Добірка наукової літератури з теми "Injection into geodesic motion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Injection into geodesic motion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Injection into geodesic motion"
Bortoluzzi, D., L. Baglivo, M. Benedetti, F. Biral, P. Bosetti, A. Cavalleri, M. Da Lio, et al. "LISA Pathfinder test mass injection in geodesic motion: status of the on-ground testing." Classical and Quantum Gravity 26, no. 9 (April 20, 2009): 094011. http://dx.doi.org/10.1088/0264-9381/26/9/094011.
Повний текст джерелаBortoluzzi, D., M. Benedetti, L. Baglivo, M. De Cecco, and S. Vitale. "Measurement of momentum transfer due to adhesive forces: On-ground testing of in-space body injection into geodesic motion." Review of Scientific Instruments 82, no. 12 (December 2011): 125107. http://dx.doi.org/10.1063/1.3658479.
Повний текст джерелаTownsend, Paul K., and Mattias N. R. Wohlfarth. "Cosmology as geodesic motion." Classical and Quantum Gravity 21, no. 23 (November 10, 2004): 5375–96. http://dx.doi.org/10.1088/0264-9381/21/23/006.
Повний текст джерелаRecio-Mitter, David. "Geodesic complexity of motion planning." Journal of Applied and Computational Topology 5, no. 1 (January 12, 2021): 141–78. http://dx.doi.org/10.1007/s41468-020-00064-w.
Повний текст джерелаMannheim, Philip D. "Dynamical mass and geodesic motion." General Relativity and Gravitation 25, no. 7 (July 1993): 697–715. http://dx.doi.org/10.1007/bf00756938.
Повний текст джерелаJun, Wang, and Wang Yong-Jiu. "Geodesic Motion in Spinning Spaces." Communications in Theoretical Physics 46, no. 6 (December 2006): 995–1000. http://dx.doi.org/10.1088/0253-6102/46/6/008.
Повний текст джерелаCamci, Ugur. "Noether gauge symmetries of geodesic motion in stationary and nonstatic Gödel-type spacetimes." International Journal of Modern Physics: Conference Series 38 (January 2015): 1560072. http://dx.doi.org/10.1142/s2010194515600721.
Повний текст джерелаHeck, T., and M. Sorg. "Geodesic Motion in Trivializable Gauge Fields." Zeitschrift für Naturforschung A 46, no. 8 (August 1, 1991): 655–68. http://dx.doi.org/10.1515/zna-1991-0802.
Повний текст джерелаRamos, A., C. Arias, R. Avalos, and E. Contreras. "Geodesic motion around hairy black holes." Annals of Physics 431 (August 2021): 168557. http://dx.doi.org/10.1016/j.aop.2021.168557.
Повний текст джерелаGupta, Kumar S., and Siddhartha Sen. "Black hole decay as geodesic motion." Physics Letters B 574, no. 1-2 (November 2003): 93–97. http://dx.doi.org/10.1016/j.physletb.2003.09.024.
Повний текст джерелаДисертації з теми "Injection into geodesic motion"
Vignotto, Davide. "Analysis of the in-Flight Performance of a Critical Space Mechanism." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/323575.
Повний текст джерелаSebastianutti, Marco. "Geodesic motion and Raychaudhuri equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18755/.
Повний текст джерелаZanoni, Carlo. "Drag-free Spacecraft Technologies: criticalities in the initialization of geodesic motion." Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/369090.
Повний текст джерелаDel, Bonifro Francesca. "Geodesics motion in fuzzy black hole space-times." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13512/.
Повний текст джерелаHowarth, Laura. "The existence and structure of constants of geodesic motion admitted by spherically symmetric static space-times." Thesis, University of Hull, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310318.
Повний текст джерелаWhyte, Jonathan Robert. "Controlling ferroelectric domain wall injection and motion in mesoscale co-planar capacitor structures." Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676501.
Повний текст джерелаTawfig, Mohammed Elmustafa. "An investigation of air motion and heat transfer in a motored indirect injection diesel engine." Thesis, University of Bath, 1991. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280348.
Повний текст джерелаGeyer, Marisa. "Geodesics and resonances of the Manko-Novikov spacetime." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80306.
Повний текст джерелаENGLISH ABSTRACT: In this thesis I study compact objects described by the Manko-Novikov spacetime. The Manko- Novikov spacetime is an exact solution to the Einstein Field Equations that allows objects to be black hole-like, but with a multipole structure di erent from Kerr black holes. The aim of the research is to investigate whether we will observationally be able to tell these bumpy black holes, if they exist, apart from traditional Kerr black holes. I explore the geodesic motion of a test probe in the Manko-Novikov spacetime. I quantify the motion using Poincar e maps and rotation curves. The Manko-Novikov spacetime admits regions with regular motion as well as regions with chaotic motion. The occurrence of chaos is correlated with orbits for which the characteristic frequencies are resonant. The new result presented in this thesis is a global characterisation of where resonances and thus chaos are likely to occur for all orbits. These calculations are performed in the Kerr spacetime, from which I obtain that low order resonances occur within 20 Schwarzschild radii (or 40M) of the compact object with mass M. By the KAM theorem, the occurrence of chaos is therefore limited to this region for all small perturbations from Kerr. These resonant events will be measurable in the Galactic Centre using eLISA. This con nement of low order resonances indicates that the frequency values of orbits of radii well outside of 20 Schwarzschild radii can be approximated using canonical perturbation theory.
AFRIKAANSE OPSOMMING: In hierdie tesis word kompakte voorwerpe bestudeer soos omskryf deur die Manko-Novikov ruimtetyd. Die Manko-Novikov ruimtetyd is 'n eksakte oplossing van die Einstein Veldvergelykings. Die Manko-Novikov ruimtetyd formuleer gravitasiekolk-tipe voorwerpe waarvan die veelpool-struktuur afwyk van die tradisionele Kerr gravitasiekolk-struktuur. Die oogmerk van die navorsing is om vas te stel of ons met behulp van waarnemings hierdie bonkige gravitasiekolke van die tradisionele Kerr gravitasiekolke kan onderskei. Ek ondersoek die geodetiese beweging van 'n toetsmassa in die Manko-Novikov ruimtetyd. Die beweging word gekwanti seer met behulp van Poincar e afbeeldings en rotasiekrommes. In die Manko-Novikov ruimtetyd identi seer ek gebiede waarbinne re elmatige beweging voorkom asook gebiede waarbinne chaotiese bane voorkom. Die ontstaan van chaos word geassosieer met bane waarvan die fundamentele frekwensies resonant is. 'n Nuwe resultaat wat in hierdie tesis voorgehou word behels 'n globale karakterisering wat aandui waar resonansies en dus chaos na alle waarskynlikheid voorkom. Laasgenoemde berekeninge word vir die Kerr ruimtetyd uitgevoer. Hierdeur toon ek alle lae orde resonansies kom voor binne 20 Schwarzschild radii (of 40M) vanaf die kompakte voorwerp met mass M. Die KAM Stelling bepaal dan dat vir alle klein steurings toegepas op die Kerr ruimtetyd die voorkoms van chaos beperk sal wees tot bogenoemde gebied. Die resonansies binne hierdie gebied sal deur eLISA in die sentrum van die melkwegstelsel gemeet kan word. Hierdie beperking van lae orde resonansies tot 'n sekere afstand vanaf die kompakte voorwerp verseker dat die frekwensies van bane wat buite hierdie gebied val, akkuraat deur kanoniese steuringsteorie bepaal kan word.
Shao, Wei. "Improving functional avoidance radiation therapy by image registration." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7031.
Повний текст джерелаAlsup, Jeremy S. "Mimicking the Mechanical Behavior of Advancing Disc Degeneration Through Needle Injections." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3569.
Повний текст джерелаКниги з теми "Injection into geodesic motion"
Soltesz, Steven M. The effect of crack motion during epoxy crack injection and curing: Final report. Salem, OR: Oregon Dept. of Transportation, Research Unit, 2005.
Знайти повний текст джерелаJohn, D. St. Effect of jet injection angle and number of jets on mixing and emissions from a reacting crossflow at atmospheric pressure. [Washington, D.C.]: National Aeronautics and Space Administration STI Preogram Office, 2000.
Знайти повний текст джерелаS, Samuelsen G., and NASA Glenn Research Center, eds. Effect of jet injection angle and number of jets on mixing and emissions from a reacting crossflow at atmospheric pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.
Знайти повний текст джерелаPetkov, Vesselin. Inertia and Gravitation: From Aristotle's Natural Motion to Geodesic Worldlines in Curved Spacetime. Minkowski Institute Press, 2012.
Знайти повний текст джерелаResearch of radiation pressure and Poynting–Robertson effect influence on geodesic artificial satellites and space debris motion. Space Robotics Corporation Limited, 2013.
Знайти повний текст джерелаResearch of radiation pressure and Poynting–Robertson effect influence on geodesic artificial satellites and space debris motion. Space Robotics Corporation Limited, 2013.
Знайти повний текст джерелаBrierton, Tom. Stop-Motion Puppet Sculpting: A Manual of Foam Injection, Build-Up and Finishing Techniques. McFarland & Company, 2004.
Знайти повний текст джерелаKimura, T., and Y. Otani. Magnetization switching due to nonlocal spin injection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0021.
Повний текст джерелаDeruelle, Nathalie, and Jean-Philippe Uzan. Conservation laws. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0045.
Повний текст джерелаDeruelle, Nathalie, and Jean-Philippe Uzan. The two-body problem: an effective-one-body approach. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0056.
Повний текст джерелаЧастини книг з теми "Injection into geodesic motion"
Ferrari, Valeria, Leonardo Gualtieri, and Paolo Pani. "Geodesic motion in Schwarzschild’s spacetime." In General Relativity and its Applications, 181–96. Boca Raton: CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429491405-10.
Повний текст джерелаFerrari, Valeria, Leonardo Gualtieri, and Paolo Pani. "Geodesic motion in Kerr’s spacetime." In General Relativity and its Applications, 421–46. Boca Raton: CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429491405-19.
Повний текст джерелаBarack, Leor. "Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion." In General Relativity, Cosmology and Astrophysics, 147–68. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06349-2_6.
Повний текст джерелаHavoutis, Ioannis, and Subramanian Ramamoorthy. "Motion Generation with Geodesic Paths on Learnt Skill Manifolds." In Cognitive Systems Monographs, 43–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36368-9_4.
Повний текст джерелаDonnay, Victor J. "Chaotic Geodesic Motion: An Extension of M.C. Escher’s Circle Limit Designs." In M.C. Escher’s Legacy, 318–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-28849-x_31.
Повний текст джерелаKovshov, A. M. "Geodesic Parallel Pursuit Strategy in a Simple Motion Pursuit Game on the Sphere." In Advances in Dynamic Games and Applications, 97–113. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1336-9_5.
Повний текст джерелаPinsky, Mark A. "Mean exit times and hitting probabilities of Brownian motion in geodesic balls and tubular neighborhoods." In Stochastic Processes — Mathematics and Physics, 216–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0080220.
Повний текст джерелаFritsch, Sebastian, Sven Fasse, Qirui Yang, Michael Grill, and Michael Bargende. "A Quasi-Dimensional Charge Motion and Turbulence Model for Spark Injection Engines with Fully Variable Valve Train and Direct Fuel Injection." In Proceedings, 24–39. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-28709-2_3.
Повний текст джерелаZhang, Hang-wei, Chan-juan Chen, and Ji-xian Dong. "Development of GE Series Motion Controller Utilized in Full Electric Plastic Injection Molding Machine." In Communications in Computer and Information Science, 384–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23220-6_49.
Повний текст джерелаCheng, Zhongfu, and Miaoyong Zhu. "Motion Characteristics of a Powder Particle through the Injection Device with Slats at Finite Reynolds Number." In Materials Processing Fundamentals, 291–303. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118662199.ch33.
Повний текст джерелаТези доповідей конференцій з теми "Injection into geodesic motion"
Hackmann, E., and C. Lämmerzahl. "Analytical solution methods for geodesic motion." In RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS: V Leopoldo García-Colín Mexican Meeting on Mathematical and Experimental Physics. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861945.
Повний текст джерелаBeik-Mohammadi, Hadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, and Leonel Rozo. "Learning Riemannian Manifolds for Geodesic Motion Skills." In Robotics: Science and Systems 2021. Robotics: Science and Systems Foundation, 2021. http://dx.doi.org/10.15607/rss.2021.xvii.082.
Повний текст джерелаSaa, Alberto. "Non-Minimally Coupled Cosmology as Geodesic Motion." In Fifth International Conference on Mathematical Methods in Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.031.0039.
Повний текст джерелаIGATA, TAKAHISA, HIDEKI ISHIHARA, and YOHSUKE TAKAMORI. "CHAOS IN GEODESIC MOTION AROUND A BLACK RING." In Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0166.
Повний текст джерелаParagios, N., and R. Deriche. "Geodesic active regions for motion estimation and tracking." In Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, 1999. http://dx.doi.org/10.1109/iccv.1999.791292.
Повний текст джерелаOliver, M., L. Raad, C. Ballester, and G. Haro. "Motion Inpainting by an Image-Based Geodesic AMLE Method." In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451851.
Повний текст джерелаGang Xu and Lei Shi. "Using Geodesic Active Contours for motion-blurred images contour detection." In 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620929.
Повний текст джерелаRing, Dan, and François Pitie. "Feature-Assisted Sparse to Dense Motion Estimation Using Geodesic Distances." In 2009 13th International Machine Vision and Image Processing Conference. IEEE, 2009. http://dx.doi.org/10.1109/imvip.2009.9.
Повний текст джерелаArvanitakis, Ioannis, Anthony Tzes, and Michalis Thanou. "Geodesic motion planning on 3D-terrains satisfying the robot's kinodynamic constraints." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6699800.
Повний текст джерелаRenaux-Petel, Sébastien. "Inflation with strongly non-geodesic motion: theoretical motivations and observational imprints." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.398.0128.
Повний текст джерелаЗвіти організацій з теми "Injection into geodesic motion"
Gardner C. J. NOTES ON COUPLED MOTION IN A LINEAR PERIODIC LATTICE and APPLICATIONS TO BOOSTER INJECTION. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/1151334.
Повний текст джерелаRhim, Hye Chang, Jason Schon, Sean Scholwalter, Connie Hsu, Michael Andrew, Sarah Oh, and Daniel Daneshvar. Anterior versus posterior steroid injection approach for adhesive capsulitis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0080.
Повний текст джерела