Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: InGaAs photodiodes.

Статті в журналах з теми "InGaAs photodiodes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "InGaAs photodiodes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V., et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes." Technical Physics Letters 48, no. 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.

Повний текст джерела
Анотація:
Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage Vbr 70-80 V. At the applied bias of 0.9 Vbr, the dark current was 75-200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5A/W at 1550 nm. Keywords: avalanche photodiode, InAlAs/InGaAs, mesa structure, dark current.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BAPTISTA, B. J., and S. L. MUFSON. "RADIATION HARDNESS STUDIES OF InGaAs AND Si PHOTODIODES AT 30, 52, & 98 MeV AND FLUENCES TO 5 × 1011 PROTONS/CM2." Journal of Astronomical Instrumentation 02, no. 01 (September 2013): 1250008. http://dx.doi.org/10.1142/s2251171712500080.

Повний текст джерела
Анотація:
Here we report the results of an investigation into the effects of ionizing radiation on commercial off-the-shelf InGaAs and Si photodiodes. The photodiodes were exposed to 30, 52, and 98 MeV protons with fluences ranging from 108 - 5 × 1011 protons/cm2 at the Indiana University Cyclotron Facility. We tested the photodiodes for changes to their dark current and their relative responsivity as a function of wavelength. The Si photodiodes showed increasing damage to their responsivity with increasing fluence; the InGaAs photodiodes showed significantly increased dark current as the fluence increased. In addition, we monitored the absolute responsivity of the InGaAs photodiodes over their entire bandpass. Our measurements showed no evidence for broadband degradation or graying of the response at the fluences tested. All measurements in this investigation were made relative to detectors traceable to NIST standards.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhuravlev, K. S., A. L. Chizh, K. B. Mikitchuk, A. M. Gilinsky, I. B. Chistokhin, N. A. Valisheva, D. V. Dmitriev, A. I. Toropov, and M. S. Aksenov. "High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission." Journal of Semiconductors 43, no. 1 (January 1, 2022): 012302. http://dx.doi.org/10.1088/1674-4926/43/1/012302.

Повний текст джерела
Анотація:
Abstract The design, manufacturing and DC and microwave characterization of high-power Schottky barrier InAlAs/InGaAs back-illuminated mesa structure photodiodes are presented. The photodiodes with 10 and 15 μm mesa diameters operate at ≥40 and 28 GHz, respectively, have the output RF power as high as 58 mW at a frequency of 20 GHz, the DC responsivity of up to 1.08 A/W depending on the absorbing layer thickness, and a photodiode dark current as low as 0.04 nA. We show that these photodiodes provide an advantage in the amplitude-to-phase conversion factor which makes them suitable for use in high-speed analog transmission lines with stringent requirements for phase noise.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sun, H., X. Huang, C. P. Chao, S. W. Chen, B. Deng, D. Gong, S. Hou, et al. "QTIA, a 2.5 or 10 Gbps 4-channel array optical receiver ASIC in a 65 nm CMOS technology." Journal of Instrumentation 17, no. 05 (May 1, 2022): C05017. http://dx.doi.org/10.1088/1748-0221/17/05/c05017.

Повний текст джерела
Анотація:
Abstract The Quad transimpedance and limiting amplifier (QTIA) is a 4-channel array optical receiver ASIC, developed using a 65 nm CMOS process. It is configurable between the bit rate of 2.56 Gbps and 10 Gbps per channel. QTIA offers careful matching to both GaAs and InGaAs photodiodes. At this R&D stage, each channel has a different biasing scheme to the photodiode for optimal coupling. A charge pump is implemented in one channel to provide a higher reverse bias voltage, which is especially important to mitigate radiation effects on the photodiodes. The circuit functions of QTIA successfully passed the lab tests with GaAs photodiodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Campbell, J. C., B. C. Johnson, G. J. Qua, and W. T. Tsang. "Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes." Journal of Lightwave Technology 7, no. 5 (May 1989): 778–84. http://dx.doi.org/10.1109/50.19113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Martinelli, Ramon U., Thomas J. Zamerowski та Paul A. Longeway. "2.6 μm InGaAs photodiodes". Applied Physics Letters 53, № 11 (12 вересня 1988): 989–91. http://dx.doi.org/10.1063/1.100050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yoon, H. W., J. J. Butler, T. C. Larason, and G. P. Eppeldauer. "Linearity of InGaAs photodiodes." Metrologia 40, no. 1 (February 2003): S154—S158. http://dx.doi.org/10.1088/0026-1394/40/1/335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhukov A. E., Kryzhanovskaya N. V., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A., Kalyuzhyy N. A., Zubov F. I., and Maximov M. V. "Model for speed performance of quantum-dot waveguide photodiode." Semiconductors 57, no. 3 (2023): 211. http://dx.doi.org/10.21883/sc.2023.03.56238.4783.

Повний текст джерела
Анотація:
A model is proposed that makes it possible to analytically analyze the speed performance of a waveguide p-i-n photodiode with a light-absorbing region representing a multilayered array of quantum dots separated by undoped spacers. It is shown that there is an optimal number of layers of quantum dots, as well as an optimal thickness of the spacers, which provide the widest bandwidth. The possibility of achieving a frequency range (at the level of -3 dB) above 20 GHz for waveguide photodiodes based on InGaAs/GaAs quantum well-dots is shown Keywords: photodiode, quantum dots, speed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Won-Tien Tsang, J. C. Campbell, and G. J. Qua. "InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy." IEEE Electron Device Letters 8, no. 7 (July 1987): 294–96. http://dx.doi.org/10.1109/edl.1987.26636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Campbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson. "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes." Journal of Lightwave Technology 7, no. 3 (March 1989): 473–78. http://dx.doi.org/10.1109/50.16883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Khomiakova, K. I., A. P. Kokhanenko, and A. V. Losev. "Investigation of the parameters of a single photon detector for quantum communication." Journal of Physics: Conference Series 2140, no. 1 (December 1, 2021): 012030. http://dx.doi.org/10.1088/1742-6596/2140/1/012030.

Повний текст джерела
Анотація:
Abstract Nowadays the best single photon detectors from a practical view are those based on InGaAs/InP avalanche photodiodes, operating at a wavelength of 1.55 μm. The dependence of quantum efficiency and noise levels on the temperature and bias voltage of avalanche photodiodes were carried out.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Жуков, А. Е., Н. В. Крыжановская, И. С. Махов, Е. И. Моисеев, А. М. Надточий, Н. А. Фоминых, С. А. Минтаиров, Н. А. Калюжный, Ф. И. Зубов та М. В. Максимов. "Модель быстродействия волноводного фотодиода с квантовыми точками". Физика и техника полупроводников 57, № 3 (2023): 215. http://dx.doi.org/10.21883/ftp.2023.03.55632.4783.

Повний текст джерела
Анотація:
A model is proposed that makes it possible to analytically analyze the speed performance of a waveguide p-i-n photodiode with a light-absorbing region representing a multilayered array of quantum dots separated by undoped spacers. It is shown that there is an optimal number of layers of quantum dots, as well as an optimal thickness of the spacers, which provide the widest bandwidth. The possibility of achieving a frequency range (at the level of -3 dB) above 20 GHz for waveguide photodiodes based on InGaAs/GaAs quantum well-dots is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Fedorenko, A. V. "Spectral photosensitivity of diffused Ge-p–i–n photodiods." Технология и конструирование в электронной аппаратуре, no. 3-4 (2020): 17–23. http://dx.doi.org/10.15222/tkea2020.3-4.17.

Повний текст джерела
Анотація:
Laser rangefinders are widely used to measure distances for various civil and military purposes, as well as in rocket and space technology. The optical channel of such rangefinders uses high-speed p–i–n, or avalanche, photodiodes based on Si, Ge or InGaAs depending on the operating wavelength of the rangefinder in question. The paper describes a manufacturing process for high-speed Ge-p–i–n photodiodes for laser rangefinders using the diffusion method. The passivation layer is made of ZnSe, which is a new solution for this type of photodiodes. The existing theoretical models are used to study the spectral ampere-watt sensitivity of the diodes at various values of the active region parameters, and the simulation results reliability is evaluated by the respective measurements. It is shown that the obtained theoretical dependence well agrees with the measurement data. Moreover, the authors for the first time study the spectral photosensitivity of the Ge-p–i–n photodiode with a coated silicon filter covering the range λ = 1.4—1.6 μm. The spectral sensitivity range for the diodes is determined to be λ = 1.1—1.7 μm. The maximum photosensitivity of 0.42 A/W is achieved at a wavelength of λ = 1.54 μm. The authors argue that Ge-p–i–n photodiodes with a silicon filter are resistant to the “blinding” laser radiation with λ = 1.064 μm. The calculated data on the spectral photosensitivity of the photodiode with a filter also well agree with the experiment. Thus, the chosen simulation technique allows taking into account most design and technological characteristics of the photodiodes during theoretical simulation, which makes it possible to accurately predict and optimize their parameters for a specific practical task and improve the manufacturing process of the photodiodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Campbell, J. C., W. T. Tsang, G. J. Qua, and J. E. Bowers. "InP/InGaAsP/InGaAs avalanche photodiodes with 70 GHz gain‐bandwidth product." Applied Physics Letters 51, no. 18 (November 2, 1987): 1454–56. http://dx.doi.org/10.1063/1.98655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Чиж, А. Л., К. Б. Микитчук, К. С. Журавлев, Д. В. Дмитриев, А. И. Торопов, Н. А. Валишева, М. С. Аксенов, A. M. Гилинский та И. Б. Чистохин. "Мощные высокоскоростные фотодиоды Шоттки для аналоговых волоконно-оптических линий передачи СВЧ-сигналов". Письма в журнал технической физики 45, № 14 (2019): 52. http://dx.doi.org/10.21883/pjtf.2019.14.48026.17764.

Повний текст джерела
Анотація:
The design and technology of manufacturing of high-power Schottky barrier UHF-photodiodes with microstrip contacts made on the basis of InAlAs/InGaAs heterostructures have been developed. The operation frequency of 15-micron diameter photodiodes is greater than 25 GHz, while the maximum attainable output UHF power exceeds 50 mW at a frequency of 20 GHz. This allows one to utilize these photodiodes in analog fiber-optic UHF signal transmission lines as well as for generation and processing of UHF signals by optical techniques in radar systems and UHF measurement and instrumentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zhang, Hewei, Yang Tian, Qian Li, Wenqiang Ding, Xuzhen Yu, Zebiao Lin, Xuyang Feng та Yanli Zhao. "Photon-Trapping Microstructure for InGaAs/Si Avalanche Photodiodes Operating at 1.31 μm". Sensors 22, № 20 (12 жовтня 2022): 7724. http://dx.doi.org/10.3390/s22207724.

Повний текст джерела
Анотація:
With the rapid development of photo-communication technologies, avalanche photodiode (APD) will play an increasingly important role in the future due to its high quantum efficiency, low power consumption, and small size. The monolithic integration of optical components and signal processing electronics on silicon substrate chips is crucial to driving cost reduction and performance improvement; thus, the technical research on InGaAs/Si APD is of great significance. This work is the first to demonstrate the use of a photon-trapping (PT) structure to improve the performance of the InGaAs/Si APD based on an SOI substrate, which exhibits very high absorption efficiency at 1310 nm wavelength while the thickness of the absorption layer is kept at 800 nm. Based on the optical and electrical simulations, an optimized InGaAs/Si PT-APD is proposed, which exhibits a better performance and a higher responsivity compared to the original InGaAs/Si APD.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Andryushkin, V. V., A. G. Gladyshev, A. V. Babichev, E. S. Kolodeznyi, I. I. Novikov, L. Ya Karachinsky, N. A. Maleev, et al. "Zn diffusion technology for InP-InGaAs avalanche photodiodes." Journal of Physics: Conference Series 2103, no. 1 (November 1, 2021): 012184. http://dx.doi.org/10.1088/1742-6596/2103/1/012184.

Повний текст джерела
Анотація:
Abstract This paper presents a study of Zn diffusion process into InP and InGaAs/InP epitaxial heterostructures grown by molecular beam epitaxy. It was found that both diffusion systems: a resistively heated quartz reactor with a solid-state Zn vapor source placed inside and hydrogen or nitrogen as the carrier gas and MOCVD reactor with hydrogen as the carrier gas allow achieving similar dopant concentration above 2*10e18 cm-3. The depth of the diffusion front in the InP layer is located from 2 to 3.5 μm depending on the temperature and time of the diffusion process. The diffusion of Zn into InP through the intermediate InGaAs layer provides better surface quality comparing with direct zinc diffusion into InP surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Liu, Hezhuang, Jingyi Wang, Daqian Guo, Kai Shen, Baile Chen, and Jiang Wu. "Design and Fabrication of High Performance InGaAs near Infrared Photodetector." Nanomaterials 13, no. 21 (November 1, 2023): 2895. http://dx.doi.org/10.3390/nano13212895.

Повний текст джерела
Анотація:
InGaAs photodiodes have a wide range of important applications; for example, NIR imaging, fiber optical communication, and spectroscopy. In this paper, we studied InGaAs photodiodes with different doping concentration absorber layers. The simulated results suggested that, by reducing the absorber doping concentration from 1 × 1016 to 1 × 1015 cm−3, the maximum quantum efficiency of the devices can rise by 1.2%, to 58%. The simulation also showed that, by increasing the doping concentration of the absorber layer within a certain range, the dark current of the device can be slightly reduced. A PIN structure was grown and fabricated, and CV measurements suggested a low doping concentration of about 1.2 × 1015 cm−3. Although the thermal activation energy of the dark current suggested a distinct component of shunt dark current at a high temperature range, a dark current of ~6 × 10−4 A/cm2 (−0.5 V) was measured at room temperature. The peak quantum efficiency of the InGaAs device was characterized as 54.7% without antireflection coating and 80.2% with antireflection coating.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

CAMPBELL, J. C., H. NIE, C. LENOX, G. KINSEY, P. YUAN, A. L. HOLMES, and B. G. STREETMAN. "HIGH SPEED RESONANT-CAVITY InGaAs/InAlAs AVALANCHE PHOTODIODES." International Journal of High Speed Electronics and Systems 10, no. 01 (March 2000): 327–37. http://dx.doi.org/10.1142/s0129156400000350.

Повний текст джерела
Анотація:
The evolution of long-haul optical fiber telecommunications systems to bit rates greater than 10 GB/s has created a need for avalanche photodiodes (APDs) with higher bandwidths and higher gain-bandwidth products than are currently available. It is also desirable to maintain good quantum efficiency and low excess noise. At present, the best performance (f3dB ~ 15 GHz at low gain and gain-bandwidth product ~ 150 GHz) has been achieved by AlInAs/InGaAs(P) multiple quantum well (MQW) APDs. In this paper we report a resonant-cavity InAlAs/InGaAs APD that operates near 1.55 μm. These APDs have achieved very low noise (k equivalent to 0.18) as a result of the very thin multiplication regions that were utilized. The low noise is explained in terms of a new model that accounts for the non-local nature of impact ionization. A unity-gain bandwith of 24 GHz and a gain-bandwidth-product of 290 GHz were achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhou, Qiugui, Allen S. Cross, Andreas Beling, Yang Fu, Zhiwen Lu, and Joe C. Campbell. "High-Power V-Band InGaAs/InP Photodiodes." IEEE Photonics Technology Letters 25, no. 10 (May 2013): 907–9. http://dx.doi.org/10.1109/lpt.2013.2253766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Olantera, Lauri, Freya Bottom, Andrea Kraxner, Stephane Detraz, Mohsine Menouni, Paulo Moreira, Carmelo Scarcella, et al. "Radiation Effects on High-Speed InGaAs Photodiodes." IEEE Transactions on Nuclear Science 66, no. 7 (July 2019): 1663–70. http://dx.doi.org/10.1109/tns.2019.2902624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Beling, Andreas, Huapu Pan, and Joe C. Campbell. "High-Power High-Linearity InGaAs/InP Photodiodes." ECS Transactions 16, no. 41 (December 18, 2019): 39–48. http://dx.doi.org/10.1149/1.3104708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ekholm, D. T., J. M. Geary, J. N. Hollenhorst, V. D. Mattera, and R. Pawelek. "High bandwidth planar InP/InGaAs avalanche photodiodes." IEEE Transactions on Electron Devices 35, no. 12 (1988): 2434. http://dx.doi.org/10.1109/16.8843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chiba, Kohei, Akinobu Yoshida, Katsuhiro Tomioka, and Junichi Motohisa. "Vertical InGaAs Nanowire Array Photodiodes on Si." ACS Photonics 6, no. 2 (February 2019): 260–64. http://dx.doi.org/10.1021/acsphotonics.8b01089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Budtolaev, A. K., P. E. Khakuashev, I. V. Chinareva, P. V. Gorlachuk, M. A. Ladugin, A. A. Marmaluk, Yu L. Ryaboshtan, and I. V. Yarotskaya. "Epitaxial structures for InGaAs/InP avalanche photodiodes." Journal of Communications Technology and Electronics 62, no. 3 (March 2017): 304–8. http://dx.doi.org/10.1134/s1064226917030056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Poulain, P., M. Razeghi, K. Kazmierski, R. Blondeau, and P. Philippe. "InGaAs photodiodes prepared by low-pressure MOCVD." Electronics Letters 21, no. 10 (May 9, 1985): 441–42. http://dx.doi.org/10.1049/el:19850314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Jin, Chuan, Fangfang Wang, Qingqing Xu, Chengzhang Yu, Jianxin Chen, and Li He. "Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes." Journal of Crystal Growth 477 (November 2017): 100–103. http://dx.doi.org/10.1016/j.jcrysgro.2017.01.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Saul, R. H., F. S. Chen, and P. W. Shumate. "Reliability of InGaAs Photodiodes for SL Applications." AT&T Technical Journal 64, no. 3 (March 1985): 861–82. http://dx.doi.org/10.1002/j.1538-7305.1985.tb00450.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Campbell, J. C., W. T. Tsang, G. J. Qua, and B. C. Johnson. "VB-7 InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical-beam epitaxy." IEEE Transactions on Electron Devices 34, no. 11 (November 1987): 2380. http://dx.doi.org/10.1109/t-ed.1987.23305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Campbell, J. C., W. T. Tsang, G. J. Qua, and B. C. Johnson. "High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy." IEEE Journal of Quantum Electronics 24, no. 3 (March 1988): 496–500. http://dx.doi.org/10.1109/3.151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

ABEDIN, M. NURUL, TAMER F. REFAAT та UPENDRA N. SINGH. "NOISE MEASUREMENT OF III-V COMPOUND DETECTORS FOR 2 μm LIDAR/DIAL REMOTE SENSING APPLICATIONS". International Journal of High Speed Electronics and Systems 12, № 02 (червень 2002): 531–40. http://dx.doi.org/10.1142/s0129156402001447.

Повний текст джерела
Анотація:
Noise of a photodetector plays a vital role in determining the minimum detectable signal for lidar and DIAL receivers. A low noise trans-impedance amplifier circuit has been employed to examine the noise of III-V compound infrared detectors. These infrared detectors include InGaAs PIN diodes and newly developed InGaAsSb avalanche photodiodes (APDs) with separate absorption and multiplication (SAM) structure. The noise of these detectors are compared with well-established Si APDs. These measured noises are utilized to compute the figures-of-merit, such as noise-equivalent-power (NEP) and detectivity (D*) of these devices and are presented in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Cao, Ye, Tarick Blain, Jonathan D. Taylor-Mew, Longyan Li, Jo Shien Ng, and Chee Hing Tan. "Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region." Applied Physics Letters 122, no. 5 (January 30, 2023): 051103. http://dx.doi.org/10.1063/5.0139495.

Повний текст джерела
Анотація:
An extremely low noise Separate Absorption and Multiplication Avalanche Photodiode (SAM-APD), consisting of a GaAs0.52Sb0.48 absorption region and an Al0.85Ga0.15As0.56Sb0.44 avalanche region, is reported. The device incorporated an appropriate doping profile to suppress tunneling current from the absorption region, achieving a large avalanche gain, ∼130 at room temperature. It exhibits extremely low excess noise factors of 1.52 and 2.48 at the gain of 10 and 20, respectively. At the gain of 20, our measured excess noise factor of 2.48 is more than three times lower than that in the commercial InGaAs/InP SAM-APD. These results are corroborated by a Simple Monte Carlo simulation. Our results demonstrate the potential of low excess noise performance from GaAs0.52Sb0.48/Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Das, Utpal, Yousef Zebda, Pallab Bhattacharya, and Albert Chin. "Performance characteristics of InGaAs/GaAs and GaAs/InGaAlAs coherently strained superlattice photodiodes." Applied Physics Letters 51, no. 15 (October 12, 1987): 1164–66. http://dx.doi.org/10.1063/1.98720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Żak, Dariusz, Jarosław Jureńczyk, and Janusz Kaniewski. "Zener Phenomena in InGaAs/InAlAs/InP Avalanche Photodiodes." Detection 02, no. 02 (2014): 10–15. http://dx.doi.org/10.4236/detection.2014.22003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ohyama, H., K. Takakura, K. Hayama, Toshio Hirao, Shinobu Onoda, Eddy Simoen, and Cor Claeys. "High Temperature Electron Irradiation Effects in InGaAs Photodiodes." Solid State Phenomena 95-96 (September 2003): 381–86. http://dx.doi.org/10.4028/www.scientific.net/ssp.95-96.381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zappa, F., P. Webb, A. Lacaita, and S. Cova. "Nanosecond single-photon timing with InGaAs/InP photodiodes." Optics Letters 19, no. 11 (June 1, 1994): 846. http://dx.doi.org/10.1364/ol.19.000846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Tulchinsky, D. A., K. J. Williams, A. Pauchard, M. Bitter, Z. Pan, L. Hodge, S. G. Hummel, and Y. H. Lo. "High-power InGaAs-on-Si pin RF photodiodes." Electronics Letters 39, no. 14 (2003): 1084. http://dx.doi.org/10.1049/el:20030693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kimukin, I., N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay. "InGaAs-based high-performance p-i-n photodiodes." IEEE Photonics Technology Letters 14, no. 3 (March 2002): 366–68. http://dx.doi.org/10.1109/68.986815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Skrimshire, C. P., J. R. Farr, D. F. Sloan, M. J. Robertson, P. A. Putland, J. C. D. Stokoe, and R. R. Sutherland. "Reliability of mesa and planar InGaAs PIN photodiodes." IEE Proceedings J Optoelectronics 137, no. 1 (1990): 74. http://dx.doi.org/10.1049/ip-j.1990.0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Duan, Ning, Xin Wang, Ning Li, Han-Din Liu, and Joe C. Campbell. "Thermal Analysis of High-Power InGaAs–InP Photodiodes." IEEE Journal of Quantum Electronics 42, no. 12 (December 2006): 1255–58. http://dx.doi.org/10.1109/jqe.2006.883498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yuan, Z. L., A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields. "Gigahertz quantum key distribution with InGaAs avalanche photodiodes." Applied Physics Letters 92, no. 20 (May 19, 2008): 201104. http://dx.doi.org/10.1063/1.2931070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ohyama, H., J. Vanhellemont, Y. Takami, K. Hayama, T. Kudou, S. Kohiki, H. Sunaga, and T. Hakata. "Degradation of InGaAs pin photodiodes by neutron irradiation." Semiconductor Science and Technology 11, no. 10 (October 1, 1996): 1461–63. http://dx.doi.org/10.1088/0268-1242/11/10/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wada, Morio, Shoujiro Araki, Takahiro Kudou, Toshimasa Umezawa, Shinichi Nakajima, and Toshitsugu Ueda. "Development of InGaAs photodiodes for near-infrared spectroscopy." IEEJ Transactions on Sensors and Micromachines 122, no. 1 (2002): 29–34. http://dx.doi.org/10.1541/ieejsmas.122.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Patel, K. A., J. F. Dynes, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields. "Gigacount/second photon detection with InGaAs avalanche photodiodes." Electronics Letters 48, no. 2 (2012): 111. http://dx.doi.org/10.1049/el.2011.3265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Finkelstein, Hod, Sanja Zlatanovic, Yu-Hwa Lo, Sadik C. Esener, and Kai Zhao. "External electroluminescence measurements of InGaAs∕InAlAs avalanche photodiodes." Applied Physics Letters 91, no. 24 (December 10, 2007): 243510. http://dx.doi.org/10.1063/1.2824463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Maleev, N. A., A. G. Kuzmenkov, M. M. Kulagina, A. P. Vasyl’ev, S. A. Blokhin, S. I. Troshkov, A. V. Nashchekin, et al. "Mushroom Mesa Structure for InAlAs–InGaAs Avalanche Photodiodes." Technical Physics Letters 49, S3 (December 2023): S215—S218. http://dx.doi.org/10.1134/s1063785023900819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

REFAAT, TAMER F., M. NURUL ABEDIN, and UPENDRA N. SINGH. "SPECTRAL RESPONSE MEASUREMENTS OF SHORT WAVE INFRARED DETECTORS (SWIR)." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 541–50. http://dx.doi.org/10.1142/s0129156402001459.

Повний текст джерела
Анотація:
Quantum detectors are critical components in infrared lidar receivers. They convert the optical return signal into electrical signal compatible with electronic data processing and storage devices. The detectors used in this study comprise InGaAs PIN diodes and InGaAsSb avalanche photodiodes (APDs) for short wave infrared applications and Si APDs, with different structures, for near-infrared applications. The spectral response of these infrared detectors utilized for lidar receivers was studied with respect to operating temperature and external bias voltage. Variation of these spectral responses as a function of bias voltage and temperature was determined. This variation is employed to estimate errors in the detected lidar return signal. Results of this research finding are reported in this article.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Akano, U. G., I. V. Mitchell, F. R. Shepherd, C. J. Miner, A. Margittai, and M. Svilans. "Electrical isolation of pin photodiode devices by oxygen ion bombardment." Canadian Journal of Physics 74, S1 (December 1, 1996): 59–63. http://dx.doi.org/10.1139/p96-833.

Повний текст джерела
Анотація:
Using the Hall-effect measurements, the resistance changes in Si-doped (5 × 1017 cm−3), 1 μm thick epilayers of InGaAs and in InP/InGaAs pin structures were studied as functions of multiple-energy oxygen ion dose, implant temperature (−196 and 18 °C), and rapid thermal-anneal (RTA) temperatures. In the case of InGaAs epilayers, the peak resistivity is attained following post-implant RTA at 400–500 °C, with samples implanted at −196 °C exhibiting at least a factor of 10 larger resistivity than those implanted at 18 °C (106 vs. 105 Ω/). The thermal stability of the induced resistivity is also dependent on the implant temperature and the ion dose. The results suggest that for InGaAs layers, sheet resistances in excess of 106 Ω/, stable to temperatures in excess of the anticipated pin device processing temperatures, can be produced by 16O ion implantation. The use of O ion bombardment to produce planar, implant-isolated pin photodiodes with excellent dark-current and frequency response characteristics has been demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Parks, Joseph W., Kevin F. Brennan, and Larry E. Tarof. "Macroscopic Device Simulation of InGaAs/InP Based Avalanche Photodiodes." VLSI Design 6, no. 1-4 (January 1, 1998): 79–82. http://dx.doi.org/10.1155/1998/73839.

Повний текст джерела
Анотація:
In this paper, we analyze, based on a two-dimensional drift-diffusion simulation, how variations in the structural components of an InGaAs/InP separate absorption, grading, charge, and multiplication photodiode (SAGCM) alter its performance. The model is employed in conjunction with experimental measurements to enhance the understanding of the device performance. Calibration of the model to the material system and growth technique is performed via the analysis of a simpler, alternate structure. Excellent agreement between the calculated results and experimental measurements of the breakdown voltage, dark current, mesa punchthrough voltage, photoresponse, and gain are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Jae-Hyung Jang, G. Cueva, W. E. Hoke, P. J. Lemonias, P. Fay, and I. Adesida. "Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction p-i-I-n photodiodes." Journal of Lightwave Technology 20, no. 3 (March 2002): 507–14. http://dx.doi.org/10.1109/50.989001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії