Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Information 3D.

Статті в журналах з теми "Information 3D"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Information 3D".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kuznetsov, A. A., O. O. Stefanovych, D. I. Prokopovych-Tkachenko, and K. O. Kuznetsova. "3D STEGANOGRAPHY INFORMATION HIDING." Telecommunications and Radio Engineering 78, no. 12 (2019): 1049–61. http://dx.doi.org/10.1615/telecomradeng.v78.i12.30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ramos, Francisco, Miguel Chover, and Oscar Ripolles. "A Multiresolution Approach to Render 3D Models." Informatica 24, no. 4 (January 1, 2013): 603–18. http://dx.doi.org/10.15388/informatica.2013.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

OKI, Makoto, Yasuzo SUTO, Okinori YAMAMOTO, Tetsuro SUGIYAMA, and Kazuhiko FUJII. "3D Visualization of City Information." Journal of the Visualization Society of Japan 20, no. 1Supplement (2000): 193–96. http://dx.doi.org/10.3154/jvs.20.1supplement_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Roush, W. "IMAGING: Information Displays Go 3D." Science 278, no. 5342 (November 21, 1997): 1398. http://dx.doi.org/10.1126/science.278.5342.1398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ostrovsky, Y., A. Torralba, and P. Sinha. "Recognition with purely 3D information." Journal of Vision 2, no. 7 (March 15, 2010): 684. http://dx.doi.org/10.1167/2.7.684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gasteiger, Johann, Jens Sadowski, Jan Schuur, Paul Selzer, Larissa Steinhauer, and Valentin Steinhauer. "Chemical Information in 3D Space." Journal of Chemical Information and Computer Sciences 36, no. 5 (January 1996): 1030–37. http://dx.doi.org/10.1021/ci960343+.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuznetsov, А. А., O. O. Stefanovych, D. I. Prokopovych-Tkachenko, and K. O. Kuznetsova. "3D steganography hiding of information." Radiotekhnika, no. 195 (December 28, 2018): 193–202. http://dx.doi.org/10.30837/rt.2018.4.195.19.

Повний текст джерела
Анотація:
A new direction of technical steganography related to the concealment of information in the process of layer-by-layer creation (cultivation) of a solid-state object using various 3D-printing technologies is investigated. Information data are converted into a digital 3D-model of elementary physical objects that are placed inside this 3D-model of the container product. After printing, a solid object physically contains the hidden information that cannot be deleted or distorted without damaging the container product. In addition, the applied methods do not reduce the operational, aesthetic and any other properties of the finished product. The proposed complex is invariant to the method of layer-by-layer growing, that is, it can be equipped with any peripheral devices of 3D-printing of various manufacturers with any materials and principles of layer-by-layer creation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

He, Yunlong, and Liang Guo. "Cloud 3D Printing Information Research." Academic Journal of Science and Technology 9, no. 3 (March 12, 2024): 258–62. http://dx.doi.org/10.54097/b7yjyk73.

Повний текст джерела
Анотація:
3D printing technology, as a major technological change in the global manufacturing industry, has gradually become the trend of The Times. As a service-oriented intelligent manufacturing system, cloud manufacturing has been widely studied by scholars at home and abroad in recent years. This paper takes cloud manufacturing as the carrier, studies the informatization of 3D printing service under cloud environment, elaborates the construction of 3D printing service information model in detail, and instantiates through Agent mapping model. This paper creates an implementation path for cloud 3D printing to provide on-demand precision manufacturing services.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hoppen, Martin, Ralf Waspe, Malte Rast, and Juergen Rossmann. "Distributed Information Processing and Rendering for 3D Simulation Applications." International Journal of Computer Theory and Engineering 6, no. 3 (2014): 247–53. http://dx.doi.org/10.7763/ijcte.2014.v6.870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Takanashi, Ikuko, Shigeru Muraki, Akio Doi, and Arie Kaufman. "Visual Information Sensing Technology. 3D Active Net. 3D Volume Extraction." Journal of the Institute of Image Information and Television Engineers 51, no. 12 (1997): 2097–106. http://dx.doi.org/10.3169/itej.51.2097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yang, X., M. Koehl, P. Grussenmeyer, and H. Macher. "COMPLEMENTARITY OF HISTORIC BUILDING INFORMATION MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (June 15, 2016): 437–43. http://dx.doi.org/10.5194/isprs-archives-xli-b5-437-2016.

Повний текст джерела
Анотація:
In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Yang, X., M. Koehl, P. Grussenmeyer, and H. Macher. "COMPLEMENTARITY OF HISTORIC BUILDING INFORMATION MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (June 15, 2016): 437–43. http://dx.doi.org/10.5194/isprsarchives-xli-b5-437-2016.

Повний текст джерела
Анотація:
In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

KUWATA, Yoshitaka, Hisamich OHTANI, and Ushio INOUE. "Information Visualization System for Disaster Information with 3D Map." Theory and Applications of GIS 12, no. 2 (2004): 123–32. http://dx.doi.org/10.5638/thagis.12.123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Demian, Peter, Kirti Ruikar, Tarun Sahu, and Anne Morris. "Three-Dimensional Information Retrieval (3DIR)." International Journal of 3-D Information Modeling 5, no. 1 (January 2016): 67–78. http://dx.doi.org/10.4018/ij3dim.2016010105.

Повний текст джерела
Анотація:
An increasing amount of information is packed into BIMs, with the 3D geometry serving as a central index leading to other information. The 3DIR project investigates information retrieval from such environments. Here, the 3D visualization can be exploited when formulating queries, computing the relevance of information items, or visualizing search results. The need for such a system was specified using workshops with end users. A prototype was built on a commercial BIM platform. Following an evaluation, the system was enhanced to exploit model topology. Relationships between 3D objects are used to widen the search, whereby relevant information items linked to a related 3D object (rather than linked directly to objects selected by the user) are still retrieved but ranked lower. An evaluation of the enhanced prototype demonstrates its effectiveness but highlights its added complexity. Care needs to be taken when exploiting topological relationships, but that a tight coupling between text-based retrieval and the 3D model is generally effective in information retrieval from BIMs.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Liu, Zhengwei, Alex Wozniakowski, and Arthur M. Jaffe. "Quon 3D language for quantum information." Proceedings of the National Academy of Sciences 114, no. 10 (February 6, 2017): 2497–502. http://dx.doi.org/10.1073/pnas.1621345114.

Повний текст джерела
Анотація:
We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of theC∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Klasen, Morris, and Volker Steinhage. "Improving wildlife tracking using 3D information." Ecological Informatics 68 (May 2022): 101535. http://dx.doi.org/10.1016/j.ecoinf.2021.101535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Rahadianti, Laksmita. "3D Information from Scattering Media Images." Jurnal Ilmu Komputer dan Informasi 14, no. 1 (February 28, 2021): 73–82. http://dx.doi.org/10.21609/jiki.v14i1.963.

Повний текст джерела
Анотація:
Scattering media environments are real-world conditions that occur often, in daily life. Some examples of scattering media are haze, fog, and other bad weather conditions. In these environments, micro-particles in the surrounding media interfere with light propagation and image formation. Thus, images that are captured in these scattering media environments will suffer from low contrast and loss of intensity. This becomes an issue for computer vision methods that employ features found in the scene. To solve this issue, many approaches must estimate the corresponding clear scene prior to further processing. However, the image formation model in scattering media shows potential 3D distance information about the scene encoded implicitly in image intensities. In this paper, we investigate the potential information that can be extracted directly from the scattering media images. We demonstrate the possibility of extracting relative depth in the form of transmission as well as explicit depth maps from single images.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Robertson, George G., Stuart K. Card, and Jack D. Mackinlay. "Information visualization using 3D interactive animation." Communications of the ACM 36, no. 4 (April 1993): 57–71. http://dx.doi.org/10.1145/255950.153577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Reitz, T., and S. Schubiger-Banz. "The Esri 3D city information model." IOP Conference Series: Earth and Environmental Science 18 (February 25, 2014): 012172. http://dx.doi.org/10.1088/1755-1315/18/1/012172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Panin, Giorgio, and Alois Knoll. "Mutual Information-Based 3D Object Tracking." International Journal of Computer Vision 78, no. 1 (October 10, 2007): 107–18. http://dx.doi.org/10.1007/s11263-007-0083-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Szymczyk, Piotr. "Obtaining 3D information from 2D images." ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA 1, no. 6 (June 5, 2014): 49–52. http://dx.doi.org/10.15199/ele-2014-041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ji, Yonghoon, Atsushi Yamashita, and Hajime Asama. "Automatic Camera Pose Estimation Based on Textured 3D Map Information." Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2015.6 (2015): 100–101. http://dx.doi.org/10.1299/jsmeicam.2015.6.100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kamolrat, B., W. A. C. Fernando, and M. Mrak. "3D motion estimation for depth information compression in 3D-TV applications." Electronics Letters 44, no. 21 (2008): 1244. http://dx.doi.org/10.1049/el:20081455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Suziedelyte Visockiene, J., and E. Tumeliene. "ANALYSIS OF DIFFERENCES IN 3D BUILDING INFORMATION MODELING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-5/W2 (September 20, 2019): 65–69. http://dx.doi.org/10.5194/isprs-archives-xlii-5-w2-65-2019.

Повний текст джерела
Анотація:
<p><strong>Abstract.</strong> The implementation of Building Information Modelling (BIM) in each project, which is planned, have a design and construction stages. In the construction stage the objects are modelled by architects, engineers, and surveyors. Modelling process allowed to construct a BIM, which replaces two-dimensional (2D) building information into a three-dimensional (3D). Noticed that 3D BIM created by surveyors is not the same as 3D BIM, which is created by architects. Therefore, the purpose of this study is to identify the differences of the created 2D draftings made by 3D models between surveyors and architect’s. The surveyors make their model by using Unnamed Aerial Vehicle (UAV) system: Airborne Drone Data and Data photogrammetric processing technology. The 3D models accuracy is assessed by UAV images processing. The 3D information should be used to calculate façade geometry, volume, distances, contours, which are in the shadowed side of the house, and create 2D façade draftings. Traditionally, architects used 2D building’s façade draftings for pre-design in Construction Projects (CP). 3D architectural model is created by using structural 2D draftings created with Autodesk software. The architectural 3D model is more convenient for the general design and the visual view, it is easily to evaluate the impact of the changes that will be made. The 3D architectural model helps to finish a project at a low cost and also to evaluate the effect of the changes made. The 3D model from surveys measurements shows real view of an object (with deformations), meanwhile the 3D model from architects is a corrected image. Discrepancies between surveyors and architect’s 2D models made by 3D virtual reality (VR) are analysed in this article.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Karmouni, Hicham, Tarik Jahid, Mhamed Sayyouri, Rachid El Alami, and Hassan Qjidaa. "Fast 3D image reconstruction by cuboids and 3D Charlier’s moments." Journal of Real-Time Image Processing 17, no. 4 (January 3, 2019): 949–65. http://dx.doi.org/10.1007/s11554-018-0846-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Chiba, Shigeru, Akihiko Minamino, and Tomoki Suizu. "High-precision Management of 3D Location Information of Underground Facilities by Using High-precision 3D Geospatial Information." NTT Technical Review 19, no. 1 (January 2021): 56–61. http://dx.doi.org/10.53829/ntr202101fa9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, Zhixin, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang, and Ren Wang. "Reconstruction of 3D Information of Buildings from Single-View Images Based on Shadow Information." ISPRS International Journal of Geo-Information 13, no. 3 (February 20, 2024): 62. http://dx.doi.org/10.3390/ijgi13030062.

Повний текст джерела
Анотація:
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and expensive for low-cost 3D reconstruction of expansive urban scenes. Addressing this challenge, our study proposes a novel approach to leveraging single-view remote sensing images. By integrating shadow information with deep learning networks, our method measures building height and employs a semantic segmentation technique for single-image high-rise building reconstruction. In addition, we have designed complex shadow measurement algorithms and building contour correction algorithms to improve the accuracy of building models in conjunction with our previous research. We evaluate the method’s precision, time efficiency, and applicability across various data sources, scenarios, and scales. The results demonstrate the rapid and accurate acquisition of 3D building data with maintained geometric accuracy (mean error below 5 m). This approach offers an economical and effective solution for large-scale urban modeling, bridging the gap in cost-efficient 3D reconstruction techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Čiegis, Raimondas. "Parallel Numerical Algorithms for 3D Parabolic Problem with Nonlocal Boundary Condition." Informatica 17, no. 3 (January 1, 2006): 309–24. http://dx.doi.org/10.15388/informatica.2006.140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kaminskas, Vytautas, Egidijus Vaškevičius, and Aušra Vidugirienė. "Modeling Human Emotions as Reactions to a Dynamical Virtual 3D Face." Informatica 25, no. 3 (January 1, 2014): 425–37. http://dx.doi.org/10.15388/informatica.2014.22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhang, Yingchun, Jianbo Huang, and Siwen Duan. "3D video conversion system based on depth information extraction." MATEC Web of Conferences 232 (2018): 02048. http://dx.doi.org/10.1051/matecconf/201823202048.

Повний текст джерела
Анотація:
3D movies have received more and more attention in recent years. However, the investment in making 3D movies is high and difficult, which restricts its development. And there are many existing 2D movie resources, and how to convert it into 3D movies is also a problem. Therefore, this paper proposes a 3D video conversion system based on depth information extraction. The system consists of four parts: segmentation of movie video frame sequences, extraction of frame image depth information, generation of virtual multi-viewpoint and synthesis of 3D video. The system can effectively extract the depth information of the movie and by it finally convert a 2D movie into a 3D movie.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yan Xing, 邢妍, and 王琼华 Qionghua Wang. "3D information acquisition technology of integral imaging." Infrared and Laser Engineering 49, no. 3 (2020): 303003. http://dx.doi.org/10.3788/irla202049.0303003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Pacheco, Alexander, Holman Bolivar-Baron, Rubén Gonzalez-Crespo, and Jordán Pascual-Espada. "Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information." International Journal of Interactive Multimedia and Artificial Intelligence 2, no. 6 (2014): 7. http://dx.doi.org/10.9781/ijimai.2014.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Филяк, Петр Юрьевич, Денис Алексеевич Пажинцев, Илья Алексеевич Тырин, Александр Григорьевич Остапенко, and Юрий Юрьевич Громов. "3D PRINTERS - REALITY AND FUTURE. ASPECTS OF INFORMATION SECURITY." ИНФОРМАЦИЯ И БЕЗОПАСНОСТЬ, no. 4(-) (December 25, 2020): 525–34. http://dx.doi.org/10.36622/vstu.2020.23.4.005.

Повний текст джерела
Анотація:
На сегодняшний день на современном уровне развития технического прогресса человечество разработало множество устройств и способов создания трехмерных тел (объемных тел), каждый из которых имеет как свои преимущества, так и недостатки. Среди этого перечня особого внимания заслуживают устройства, которые имеют целый ряд неоспоримых преимуществ. Во-первых, они позволяют тиражировать трехмерные тела практически в неограниченных количествах. Во-вторых, точность построения объемных фигур очень высока. В-третьих, они позволяют работать с любыми материалами, в зависимости от применения которых, могут получаться различные трехмерные объекты - от реальных строительных объектов - до реальных тканей и органов растительных и живых организмов. Причем объектов, как макроскопических размеров - десятки метров, так и микроскопических, вплоть до нано уровня. Эти устройства вошли в обиход под названием «3D - принтеры». 3D-принтер - это периферийное устройство для создания физического объекта путем послойного формирования его по его цифровой 3D-модели. Данное устройство тесно связано с нашей жизнью. С каждым днем человек находит новое применение для 3D-принтеров, эти устройства уже являются незаменимыми помощниками во многих сферах нашей жизнедеятельности. Создание 3D-принтера, несомненно, является технологическим прорывом. To date, at the current level of technological progress, humanity has developed many devices and ways to create three-dimensional bodies (volume bodies), each of which has both its advantages and disadvantages.khmer body almost unlimited quantities. Secondly, the accuracy of building 3D shapes is very high. Thirdly, they allow you to work with any materials, depending on the use of which, can be obtained a variety of three-dimensional objects - from real construction sites - to real tissues and organs of plant and living organisms. And objects, both macroscopic sizes - tens of meters, and microscopic, up to the nano level. These devices came into use under the name "3D printers." 3D-printer is a peripheral device for creating a physical object by layering it on its digital 3D-model.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Phung, Tri Cong, Sungmoon Jin, Han Sang Chae, Hyungpil Moon, Ja Choon Koo, and Hyouk Ryeol Choi. "Reconstruction of 3D Local Surface Geometry by Using Minimum Contact Information." Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2010.5 (2010): 450–55. http://dx.doi.org/10.1299/jsmeicam.2010.5.450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Hastings, S. K. "3D Imaging." Bulletin of the American Society for Information Science and Technology 28, no. 2 (January 31, 2005): 18–19. http://dx.doi.org/10.1002/bult.230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Murray, Diana, Donald Petrey, and Barry Honig. "Integrating 3D structural information into systems biology." Journal of Biological Chemistry 296 (January 2021): 100562. http://dx.doi.org/10.1016/j.jbc.2021.100562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Petrescu, F., M. Aldea, O. Luca, C. Iacoboaea, F. Gaman, and E. Parlow. "3D GEO-INFORMATION IN URBAN CLIMATE STUDIES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W2 (October 5, 2016): 51–55. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w2-51-2016.

Повний текст джерела
Анотація:
3D geo-information is essential for urban climate studies. It is obvious that both natural environment and built-up environment play the fundamental role in defining the climatic conditions for urban areas, which affect the quality of human life and human comfort. The paper presents the main categories of 3D geo-information used in urban climate studies and roles in creating and operating the numerical models specially designed to simulate urban planning scenarios and improvement of the urban climate situation.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mello, Janaina, and Irla Rocha. "Veritas Mouseion 3d - Technology and Museum Information." Advanced Computing: An International Journal 4, no. 1 (January 31, 2013): 1–7. http://dx.doi.org/10.5121/acij.2013.4101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Atazadeh, Behnam, Abbas Rajabifard, Yibo Zhang, and Maryam Barzegar. "Querying 3D Cadastral Information from BIM Models." ISPRS International Journal of Geo-Information 8, no. 8 (July 26, 2019): 329. http://dx.doi.org/10.3390/ijgi8080329.

Повний текст джерела
Анотація:
There has been significant research on the intersection of 3D cadastre and building information modelling (BIM) over the recent years. BIM provides a multidimensional environment for capturing, curating and communicating the physical and functional aspects during a building’s lifecycle. A BIM-based solution for 3D cadastre provides a rich repository of legal and physical datasets in a common environment. The knowledge encapsulated inside a cadastral BIM model should be tapped to unlock the value of 3D cadastral information. Therefore, this article aims to develop BIM-based queries for interrogating questions about the legal ownership of properties inside multistorey buildings. These queries include identifying legal spaces that belong to a private or common property; querying physical elements that bound a legal space; and finding legal spaces that are adjacent to each other at a specific building element.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gao, Zhao Zhong, and Hai Xia Wei. "Implementation of Urban 3D Geographic Information System." Advanced Materials Research 926-930 (May 2014): 721–24. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.721.

Повний текст джерела
Анотація:
With the digital development of city construction, the construction of three-dimensional Geographic Information System plays an important role for the urban construction planning and decision-making. 3D urban planning geographic information management systems need to be able to put different spatial data, information of urban construction, urban planning information into the same platform. The integration of information resources whick provids a variety of spatial information based on the intelligent application services is the core. This article puts urban planning geographic information management related to business needs in-depth analysis, and put forward a three-dimensional geographic information model which is used for integrated management of data and can be dynamically adjusted for urban planning and management of business processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kotenev, V. A. "Information-Optical 3D-Techniques for Corrosion Monitoring." Protection of Metals 40, no. 5 (September 2004): 407–20. http://dx.doi.org/10.1023/b:prom.0000043057.69242.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kim, Young Min, Junghyun Cho, and Sang Chul Ahn. "3D Modeling from Photos Given Topological Information." IEEE Transactions on Visualization and Computer Graphics 22, no. 9 (September 1, 2016): 2070–81. http://dx.doi.org/10.1109/tvcg.2015.2505307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

IKEGAMI, Masiki, and Yukinori HIRASAWA. "612 Soft 3D-model with inside information." Proceedings of Conference of Hokkaido Branch 2005.44 (2005): 212–13. http://dx.doi.org/10.1299/jsmehokkaido.2005.44.212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Dixit, Priyesh N., and G. Michael Youngblood. "Discovering 3D Surface Information Values from Gameplayers." IEEE Computer Graphics and Applications 29, no. 2 (March 2009): 30–38. http://dx.doi.org/10.1109/mcg.2009.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Traumann, A., M. Daneshmand, S. Escalera, and G. Anbarjafari. "Accurate 3D measurement using optical depth information." Electronics Letters 51, no. 18 (September 2015): 1420–22. http://dx.doi.org/10.1049/el.2015.1345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Sheklanova, E. B., M. I. Fokina, and I. Yu Denisyuk. "A 3D Cryptographic Information Protective Holographic Element." Optics and Spectroscopy 125, no. 4 (October 2018): 563–65. http://dx.doi.org/10.1134/s0030400x18100235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Luximon, Ameersing, Ravindra S. Goonetilleke, and Ming Zhang. "3D foot shape generation from 2D information." Ergonomics 48, no. 6 (May 15, 2005): 625–41. http://dx.doi.org/10.1080/0014013050070970.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bak, Slawomir, and François Brémond. "Person re-identification employing 3D scene information." Journal of Electronic Imaging 24, no. 5 (October 23, 2015): 051007. http://dx.doi.org/10.1117/1.jei.24.5.051007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Asorey, Jacobo, Martin Crocce, Enrique Gaztañaga, and Antony Lewis. "Recovering 3D clustering information with angular correlations." Monthly Notices of the Royal Astronomical Society 427, no. 3 (November 20, 2012): 1891–902. http://dx.doi.org/10.1111/j.1365-2966.2012.21972.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Smallman, H. S., M. St. John, H. M. Oonk, and M. B. Cowen. "Information availability in 2D and 3D displays." IEEE Computer Graphics and Applications 21, no. 4 (2001): 51–57. http://dx.doi.org/10.1109/38.946631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії