice snow line of our solar system, understanding how the inner solar system received its water is important for understanding the potential for other planetary systems to host habitable worlds. Boundaries for the timing of the water delivery are constrained by cosmochemistry and geochemistry. Possible scenarios for the delivery of water to the inner solar system include adsorption on dust from protoplanetary disk gas, chemical reactions on the early earth, and delivery from planetesimals forming outside the water-ice snow line. This talk will set the stage for understanding the isotopic and geochemical markers along with the dynamical delivery mechanisms that will help uncover the origins of Earths water. This introduction will provide an overview for understanding the distribution of water in the solar system, in particular for the inner solar system and terrestrial planets Xand the details will be developed in the subsequent talks. Additionally information will be presented regarding new inner solar system reservoirs of water that can shed light on origins (the main belt comets), and new research about water in the Earth.
20

Yoshizaki, Takashi, and William F. McDonough. "Earth and Mars – Distinct inner solar system products." Geochemistry 81, no. 2 (May 2021): 125746. http://dx.doi.org/10.1016/j.chemer.2021.125746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Nuth, Joseph A., Neyda Abreu, Frank T. Ferguson, Daniel P. Glavin, Carl Hergenrother, Hugh G. M. Hill, Natasha M. Johnson, Maurizio Pajola, and Kevin Walsh. "Volatile-rich Asteroids in the Inner Solar System." Planetary Science Journal 1, no. 3 (December 22, 2020): 82. http://dx.doi.org/10.3847/psj/abc26a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Tabachnik, S. A., and N. W. Evans. "Asteroids in the inner Solar system - I. Existence." Monthly Notices of the Royal Astronomical Society 319, no. 1 (April 4, 2002): 63–79. http://dx.doi.org/10.1046/j.1365-8711.2000.03760.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Rickman, Hans. "Transport of comets to the Inner Solar System." Proceedings of the International Astronomical Union 2004, IAUC197 (August 2004): 277–88. http://dx.doi.org/10.1017/s1743921304008774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Skoglöv, E. "Spin vector evolution for inner solar system asteroids." Planetary and Space Science 47, no. 1-2 (December 1998): 11–22. http://dx.doi.org/10.1016/s0032-0633(98)00111-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

van den Bergh, S. "Life and death in the inner solar system." Publications of the Astronomical Society of the Pacific 101 (May 1989): 500. http://dx.doi.org/10.1086/132459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Murison, Marc A. "A Dynamical Survey of Inner Solar System Asteroids." International Astronomical Union Colloquium 172 (1999): 371–72. http://dx.doi.org/10.1017/s0252921100072766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractResults from a numerical integration survey of all 179 currently-known inner solar system asteroids with a ≤ aMars, q ≥ aMercury are presented. A surprising number of asteroids are currently in, or very near, mean-motion resonances with Mercury, Venus, Earth, or Mars. Some of the resonance associations are of high order. Most of the resonance associations are relatively short-lived, with the asteroids wandering in and out of resonance on timescales of hundreds to several thousand years.
27

Tabachnik, S. A., and N. W. Evans. "Existence of Asteroids in the Inner Solar System." Symposium - International Astronomical Union 202 (2004): 238–40. http://dx.doi.org/10.1017/s007418090021797x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ensembles of in-plane and inclined orbits in the vicinity of the Lagrange points of the terrestrial planets are integrated for up to 100 million years. Mercurian Trojans probably do not exist, although there is evidence for long-lived, corotating horseshoe orbits with small inclinations. Both Venus and the Earth are much more promising, as they possess rich families of stable tadpole and horseshoe orbits. Our survey of in-plane test particles near the Martian Lagrange points shows no survivors after 60 million years. Low inclination test particles do not persist, as their inclinations are quickly increased until the effects of a secular resonance with Jupiter cause de-stabilisation. Numerical integrations of inclined test particles for timespans of 25 million years show stable zones for inclinations between 14° and 40°. Both Martian Trojans 5261 Eureka and 1998 VF31 lie deep within the stable zones, which suggests they may be of primordial origin.
28

Omodaka, Yuichi, Kyosuke Hiyama, Thanyalak Srisamranrungruang, Yutaka Oura, and Yukiyasu Asaoka. "Application of Dynamic Insulation Technique to Airflow Window System." E3S Web of Conferences 111 (2019): 03041. http://dx.doi.org/10.1051/e3sconf/201911103041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It is necessary to improve solar blocking performance and reduce solar heat gain coefficient (SHGC) of openings in office buildings in order to reduce the cooling loads. Airflow windows are often practiced in Japan’s office buildings. In this research, we apply a Dynamic Insulation (DI) technique into an airflow window system to improve the solar blocking performance. Computational fluid dynamics (CFD) analyses have been used to measure the thermal performance of the numerical opening model. In the case of using a conventional airflow window model, the inner-surface temperature of the inner glass is 29.4℃. In case the DI technique is applied, it is 27.0℃. The declination of the inner-surface temperature of the window improves the radiant environment in the building perimeter space. Moreover, the heat flux into the room is decreased due to the decline in the temperature difference between indoor temperature and the inner glass surface temperature.
29

Barbato, D., A. Sozzetti, S. Desidera, M. Damasso, A. S. Bonomo, P. Giacobbe, L. S. Colombo, et al. "Exploring the realm of scaled solar system analogues with HARPS." Astronomy & Astrophysics 615 (July 2018): A175. http://dx.doi.org/10.1051/0004-6361/201832791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. The assessment of the frequency of planetary systems reproducing the solar system’s architecture is still an open problem in exoplanetary science. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planets. Aims. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fp of scaled solar system analogues – in other words, systems featuring lower-mass inner planets in the presence of long-period giant planets. Methods. We carried out combined fits of our HARPS data with literature radial velocities using differential evolution MCMC to refine the literature orbital solutions and search for additional inner planets. We then derived the survey detection limits to provide preliminary estimates of fp. Results. We generally find better constrained orbital parameters for the known planets than those found in the literature; significant updates can be especially appreciated on half of the selected planetary systems. While no additional inner planet is detected, we find evidence for previously unreported long-period massive companions in systems HD 50499 and HD 73267. We finally estimate the frequency of inner low mass (10–30 M⊕) planets in the presence of outer giant planets as fp < 9.84% for P < 150 days. Conclusions. Our preliminary estimate of fp is significantly lower than the literature values for similarly defined mass and period ranges; the lack of inner candidate planets found in our sample can also be seen as evidence corroborating the inwards-migration formation model for super-Earths and mini-Neptunes. Our results also underline the need for high-cadence and high-precision followup observations as the key to precisely determine the occurence of solar system analogues.
30

Van Kooten, Elishevah M. M. E., Daniel Wielandt, Martin Schiller, Kazuhide Nagashima, Aurélien Thomen, Kirsten K. Larsen, Mia B. Olsen, Åke Nordlund, Alexander N. Krot, and Martin Bizzarro. "Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites." Proceedings of the National Academy of Sciences 113, no. 8 (February 8, 2016): 2011–16. http://dx.doi.org/10.1073/pnas.1518183113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.
31

Ueda, Takahiro, Masahiro Ogihara, Eiichiro Kokubo, and Satoshi Okuzumi. "Early Initiation of Inner Solar System Formation at the Dead-zone Inner Edge." Astrophysical Journal Letters 921, no. 1 (October 27, 2021): L5. http://dx.doi.org/10.3847/2041-8213/ac2f3b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Laskar, J. "The Chaotic Motion of the Solar System." International Astronomical Union Colloquium 132 (1993): 21. http://dx.doi.org/10.1017/s025292110006588x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn a previous paper (Laskar, Nature, 338, 237-238), the chaotic nature of the solar system excluding Pluto was established by the numerical computation of the maximum Lyapunov exponent of its secular system over 200 Myr. In the present an explanation is given for the exponential divergence of the orbits: it is due to the transition from libration to circulation of the critical argument of the secular resonance 2(g4−g3)−(s4−s3) related to the motions of perihelions and nodes of the Birth and Mars. An other important secular resonance is identified: (g1−g5)−(s1−s2). Its critical argument stays in libration over 200 Myr with a period of about 10 Myr and amplitude from 85° to 135°. The main features of the solutions of the inner planets are now identified when taking these resonances into account. Estimates of the size of the chaotic regions are determined by a new numerical method using the evolution with time of the fundamental frequencies. The size of the chaotic regions in the inner solar system are large and correspond to variations of about 0.2 arcsec/year in the fundamental frequencies. The chaotic nature of the inner solar system can thus be considered as robust against small variations of the initial conditions or of the model. The chaotic regions related to the outer planets frequencies are very thin except for g6 which present variations sufficiently large to be significant over the age of the solar system.
33

Masson, Philippe. "La geologie planetaire; bilan et perspectives." Bulletin de la Société Géologique de France III, no. 1 (January 1, 1987): 113–14. http://dx.doi.org/10.2113/gssgfbull.iii.1.113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A general statement on the geology of the solar system inner planets is summarized. Relevant unsolved problems are then presented. The main space programs for the exploration of the inner solar system during the ten forthcoming years are described.
34

Alexander, Conel M. O'D. "Correction to ‘The origin of inner Solar System water’." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2194 (February 15, 2021): 20200435. http://dx.doi.org/10.1098/rsta.2020.0435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wang, Lu, Hongfei Zheng, Yunsheng Zhao, and Xinglong Ma. "Solar-driven natural vacuum desalination system with inner condenser." Applied Thermal Engineering 196 (September 2021): 117320. http://dx.doi.org/10.1016/j.applthermaleng.2021.117320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Evans, N. W., and S. A. Tabachnik. "Asteroids in the inner Solar system - II. Observable properties." Monthly Notices of the Royal Astronomical Society 319, no. 1 (April 4, 2002): 80–94. http://dx.doi.org/10.1046/j.1365-8711.2000.03761.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dudley-Flores, Marilyn, and Thomas Gangale. "Forecasting the Political Economy of the Inner Solar System." Astropolitics 10, no. 3 (November 26, 2012): 183–233. http://dx.doi.org/10.1080/14777622.2012.734948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Prentice, A. J. R. "Origin and chemical composition of the inner solar system." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A504. http://dx.doi.org/10.1016/j.gca.2006.06.1601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Gladman, Brett, Luke Dones, Harold F. Levison, and Joseph A. Burns. "Impact Seeding and Reseeding in the Inner Solar System." Astrobiology 5, no. 4 (August 2005): 483–96. http://dx.doi.org/10.1089/ast.2005.5.483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Grün, Eberhard. "Dust Measurements in the Outer Solar System." Symposium - International Astronomical Union 160 (1994): 367–80. http://dx.doi.org/10.1017/s0074180900046659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In-situ measurements of micrometeoroids provide information on the spatial distribution of interplanetary dust and its dynamical properties. Pioneers 10 and 11, Galileo and Ulysses spaceprobes took measurements of interplanetary dust from 0.7 to 18 AU distance from the sun. Distinctly different populations of dust particles exist in the inner and outer solar system. In the inner solar system, out to about 3 AU, zodiacal dust particles are recognized by their scattered light, their thermal emission and by in-situ detection from spaceprobes. These particles orbit the sun on low inclination (i ≤ 30°) and moderate eccentricity (e ≤ 0.6) orbits. Their spatial density falls off with approximately the inverse of the solar distance. Dust particles on high inclination or even retrograde trajectories dominate the dust population outside about 3 AU. The dust detector on board the Ulysses spaceprobe identified interstellar dust sweeping through the outer solar system on hyperbolic trajectories. Within about 2 AU from Jupiter Ulysses discovered periodic streams of dust particles originating from within the jovian system.
41

Девяткин, А. В., В. Н. Львов, С. Д. Цекмейстер, Д. Л. Горшанов, С. Н. Петрова, and А. А. Мартюшева. "Special asteroids in the Solar System." Научные труды Института астрономии РАН, no. 1 (July 22, 2022): 16–22. http://dx.doi.org/10.51194/inasan.2022.7.1.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Представлены результаты выявления астероидов, потенциально опасных для внутренних планет. Исследовано орбитальное движение астероида 2022 АЕ1, троянцев Земли (2010 TK7, 2020 XL5) и «рукотворного» астероида 2020 SO. The results of the detection of potentially hazardous asteroids for the inner planets are presented. The orbital motion of asteroid 2022 AE1, the Earth Trojans (2010 TK7, 2020 XL5), and the “man-made” asteroid 2020 SO has been studied.
42

Hsieh, Henry H. "Main-Belt Comets as Tracers of Ice in the Inner Solar System." Proceedings of the International Astronomical Union 8, S293 (August 2012): 212–18. http://dx.doi.org/10.1017/s1743921313012866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAs a recently recognized class of objects exhibiting apparently cometary (sublimation-driven) activity yet orbiting completely within the main asteroid belt, main-belt comets (MBCs) have revealed the existence of present-day ice in small bodies in the inner solar system and offer an opportunity to better understand the thermal and compositional history of our solar system, and by extension, those of other planetary systems as well. Achieving these overall goals, however, will require meeting various intermediate research objectives, including discovering many more MBCs than the currently known seven objects in order to ascertain the population's true abundance and distribution, confirming that water ice sublimation is in fact the driver of activity in these objects, and improving our understanding of the physical, dynamical, and thermal evolutionary processes that have acted on this population over the age of the solar system.
43

Nesvorný, David, Luke Dones, Mario De Prá, Maria Womack, and Kevin J. Zahnle. "Impact Rates in the Outer Solar System." Planetary Science Journal 4, no. 8 (August 1, 2023): 139. http://dx.doi.org/10.3847/psj/ace8ff.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Previous studies of cometary impacts in the outer solar system used the spatial distribution of ecliptic comets (ECs) from dynamical models that assumed ECs began on low-inclination orbits (≲5°) in the Kuiper Belt. In reality, the source population of ECs—the trans-Neptunian scattered disk—has orbital inclinations reaching up to ∼30°. In Nesvorný et al., we developed a new dynamical model of ECs by following comets as they evolved from the scattered disk to the inner solar system. The model was absolutely calibrated from the population of Centaurs and active ECs. Here we use our EC model to determine the steady-state impact flux of cometary/Centaur impactors on Jupiter, Saturn, Uranus, and their moons. Relative to previous work, we find slightly higher impact probabilities on the outer moons and lower impact probabilities on the inner moons. The impact probabilities are smaller when comet disruption is accounted for. The results provide a modern framework for the interpretation of the cratering record in the outer solar system.
44

Bockelee-Morvan, Dominique. "Water in small bodies of the Solar System." Proceedings of the International Astronomical Union 11, A29B (August 2015): 401. http://dx.doi.org/10.1017/s1743921316005640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractWater in form of ice or vapour is observed in comets, transneptunian objects and icy satellites formed in the outer regions of the Solar System, as well as in objects orbiting in the inner Solar System, such as dwarf planet Ceres. I will present an overview of the water content and properties in these objects and the implications in terms of solar system formation and evolution.
45

Williams, Curtis D., Matthew E. Sanborn, Céline Defouilloy, Qing-Zhu Yin, Noriko T. Kita, Denton S. Ebel, Akane Yamakawa, and Katsuyuki Yamashita. "Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk." Proceedings of the National Academy of Sciences 117, no. 38 (September 8, 2020): 23426–35. http://dx.doi.org/10.1073/pnas.2005235117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the ε50Ti-ε54Cr-Δ17O systematics of large individual chondrules, which typically formed 2 to 3 My after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a “missing reservoir” that bridges the gap between inner and outer Solar System materials. We also observe chondrules with positive ε50Ti and ε54Cr plot with a constant offset below the primitive chondrule mineral line (PCM), indicating that they are on the slope ∼1.0 in the oxygen three-isotope diagram. In contrast, chondrules with negative ε50Ti and ε54Cr increasingly deviate above from PCM line with increasing δ18O, suggesting that they are on a mixing trend with an ordinary chondrite-like isotope reservoir. Furthermore, the Δ17O-Mg# systematics of these chondrules indicate they formed in environments characterized by distinct abundances of dust and H2O ice. We posit that large-scale outward transport of nominally inner Solar System materials most likely occurred along the midplane associated with a viscously evolving disk and that CV and CK chondrules formed in local regions of enhanced gas pressure and dust density created by the formation of Jupiter.
46

Tanaka, Ryoji, Christian Potiszil, and Eizo Nakamura. "Silicon and Oxygen Isotope Evolution of the Inner Solar System." Planetary Science Journal 2, no. 3 (May 20, 2021): 102. http://dx.doi.org/10.3847/psj/abf490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Platz, T., P. K. Byrne, M. Massironi, and H. Hiesinger. "Volcanism and tectonism across the inner solar system: an overview." Geological Society, London, Special Publications 401, no. 1 (September 17, 2014): 1–56. http://dx.doi.org/10.1144/sp401.22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Mann, Adam. "Inner Workings: Hunting for microbial life throughout the solar system." Proceedings of the National Academy of Sciences 115, no. 45 (November 6, 2018): 11348–50. http://dx.doi.org/10.1073/pnas.1816535115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Vasylenko, A. A. "Future space missions: the inner region of the Solar system." Kosmìčna nauka ì tehnologìâ 23, no. 3 (May 30, 2017): 73–80. http://dx.doi.org/10.15407/knit2017.03.073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Mann, Ingrid, and Andrzej Czechowski. "Dust Destruction and Ion Formation in the Inner Solar System." Astrophysical Journal 621, no. 1 (February 4, 2005): L73—L76. http://dx.doi.org/10.1086/429129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії