Добірка наукової літератури з теми "InGaAs photodiodes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "InGaAs photodiodes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "InGaAs photodiodes"
Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V., et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes." Technical Physics Letters 48, no. 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.
Повний текст джерелаBAPTISTA, B. J., and S. L. MUFSON. "RADIATION HARDNESS STUDIES OF InGaAs AND Si PHOTODIODES AT 30, 52, & 98 MeV AND FLUENCES TO 5 × 1011 PROTONS/CM2." Journal of Astronomical Instrumentation 02, no. 01 (September 2013): 1250008. http://dx.doi.org/10.1142/s2251171712500080.
Повний текст джерелаZhuravlev, K. S., A. L. Chizh, K. B. Mikitchuk, A. M. Gilinsky, I. B. Chistokhin, N. A. Valisheva, D. V. Dmitriev, A. I. Toropov, and M. S. Aksenov. "High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission." Journal of Semiconductors 43, no. 1 (January 1, 2022): 012302. http://dx.doi.org/10.1088/1674-4926/43/1/012302.
Повний текст джерелаSun, H., X. Huang, C. P. Chao, S. W. Chen, B. Deng, D. Gong, S. Hou, et al. "QTIA, a 2.5 or 10 Gbps 4-channel array optical receiver ASIC in a 65 nm CMOS technology." Journal of Instrumentation 17, no. 05 (May 1, 2022): C05017. http://dx.doi.org/10.1088/1748-0221/17/05/c05017.
Повний текст джерелаCampbell, J. C., B. C. Johnson, G. J. Qua, and W. T. Tsang. "Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes." Journal of Lightwave Technology 7, no. 5 (May 1989): 778–84. http://dx.doi.org/10.1109/50.19113.
Повний текст джерелаMartinelli, Ramon U., Thomas J. Zamerowski та Paul A. Longeway. "2.6 μm InGaAs photodiodes". Applied Physics Letters 53, № 11 (12 вересня 1988): 989–91. http://dx.doi.org/10.1063/1.100050.
Повний текст джерелаYoon, H. W., J. J. Butler, T. C. Larason, and G. P. Eppeldauer. "Linearity of InGaAs photodiodes." Metrologia 40, no. 1 (February 2003): S154—S158. http://dx.doi.org/10.1088/0026-1394/40/1/335.
Повний текст джерелаZhukov A. E., Kryzhanovskaya N. V., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A., Kalyuzhyy N. A., Zubov F. I., and Maximov M. V. "Model for speed performance of quantum-dot waveguide photodiode." Semiconductors 57, no. 3 (2023): 211. http://dx.doi.org/10.21883/sc.2023.03.56238.4783.
Повний текст джерелаWon-Tien Tsang, J. C. Campbell, and G. J. Qua. "InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy." IEEE Electron Device Letters 8, no. 7 (July 1987): 294–96. http://dx.doi.org/10.1109/edl.1987.26636.
Повний текст джерелаCampbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson. "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes." Journal of Lightwave Technology 7, no. 3 (March 1989): 473–78. http://dx.doi.org/10.1109/50.16883.
Повний текст джерелаДисертації з теми "InGaAs photodiodes"
Xie, Shiyu. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2267/.
Повний текст джерелаXie, Jingjing. "Characterisation of low noise InGaAs/AlAsSb avalanche photodiodes." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4511/.
Повний текст джерелаFaure, Benoit. "MODELISATION ET OPTIMISATION DES PHOTODIODES A AVALANCHE ET HETEROJONCTION InP/InGaAs." Toulouse, INSA, 1986. http://www.theses.fr/1986ISAT0003.
Повний текст джерелаTabor, Steven Alan. "Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4760.
Повний текст джерелаDentan, Martin. "Photodiode PIN InGaAs en grands signaux hyperfréquence : modélisation, réalisation et caractérisation." Paris 11, 1989. http://www.theses.fr/1989PA112257.
Повний текст джерелаThe devices coupled to optical fibers in optical links are the laser diode (light emitter) and the P. I. N. Photodiode (light receptor). This thesis concerns the optimization of the photodiode performances, in terms of bandwidth and linearity, in large signal microwave operation. One of the goals is the improvement of the frequency response of this device. Using a small signal modal, we show that we can increase the bandwidth of photodiodes by reducing the active region dimensions. Another important objective is to obtain large signal operation. The absorption of an intense optical signal, by a diode with a very small active region, leads to a non-linear electrical response due to the effects of space-charge. A modal taking into account the equations for the carrier transport in the space-charge region is developed; in particular, it gives the harmonies of the device response. Ln this thesis, we have realized and discuss all the steps necessary for the fabrication of the optical receiver: epitaxy of the material, process of the device and packaging allowing microwave operations. Then the two models described above were experimentally verified by D. C. And microwave electrical characterization. We demonstrate an 18 GHz bandwidth for our photodiode and show in particular that this photodiode has a more linear response than the lasers with direct modulation used in experimental optical links at L. C. R. , for an input electrical power of 0 dBm
An, Serguei. "Material and device characterization of InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ61622.pdf.
Повний текст джерелаLe, Goff Florian. "Intégration de matériaux semi-conducteurs III-V dans des filières de fabrication silicium avancées pour imagerie proche infrarouge." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD034/document.
Повний текст джерелаNowadays short wavelength infrared (SWIR) imaging based on InP/InGaAs photo-diodes is quite popular for uncooled camera. The state of the art technology is a double layer planar heterointerface focal plane array. But, it remains expensive. Its cost comes essentially from the individually hybridization of photo-diodes array with read-out circuit, by the mean of an indium-bumps flip-chip process. We suggest an alternative method for hybridization, in order to lowering the cost and providing a sustainable process to decrease the pixel pitch. It consists in a direct integration by bonding silica of InP/InGaAs/InP structure above a finished read-out circuit (with CMOS technology) and circular diode architecture named “LoopHoles”. This diode consists in via-hole through the III-V materials and bonding silica layer down to top metal layer in the readout circuit for each active pixel. Via-hole is also used to diffuse laterally zinc in III-V layer in order to create p-type doping area. Because of the read-out circuit, temperature of diffusion has to be below 400°C which induces parasitic phenomena’s. We have found that a Hf02 coating on InP surface prevent this degradation while allowing zinc diffusion. We were able to control depth of p-n junction inside InP and InGaAs. We also investigated few steps of the processes like the molecular bonding, via etching and metallization. Finally, we succeeded to produce LoopHole photodiodes on bulk InP and on bonded materials with a high spectral efficiency, low pitch and a lower dark currant of 150 fA at room temperature
Hecht, Anna E. "Thermal Drift Compensation in Non-Uniformity Correction for an InGaAs PIN Photodetector 3D Flash LiDAR Camera." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1607959309040459.
Повний текст джерелаOzer, Selcuk. "Insb And Inassb Infrared Photodiodes On Alternative Substrates And Inp/ingaas Quantum Well Infrared Photodetectors: Pixel And Focal Plane Array Performance." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606097/index.pdf.
Повний текст джерела1010 and 7.5×
108 cmHz½
/W at 77 K and 240 K, respectively, showing that the alloy is promising for both cooled and near room temperature detectors. Under moderate reverse bias, 80 K RoA product limiting mechanism is trap assisted tunneling, which introduces considerable 1/f noise. InSb/Si photodiodes display peak 77 K detectivity as high as ~1×
1010 cmHz 1/2/W and reasonably high peak quantum efficiency in spite of large lattice mismatch. RoA product of detectors at 80 K is limited by Ohmic leakage with small activation energy (25 meV). Bias and temperature dependence of 1/f noise is in reasonable agreement with Kleinpenning&rsquo
s mobility fluctuation model, confirming the validity of this approach. The second part of the study concentrates on InP/In0.53Ga0.47As QWIPs, and 640×
512 FPA, which to our knowledge, is the largest format InP/InGaAs QWIP FPA reported. InP/InGaAs QWIPs yield quantum efficiency-gain product as high as 0.46 under moderate bias. At 70 K, detector performance is background limited with f/2 aperture up to ~3 V bias where peak responsivity (2.9 A/W) is thirty times higher than that of the Al0.275Ga0.725As/GaAs QWIP with similar spectral response. Impact ionization in InP/InGaAs QWIPs does not start until the average electric-field reaches 25 kV/cm, maintaining high detectivity under moderate bias. The 640×
512 InP/InGaAs QWIP FPA yields noise equivalent temperature difference of ~40 mK at an FPA temperature as high as 77 K and reasonably low NETD even with short integration times (t). 70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under &ndash
0.5 V (t=11 ms) and &ndash
2 V (t=650 Rs) bias, respectively. The results clearly show the potential of InP/InGaAs QWIPs for thermal imaging applications requiring short integration times. Keywords: Cooled infrared detectors, InAsSb, QWIP, focal plane array.
Pogany, Dionyz. "Etude du bruit télégraphique, du courant d’obscurité et des niveaux profonds dans les photodiodes InP/InGaAs/InP en désaccord de maille." Lyon, INSA, 1994. http://www.theses.fr/1994ISAL0044.
Повний текст джерелаDark current and low frequency noise are the principal performance limitations of lattice-mismatched InGaAs/InP linear photodetector arrays for space applications in the 1,7 micrometer wavelength range. Excess noise in these devices has essentially a form of the Random Telegraph Signal (RTS). This work mainly concern the study of physical mechanisme controlling the current and noise. We have performed characterisation, classification and modelling of excess crrents. RTS noise has been studied in time and frequency domain. Results show that RTS noise is due to fluctuations of excess current which flows through a dislocation related extended defetc. This current is modulated by a charge fluctuation or structural reconfiguration of complex defects located at the leakage site. To interpret the results we have developped previously proposed RTS noise models for bipolar devices, Measurments of excess noise have been correlated with spatially resolved technique like LBIC. We discuss the influence of material and technological defects as well as surface and bulk origin of RTS noise
Книги з теми "InGaAs photodiodes"
Blaser, Markus. Monolithically integrated InGaAs/Inp photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. Konstanz: Hartung-Gorre, 1997.
Знайти повний текст джерелаBitter, Martin. InP/InGaAs pin-photodiode arrays for parallel optical interconnects and monolithic InP/InGaAs pin/HBT optical receivers for 10-Gb/s and 40-Gb/s. Konstanz: Hartung-Gorre, 2001.
Знайти повний текст джерелаInGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-04776-6.
Повний текст джерелаHuntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.
Знайти повний текст джерелаHuntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.
Знайти повний текст джерелаO'Reilly, Patrick J. Effects of 30 MEV electron irradation on InGaAsp LEDS and InGaAs photodiodes. 1986.
Знайти повний текст джерелаYu, Young-June. Noise properties of InGaAs/InAlAs multiquantum-well heterostructure p-i-n photodiodes. 1989.
Знайти повний текст джерелаBerlin, Technische Universität, ed. InGaAsP-Rippen- und Streifenwellenleiter integriert mit InGaAs-Photodioden durch Vertikal- und Horizontalkupplung: Technologie und physikalische Eigenschaften. 1991.
Знайти повний текст джерелаZürich, Eidgenössische Technische Hochschule, ed. Monolithically integrated InGaAs/InP photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. 1996.
Знайти повний текст джерелаЧастини книг з теми "InGaAs photodiodes"
Bowers, J. E., C. A. Burrus, and R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes." In Picosecond Electronics and Optoelectronics, 180–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70780-3_35.
Повний текст джерелаKobayashi, Masahiro, and Takao Kaneda. "Reliability Testing of Planar InGaAs Avalanche Photodiodes." In Semiconductor Device Reliability, 413–21. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_23.
Повний текст джерелаRyzhii, M., and V. Ryzhii. "Ensemble Monte Carlo Particle Modeling of IngaAs/InP Uni-Traveling-Carrier Photodiodes." In Simulation of Semiconductor Processes and Devices 2001, 312–15. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6244-6_70.
Повний текст джерелаAlbrecht, H. "Pin Photodiodes and Field-Effect Transistors for Monolithically Integrated InP/InGaAs Optoelectronic Circuits." In Micro System Technologies 90, 767–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_110.
Повний текст джерелаŠatka, A., D. W. E. Allsopp, J. Kováč, F. Uherek, B. Rheinländer, and V. Gottschalch. "Design of InGaAs/InAIGaAs/InP RCE PIN Photodiode." In Heterostructure Epitaxy and Devices, 301–4. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_54.
Повний текст джерелаZirngibl, M., J. C. Bischoff, R. Sachot, M. Ilegems, P. Beaud, and W. Hodel. "An InGaAs/GaAs Strained Superlattice MSM Photodiode for Fast Light Detection at 1.3 μm." In ESSDERC ’89, 77–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_15.
Повний текст джерелаNamekata, Naoto, Shunsuke Adachi, and Shuichiro Inoue. "High-Speed Single-Photon Detection Using 2-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 34–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11731-2_4.
Повний текст джерелаMa, Zongfeng, Ming Zhang, and Panfeng Wu. "Research on the Optimal Design of Heterodyne Technique Based on the InGaAs-PIN Photodiode." In 5th International Symposium of Space Optical Instruments and Applications, 205–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27300-2_20.
Повний текст джерелаSchohe, K., J. Y. Longère, S. Krawczyk, B. Vilotitch, C. Lenoble, M. Villard, and X. Hugon. "Scanning Photoluminescence Assessment MOCVD InGaAs/InP Lattice Mismatched Heterostructures During the Fabrication of Photodiode Arrays." In ESSDERC ’89, 503–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_103.
Повний текст джерелаHuntington, Andrew S. "InGaAs Linear-Mode Avalanche Photodiodes." In Encyclopedia of Modern Optics, 415–29. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-803581-8.09421-2.
Повний текст джерелаТези доповідей конференцій з теми "InGaAs photodiodes"
Nakamura, Takuma, Dahyeon Lee, Jason Horng, John D. Teufel, and Franklyn Quinlan. "Low noise microwave generation for quantum information systems via cryogenic extended-InGaAs photodiodes." In CLEO: Science and Innovations, STu4I.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.stu4i.3.
Повний текст джерела"InGaAs Photodiodes and Photoreceivers." In 2004 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2004. http://dx.doi.org/10.1109/mwp.2004.1396909.
Повний текст джерелаAchouche, M., G. Glastre, C. Caillaud, M. Lahrichi, and D. Carpentier. "InGaAs high speed communication photodiodes." In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society (LEO). IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343096.
Повний текст джерелаRogalski, Antoni. "Performance limitations of InGaAs photodiodes." In International Conference on Solid State Crystals '98, edited by Antoni Rogalski and Jaroslaw Rutkowski. SPIE, 1999. http://dx.doi.org/10.1117/12.344747.
Повний текст джерелаWey, Y. G., K. Giboney, D. L. Crawford, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson. "Ultrafast Graded Double Heterostructure p-i-n Photodiode." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.thc3.
Повний текст джерелаDoldissen, W., R. J. Deri, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreadakis, Y. Silberberg, and M. A. Koza. "Efficient vertical coupling of photodiodes to InGaAsP rib waveguides." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.thf7.
Повний текст джерелаSong, Bowen, Bei Shi, Si Zhu, Simone Šuran Brunelli, and Jonathan Klamkin. "InGaAs Photodiodes on Silicon by Heteroepitaxy." In Optoelectronics and Communications Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oecc.2021.w3f.4.
Повний текст джерелаPauchard, Alexandre, Phil Mages, Yimin Kang, Martin Bitter, Z. Pan, D. Sengupta, Steve Hummel, Yu-Hwa Lo, and Paul K. L. Yu. "Wafer-bonded InGaAs/silicon avalanche photodiodes." In Symposium on Integrated Optoelectronic Devices, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 2002. http://dx.doi.org/10.1117/12.467674.
Повний текст джерелаCampbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He, and Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.
Повний текст джерелаBowers, J. E., C. A. Burrus, and R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.tha3.
Повний текст джерелаЗвіти організацій з теми "InGaAs photodiodes"
Tabor, Steven. Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6644.
Повний текст джерела