Статті в журналах з теми "Inertial Bregman proximal gradient"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Inertial Bregman proximal gradient".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mukkamala, Mahesh Chandra, Peter Ochs, Thomas Pock, and Shoham Sabach. "Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization." SIAM Journal on Mathematics of Data Science 2, no. 3 (January 2020): 658–82. http://dx.doi.org/10.1137/19m1298007.
Повний текст джерелаKabbadj, S. "Inexact Version of Bregman Proximal Gradient Algorithm." Abstract and Applied Analysis 2020 (April 1, 2020): 1–11. http://dx.doi.org/10.1155/2020/1963980.
Повний текст джерелаZhou, Yi, Yingbin Liang, and Lixin Shen. "A simple convergence analysis of Bregman proximal gradient algorithm." Computational Optimization and Applications 73, no. 3 (April 4, 2019): 903–12. http://dx.doi.org/10.1007/s10589-019-00092-y.
Повний текст джерелаHanzely, Filip, Peter Richtárik, and Lin Xiao. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization." Computational Optimization and Applications 79, no. 2 (April 7, 2021): 405–40. http://dx.doi.org/10.1007/s10589-021-00273-8.
Повний текст джерелаMahadevan, Sridhar, Stephen Giguere, and Nicholas Jacek. "Basis Adaptation for Sparse Nonlinear Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 27, no. 1 (June 30, 2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Повний текст джерелаYang, Lei, and Kim-Chuan Toh. "Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant." SIAM Journal on Optimization 32, no. 3 (July 13, 2022): 1523–54. http://dx.doi.org/10.1137/20m1360748.
Повний текст джерелаLi, Jing, Xiao Wei, Fengpin Wang, and Jinjia Wang. "IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning." Electronics 10, no. 23 (December 3, 2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Повний текст джерелаXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods." Journal of Optimization Theory and Applications 188, no. 3 (January 8, 2021): 605–27. http://dx.doi.org/10.1007/s10957-020-01799-3.
Повний текст джерелаWang, Qingsong, Zehui Liu, Chunfeng Cui, and Deren Han. "A Bregman Proximal Stochastic Gradient Method with Extrapolation for Nonconvex Nonsmooth Problems." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 14 (March 24, 2024): 15580–88. http://dx.doi.org/10.1609/aaai.v38i14.29485.
Повний текст джерелаHe, Lulu, Jimin Ye, and Jianwei E. "Nonconvex optimization with inertial proximal stochastic variance reduction gradient." Information Sciences 648 (November 2023): 119546. http://dx.doi.org/10.1016/j.ins.2023.119546.
Повний текст джерелаZhu, Daoli, Sien Deng, Minghua Li, and Lei Zhao. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method." Journal of Optimization Theory and Applications 189, no. 3 (May 31, 2021): 889–918. http://dx.doi.org/10.1007/s10957-021-01865-4.
Повний текст джерелаHua, Xiaoqin, and Nobuo Yamashita. "Block coordinate proximal gradient methods with variable Bregman functions for nonsmooth separable optimization." Mathematical Programming 160, no. 1-2 (January 27, 2016): 1–32. http://dx.doi.org/10.1007/s10107-015-0969-z.
Повний текст джерелаZhang, Xiaoya, Roberto Barrio, M. Angeles Martinez, Hao Jiang, and Lizhi Cheng. "Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems." IEEE Access 7 (2019): 126515–29. http://dx.doi.org/10.1109/access.2019.2937005.
Повний текст джерелаKesornprom, Suparat, and Prasit Cholamjiak. "A modified inertial proximal gradient method for minimization problems and applications." AIMS Mathematics 7, no. 5 (2022): 8147–61. http://dx.doi.org/10.3934/math.2022453.
Повний текст джерелаBoţ, Radu Ioan, Ernö Robert Csetnek, and Nimit Nimana. "An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems." Vietnam Journal of Mathematics 46, no. 1 (September 1, 2017): 53–71. http://dx.doi.org/10.1007/s10013-017-0256-9.
Повний текст джерелаKankam, Kunrada, and Prasit Cholamjiak. "Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications." Acta Mathematica Scientia 43, no. 3 (April 29, 2023): 1462–76. http://dx.doi.org/10.1007/s10473-023-0326-x.
Повний текст джерелаAhookhosh, Masoud, Le Thi Khanh Hien, Nicolas Gillis, and Panagiotis Patrinos. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization." Journal of Optimization Theory and Applications 190, no. 1 (June 15, 2021): 234–58. http://dx.doi.org/10.1007/s10957-021-01880-5.
Повний текст джерелаBao, Chenglong, Chang Chen null, and Kai Jiang. "An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model." CSIAM Transactions on Applied Mathematics 3, no. 1 (June 2022): 133–71. http://dx.doi.org/10.4208/csiam-am.so-2021-0002.
Повний текст джерелаWu, Zhongming, and Min Li. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems." Computational Optimization and Applications 73, no. 1 (February 18, 2019): 129–58. http://dx.doi.org/10.1007/s10589-019-00073-1.
Повний текст джерелаKesornprom, Suparat, Papatsara Inkrong, Uamporn Witthayarat, and Prasit Cholamjiak. "A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations." AIMS Mathematics 9, no. 7 (2024): 18841–59. http://dx.doi.org/10.3934/math.2024917.
Повний текст джерелаKESORNPROM, Suparat, and Prasit CHOLAMJİAK. "A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification." Results in Nonlinear Analysis 5, no. 4 (December 30, 2022): 412–22. http://dx.doi.org/10.53006/rna.1143531.
Повний текст джерелаAdly, Samir, and Hedy Attouch. "Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping." SIAM Journal on Optimization 30, no. 3 (January 2020): 2134–62. http://dx.doi.org/10.1137/19m1307779.
Повний текст джерелаPakkaranang, Nuttapol, Poom Kumam, Vasile Berinde, and Yusuf I. Suleiman. "Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery." Journal of Supercomputing 76, no. 12 (February 27, 2020): 9456–77. http://dx.doi.org/10.1007/s11227-020-03215-z.
Повний текст джерелаJolaoso, L. O., H. A. Abass, and O. T. Mewomo. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space." Archivum Mathematicum, no. 3 (2019): 167–94. http://dx.doi.org/10.5817/am2019-3-167.
Повний текст джерелаBussaban, Limpapat, Attapol Kaewkhao, and Suthep Suantai. "Inertial s-iteration forward-backward algorithm for a family of nonexpansive operators with applications to image restoration problems." Filomat 35, no. 3 (2021): 771–82. http://dx.doi.org/10.2298/fil2103771b.
Повний текст джерелаWang, Xiaofan, Zhiyuan Deng, Changle Wang, and Jinjia Wang. "Inertial Algorithm with Dry Fraction and Convolutional Sparse Coding for 3D Localization with Light Field Microscopy." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 18 (March 24, 2024): 20830–37. http://dx.doi.org/10.1609/aaai.v38i18.30072.
Повний текст джерелаLoría-Calderón, Tyrone M., Carlos D. Gómez-Carmona, Keven G. Santamaría-Guzmán, Mynor Rodríguez-Hernández, and José Pino-Ortega. "Quantifying the External Joint Workload and Safety of Latin Dance in Older Adults: Potential Benefits for Musculoskeletal Health." Applied Sciences 14, no. 7 (March 22, 2024): 2689. http://dx.doi.org/10.3390/app14072689.
Повний текст джерелаWu, Zhongming, Chongshou Li, Min Li, and Andrew Lim. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems." Journal of Global Optimization, August 19, 2020. http://dx.doi.org/10.1007/s10898-020-00943-7.
Повний текст джерелаGao, Xue, Xingju Cai, Xiangfeng Wang, and Deren Han. "An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant." Journal of Global Optimization, June 24, 2023. http://dx.doi.org/10.1007/s10898-023-01300-0.
Повний текст джерелаZhang, Hui, Yu-Hong Dai, Lei Guo, and Wei Peng. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions." Mathematics of Operations Research, June 25, 2019. http://dx.doi.org/10.1287/moor.2019.1047.
Повний текст джерелаTakahashi, Shota, Mituhiro Fukuda, and Mirai Tanaka. "New Bregman proximal type algorithms for solving DC optimization problems." Computational Optimization and Applications, September 23, 2022. http://dx.doi.org/10.1007/s10589-022-00411-w.
Повний текст джерелаLiu, Jin-Zan, and Xin-Wei Liu. "A dual Bregman proximal gradient method for relatively-strongly convex optimization." Numerical Algebra, Control & Optimization, 2021, 0. http://dx.doi.org/10.3934/naco.2021028.
Повний текст джерелаSun, Tao, Linbo Qiao, and Dongsheng Li. "Nonergodic Complexity of Proximal Inertial Gradient Descents." IEEE Transactions on Neural Networks and Learning Systems, 2020, 1–14. http://dx.doi.org/10.1109/tnnls.2020.3025157.
Повний текст джерелаChen, Kangming, Ellen H. Fukuda, and Nobuo Yamashita. "A proximal gradient method with Bregman distance in multi-objective optimization." Pacific Journal of Optimization, 2024. http://dx.doi.org/10.61208/pjo-2024-012.
Повний текст джерелаMukkamala, Mahesh Chandra, Jalal Fadili, and Peter Ochs. "Global convergence of model function based Bregman proximal minimization algorithms." Journal of Global Optimization, December 1, 2021. http://dx.doi.org/10.1007/s10898-021-01114-y.
Повний текст джерелаXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods." Journal of Optimization Theory and Applications, January 8, 2021. http://dx.doi.org/10.1007/s10957-020-01799-3.
Повний текст джерелаBonettini, S., M. Prato, and S. Rebegoldi. "A new proximal heavy ball inexact line-search algorithm." Computational Optimization and Applications, March 10, 2024. http://dx.doi.org/10.1007/s10589-024-00565-9.
Повний текст джерелаDuan, Peichao, Yiqun Zhang, and Qinxiong Bu. "New inertial proximal gradient methods for unconstrained convex optimization problems." Journal of Inequalities and Applications 2020, no. 1 (December 2020). http://dx.doi.org/10.1186/s13660-020-02522-6.
Повний текст джерелаHertrich, Johannes, and Gabriele Steidl. "Inertial stochastic PALM and applications in machine learning." Sampling Theory, Signal Processing, and Data Analysis 20, no. 1 (April 22, 2022). http://dx.doi.org/10.1007/s43670-022-00021-x.
Повний текст джерелаZhang, Xiaoya, Wei Peng, and Hui Zhang. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees." Mathematical Methods of Operations Research, June 25, 2022. http://dx.doi.org/10.1007/s00186-022-00790-0.
Повний текст джерелаGuo, Chenzheng, Jing Zhao, and Qiao-Li Dong. "A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems." Numerical Algorithms, November 9, 2023. http://dx.doi.org/10.1007/s11075-023-01693-9.
Повний текст джерелаJia, Zehui, Jieru Huang, and Xingju Cai. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems." Journal of Global Optimization, May 29, 2021. http://dx.doi.org/10.1007/s10898-021-01044-9.
Повний текст джерелаKankam, Kunrada, Watcharaporn Cholamjiak, and Prasit Cholamjiak. "New inertial forward–backward algorithm for convex minimization with applications." Demonstratio Mathematica 56, no. 1 (January 1, 2023). http://dx.doi.org/10.1515/dema-2022-0188.
Повний текст джерелаSun, Shuya, and Lulu He. "General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization." Journal of Inequalities and Applications 2023, no. 1 (February 17, 2023). http://dx.doi.org/10.1186/s13660-023-02922-4.
Повний текст джерелаInkrong, Papatsara, and Prasit Cholamjiak. "Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion." Mathematical Methods in the Applied Sciences, April 30, 2024. http://dx.doi.org/10.1002/mma.10159.
Повний текст джерелаValkonen, Tuomo. "Proximal methods for point source localisation." Journal of Nonsmooth Analysis and Optimization Volume 4, Original research articles (September 21, 2023). http://dx.doi.org/10.46298/jnsao-2023-10433.
Повний текст джерелаMouktonglang, Thanasak, Wipawinee Chaiwino, and Raweerote Suparatulatorn. "A proximal gradient method with double inertial steps for minimization problems involving demicontractive mappings." Journal of Inequalities and Applications 2024, no. 1 (May 15, 2024). http://dx.doi.org/10.1186/s13660-024-03145-x.
Повний текст джерела"Convergence of proximal gradient method with alternated inertial step for minimization problem." Advances in Fixed Point Theory, 2024. http://dx.doi.org/10.28919/afpt/8625.
Повний текст джерелаSilveti-Falls, Antonio, Cesare Molinari, and Jalal Fadili. "Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step." Journal of Nonsmooth Analysis and Optimization Volume 2, Original research articles (September 1, 2021). http://dx.doi.org/10.46298/jnsao-2021-6480.
Повний текст джерелаCohen, Eyal, and Marc Teboulle. "Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis." Mathematics of Operations Research, February 8, 2024. http://dx.doi.org/10.1287/moor.2022.0294.
Повний текст джерела