Добірка наукової літератури з теми "Infections à picornaviridés – Génétique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Infections à picornaviridés – Génétique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Infections à picornaviridés – Génétique"
Baghad, B., A. A. Bousfiha, S. Chiheb, and F. Ailal. "Prédisposition génétique aux infections fongiques cutanéomuqueuses." La Revue de Médecine Interne 42, no. 8 (August 2021): 566–70. http://dx.doi.org/10.1016/j.revmed.2021.05.009.
Повний текст джерелаRuvoën, N., and J. Le Pendu. "Sensibilité génétique aux infections à norovirus." Pathologie Biologie 61, no. 1 (January 2013): 28–35. http://dx.doi.org/10.1016/j.patbio.2013.01.002.
Повний текст джерелаPicard, C., O. Filipe-Santos, A. Chapgier, H. von Bernuth, G. Vogt, and J. L. Casanova. "Prédisposition génétique et infections de l'enfant." Archives de Pédiatrie 13, no. 10 (October 2006): 1342–46. http://dx.doi.org/10.1016/j.arcped.2006.07.009.
Повний текст джерелаGervais, F., and E. Skamene. "Analyse génétique de la résistance aux infections." médecine/sciences 4, no. 9 (1988): 576. http://dx.doi.org/10.4267/10608/3882.
Повний текст джерелаFieschi, C., and J. L. Casanova. "Prédisposition génétique aux infections mycobactériennes chez l'homme." Médecine et Maladies Infectieuses 30, no. 5 (May 2000): 246–52. http://dx.doi.org/10.1016/s0399-077x(00)89137-4.
Повний текст джерелаDessein, Alain, Sandrine Marquet, Dominique Hillaire, Virmondés Rodrigues, and Laurent Abel. "Susceptibilité génétique aux infections parasitaires humaines: étude de la bilharziose." Annales de l'Institut Pasteur / Actualités 7, no. 1 (January 1996): 59–62. http://dx.doi.org/10.1016/0924-4204(96)82119-6.
Повний текст джерелаMORENO-ROMIEUX, C., G. SALLÉ, P. JACQUIET, A. BLANCHARD, C. CHYLINSKI, J. CABARET, D. FRANCOIS, et al. "La résistance génétique aux infections par les nématodes gastro-intestinaux chez les petits ruminants : un enjeu de durabilité pour les productions à l’herbe." INRA Productions Animales 30, no. 1 (June 14, 2018): 47–56. http://dx.doi.org/10.20870/productions-animales.2017.30.1.2231.
Повний текст джерелаTangy, Frédéric, and Jean-Nicolas Tournier. "Les virus au service de la santé : la vaccination." médecine/sciences 38, no. 12 (December 2022): 1052–60. http://dx.doi.org/10.1051/medsci/2022168.
Повний текст джерелаFolkema, Arianne, Hsiu-Li Wang, Kristy Wright, M. Mustafa Hirji, Anton Andonov, Kathryn Bromley, Chad Ludwig, and Amy MacArthur. "Une éclosion du virus de l'hépatite C attribuée à l'utilisation de flacons à doses multiples dans une clinique de coloscopie de la région de Waterloo, en Ontario." Relevé des maladies transmissibles au Canada 47, no. 04 (May 7, 2021): 245–53. http://dx.doi.org/10.14745/ccdr.v47i04a07f.
Повний текст джерелаChaudhry, Ahsen Tahir, and Daud Akhtar. "Gene Therapy and Modification as a Therapeutic Strategy for Cancer." University of Ottawa Journal of Medicine 6, no. 1 (May 11, 2016): 44–48. http://dx.doi.org/10.18192/uojm.v6i1.1564.
Повний текст джерелаДисертації з теми "Infections à picornaviridés – Génétique"
Mussabekova, Assel. "Evaluating antiviral activity of nucleic acid binding proteins across species." Electronic Thesis or Diss., Strasbourg, 2019. http://www.theses.fr/2019STRAJ006.
Повний текст джерелаAntiviral response largely relies on the recognition of viral nucleic acids. The aim of the project was to characterize the range of nucleic acid binding proteins in the context of viral infection in flies. We identified a wide repertoire of proteins, which recognize viral nucleic acids in five species (human, mouse, chicken, fruit fly and roundworm). Among these proteins, there are ones, which are conserved in insects and humans, and therefore their function can be easily studied in the fruit fly model. Afterwards, we have performed a large screen in flies to study more precisely the function of 100 proteins in infection with 5 different viruses. We have found eight promising candidates as a result of this screen. We identified two Drosophila proteins CG5641 and Zn72D, which are also present in humans, as proviral factors. We also identified a protein Tao, which is conserved in humans, and is antiviral against several types of viruses
Legay, Vincent. "Les infections virales du système nerveux central : enterovirus et parechovirus persistent et signent." Lyon 1, 2003. http://www.theses.fr/2003LYO10056.
Повний текст джерелаPampin, Mathieu Pierre Raoûl. "Implication de PML et des corps nucléaires PML dans la réponse antivirale des IFN de type I contre les picornavirus." Versailles-St Quentin en Yvelines, 2006. http://www.theses.fr/2006VERS0018.
Повний текст джерелаPML (Promyelocytic Leukemia), protéine induite par l'interféron, est impliquée dans la régulation de nombreux processus cellulaires tels que l'inhibition de la croissance, l'apoptose et la défense antivirale. PML est localisée dans le nucléoplasme et sur une structure appelée corps nucléaires (CN) dont PML est l’organisatrice. Le poliovirus réorganise les CN et induit le recrutement de PML sur ces structures. Ce transfert fait intervenir la phosphorylation par ERK de PML et ensuite sa SUMOylation. Ces événements ont comme conséquence le recrutement de p53 sur les CN et à l’activation de p53 menant à l'induction de l'apoptose et à l'inhibition de la réplication virale. Le poliovirus contrecarre cette réponse cellulaire en induisant la dégradation de p53 via le proteasome sur les CN
Mussabekova, Assel. "Evaluating antiviral activity of nucleic acid binding proteins across species." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAJ006.
Повний текст джерелаAntiviral response largely relies on the recognition of viral nucleic acids. The aim of the project was to characterize the range of nucleic acid binding proteins in the context of viral infection in flies. We identified a wide repertoire of proteins, which recognize viral nucleic acids in five species (human, mouse, chicken, fruit fly and roundworm). Among these proteins, there are ones, which are conserved in insects and humans, and therefore their function can be easily studied in the fruit fly model. Afterwards, we have performed a large screen in flies to study more precisely the function of 100 proteins in infection with 5 different viruses. We have found eight promising candidates as a result of this screen. We identified two Drosophila proteins CG5641 and Zn72D, which are also present in humans, as proviral factors. We also identified a protein Tao, which is conserved in humans, and is antiviral against several types of viruses
Pozzetto, Bruno. "Contribution a l'étude de l'immunité humorale au cours des infections à Picornaviridae : interféron et infection expérimentale de la souris par le virus de l'encéphalomyocardite : anticorps spécifiques des entérovirus chez l'homme." Lyon 1, 1991. http://www.theses.fr/1991LYO1H097.
Повний текст джерелаJeannot, Anne-Cécile. "Diagnostic des infections grippales par PCR temps réel." Bordeaux 2, 2005. http://www.theses.fr/2005BOR2P040.
Повний текст джерелаLiehl, Peter. "Analyse génétique des défenses de l'hôte drosophile après infections bactériennes par voie orale." Paris 6, 2007. http://www.theses.fr/2007PA066627.
Повний текст джерелаSiddle, Katherine Joyce. "Régulation transcriptomique et génétique de la réponse des microARN aux infections (myco)bactériennes." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066330.
Повний текст джерелаMicroRNAs (miRNAs) are important epigenetic regulators of gene expression that play a key role in many biological processes, including the immune response. Although infection is accompanied by marked changes in the transcriptional profiles of host cells, little is known about the variability of host miRNA responses to infection. In this thesis, we aimed to define the extent and specificity of pathogen-induced miRNA transcriptional responses of host cells, and to characterise the genetic basis of miRNA variability upon infection, using the model of Mycobacterium tuberculosis (MTB) infection of human dendritic cells. To this end, we have combined ex vivo approaches with a range of high-throughput genomic techniques to profile miRNA responses to MTB at the population-level and to compare this response with other mycobacterial and non-mycobacterial infections. We show that miRNAs display marked changes in expression and in isomiR distribution upon infection that are highly consistent across diverse bacteria, demonstrating the presence of a strong core miRNA response to bacterial infection. Our results highlight the impact of infection on miRNA-mediated gene regulatory networks and show that the expression of 3% of miRNAs are controlled by proximate expression quantitative trait loci (eQTLs) and identify a number of candidate miRNAs that may play a role in variability in the immune response to infection. Together, these results provide the first assessment of the impact of genotype-environment interactions on the regulation of miRNA expression, as well as offering novel insights into the specificity of these miRNAs in the response to mycobacterial infections
Kenmoe, Sebastien. "Prévalence et diversité génétique des virus respiratoires au Cameroun." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC417/document.
Повний текст джерелаBackground: Acute respiratory infections (ARI) are recognized as an important cause of morbidity, mortality and hospitalization among children in developing countries. Human respiratory syncytial virus (HRSV) is the main cause of severe lower respiratory tract disease in infants, young children and the elderly. Identified in 2001, Human Metapneumovirus (HMPV) is a new paramyxovirus. Studies have shown the co-circulation of the subgroups of these two viruses with domination of one of the sub-groups according to the geographical zones and according of years. These two viruses encode two major surface glycoproteins, the highly conserved fusion F protein and the highly variable attachment G protein. Data are still limited in sub-Saharan African countries on prevalence, seasonality and genetic characterization of these two respiratory viruses. In Cameroon, these two viruses have been described only once (5.7 and 5% for HRSV and HMPV respectively) in patients with influenza-like illness in 2012.Objective: This study reports the prevalence, seasonality and the genetic variability of HRSV and HMPV strains in Cameroonian children for 3 consecutive epidemic seasons (September 2011-October 2014). Moreover, the genetic diversity of other respiratory viruses detected during this work is presented as a secondary objective.Methods: A prospective surveillance was conducted to identify inpatient and outpatient children less than 15 years with respiratory symptoms ≤ 5 days. The nasopharyngeal samples were tested for 17 respiratory viruses using a multiplex polymerase chain reaction. Viral distribution and demographic data were analyzed statistically. Positive samples for HRSV and HMPV were amplified by semi-nested polymerize chain reaction and then partially sequenced at the G gene. Phylogenetic analyzes were performed on the partial nucleotide and protein sequences of the G gene.Results: From September 2011 to October 2014, 822 children under 15 years were enrolled in the study. At least one virus was identified in each of 72.6% (577/822) of children, 31.7% (189/597) of whom were co-detections; 28.5% (226/822) were positive for human adenovirus, 21.4% (176/822) for influenza virus, 15.5% (127.822) for rhinovirus/enterovirus, 9.4% (77/822) for bocavirus, 9% (74/822) for HRSV, 8.2% (67/822) for human coronavirus, 6.2% (50/822) for human parainfluenzavirus, and 3.9% (32/822) for HMPV. HRSV infection was more frequent in children under 2 years (70.3%, 52/74) and hospitalized participants (70.3%, 52/74). While HRSV showed a seasonal pattern with circulation from September to December, sporadic cases of HMPV were detected throughout the year. HRSV-A (19.1%, 9/47) and HRSV-B (17%; 8/47) were observed relatively at the same frequency with (63.8%, 30/47) codetections of HRSV-A/HRSV-B. HMPV-A (71.4%; 10/14) was predominant compared to HMPV-B (28.6; 4/14). Phylogenetic analysis revealed that the HRSV strains of the study are grouped within subgroup NA-1 (for HRSV-A) and BA-9 (for HRSV-B). Cameroonian HMPV strains are grouped among the members of genotype A2b (for HMPV-A), B1 and B2 (for HMPV-B).Conclusion: This study suggests that about 70% of ARI recorded in children in Cameroon are caused by viruses. The present study is also the first report on the genetic variability of the G gene of HRSV and HMPV strains in the region. Although this work partially fills gaps for some information, additional studies are required to clarify the molecular epidemiology and evolutionary pattern of respiratory viruses in sub-Saharan Africa in general and more particularly in Cameroon
Eloy-Gosselin, Odile. "Diagnostic et épidémiologie des infections à Candida sp. En réanimation." Paris 12, 2006. http://www.theses.fr/2006PA120018.
Повний текст джерелаThe diagnosis of deep-seated Candida infections is difficult because bloodstream cultures are often negative. The sensitivity of other diagnostic methods such as mannan (Mn) antigenemia, IgM, total anti-Candida antibodies, procalcitonin and PCR were evaluated. Mn and IgM have a specificity of 100% and detect infected patients but lack sensitivity. Mn would be more sensitive than the serum PCR, but these results warrant confirmation. Procalcitonin >0,75 ng/ml differentiate fungal and bacterial infections from viral ones. During a 2-year study of the patients of the intensive care unit of the Versailles hospital, index of colonization (IC), defined as the ratio of Candida sp. Colonized anatomical sites / tested sites, and the serological tests mentioned above were performed. Only IC had a 100% sensitivity in surgical patients. Then, we explored the epidemiology of C. Albicans among these patients using 3 polymorphic microsatellite markers and we compared the results with a study already performed at Créteil hospital. If the C. Albicans genotype's distribution had been different, that could have resulted from a nosocomial transmission or to the fact that the populations of patients were different. The patients harboured their own isolate whatever the anatomical site sampled and kept it over the study period. This confirms that there was no crossed transmission. Some genotypes were more frequent due to the fact that C. Albicans is clonal. The populations of the 2 hospitals are similar using 3 statistical tests : " genic differentiation ", " genotypic differentiation " and factorial correspondence analysis. To study the epidemiology of C. Glabrata, the second leading yeast species in intensive care units, three polymorphic microsatellite markers were characterized
Книги з теми "Infections à picornaviridés – Génétique"
PCR in situ hybridization: Protocols and applications. 2nd ed. New York: Raven Press, 1994.
Знайти повний текст джерелаNuovo, Gerard J. PCR in situ hybridization: Protocols and applications. 3rd ed. Philadelphia: Lippincott-Raven Publishers, 1997.
Знайти повний текст джерелаPCR in situ hybridization: Protocols and applications. New York: Raven Press, 1992.
Знайти повний текст джерелаK, Mushahwar I., ed. Congenital and other related infectious diseases of the newborn. Amsterdam: Elsevier, 2007.
Знайти повний текст джерелаY, Chen Irvin S., ed. Transacting functions of human retroviruses. Berlin: Springer-Verlag, 1995.
Знайти повний текст джерелаBunyaviridae: Molecular and Cellular Biology. Caister Academic Press, 2011.
Знайти повний текст джерелаMushahwar, Isa K. Congenital and Other Related Infectious Diseases of the Newborn. Elsevier Science & Technology Books, 2006.
Знайти повний текст джерелаHeredity and Infection: The History of Disease Transmission (Studies in the History of Science, Technology and Medicine, 13). Harwood Academic Pub, 2003.
Знайти повний текст джерелаChen, Irvin S. Y. Transacting Functions Of Human Retroviruses (Current Topics in Microbiology & Immunology). Edited by Irvin S. Y. Chen. Springer, 1995.
Знайти повний текст джерелаBacterial Infection: CLOSE ENCOUNTERS AT THE HOST PATHOGEN INTERFACE (Current Topics in Microbiology & Immunology). SPRINGER-VERLAG, 1998.
Знайти повний текст джерелаЧастини книг з теми "Infections à picornaviridés – Génétique"
Paccoud, Olivier, and Fanny Lanternier. "Susceptibilité génétique aux infections à Candida spp." In Maladies Immunitaires de L'enfant, 121–26. Elsevier, 2022. http://dx.doi.org/10.1016/b978-2-294-77580-2.00018-9.
Повний текст джерела