Добірка наукової літератури з теми "Industrial steel storage rack"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Industrial steel storage rack".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Industrial steel storage rack"
Rafiqul Haque, A. B. M., and M. Shahria Alam. "Direct Displacement-Based Design of Industrial Rack Clad Buildings." Earthquake Spectra 29, no. 4 (November 2013): 1311–34. http://dx.doi.org/10.1193/080611eqs195m.
Повний текст джерелаRiumin, V., Y. Solodovnik, and K. Riumina. "DETERMINATION OF BASE PLATE STIFFNESS OF STEEL STORAGE RACKS." Municipal economy of cities 4, no. 171 (October 17, 2022): 63–69. http://dx.doi.org/10.33042/2522-1809-2022-4-171-63-69.
Повний текст джерелаNeiva, Luiz, Juliane Aparecida Braz Starlino, Guilherme Elias, Arlene Maria Cunha Sarmanho, and Vinícius Nicchio Alves. "Industrial storage system continuous perforated uprights: a combined design proposal." Revista de la construcción 21, no. 2 (2022): 204–14. http://dx.doi.org/10.7764/rdlc.21.2.204.
Повний текст джерелаSarawit, Andrew T., and Teoman Peköz. "Notional load method for industrial steel storage racks." Thin-Walled Structures 44, no. 12 (December 2006): 1280–86. http://dx.doi.org/10.1016/j.tws.2007.01.003.
Повний текст джерелаÁlvarez, Oscar, Nelson Maureira, Eduardo Nuñez, Frank Sanhueza, and Ángel Roco-Videla. "Numerical Study on Seismic Response of Steel Storage Racks with Roller Type Isolator." Metals 11, no. 1 (January 16, 2021): 158. http://dx.doi.org/10.3390/met11010158.
Повний текст джерелаCrosier, Jeff, Mark Hannah, and David Mukai. "Damage to steel storage racks in industrial buildings in the Darfield earthquake." Bulletin of the New Zealand Society for Earthquake Engineering 43, no. 4 (December 31, 2010): 425–28. http://dx.doi.org/10.5459/bnzsee.43.4.425-428.
Повний текст джерелаJeon, Jong-Su, Hyoungsuk Choi, Youngdeuk Seo, Chunggil Kim, and Gwanghee Heo. "Seismic Performance of Steel Industrial Storage Racks Subjected to Korea Earthquakes." Journal of the Earthquake Engineering Society of Korea 22, no. 3 (April 30, 2018): 149–60. http://dx.doi.org/10.5000/eesk.2018.22.3.149.
Повний текст джерелаBasaglia, Cilmar, and Dinar Camotim. "Buckling Analysis of Thin-Walled Steel Structural Systems Using Generalized Beam Theory (GBT)." International Journal of Structural Stability and Dynamics 15, no. 01 (January 2015): 1540004. http://dx.doi.org/10.1142/s0219455415400040.
Повний текст джерелаClifton, Charles, Michel Bruneau, Greg MacRae, Roberto Leon, and Alistair Fussell. "Steel structures damage from the Christchurch earthquake series of 2010 and 2011." Bulletin of the New Zealand Society for Earthquake Engineering 44, no. 4 (December 31, 2011): 297–318. http://dx.doi.org/10.5459/bnzsee.44.4.297-318.
Повний текст джерелаFreitas, A. M. S., M. S. R. Freitas, and F. T. Souza. "Analysis of steel storage rack columns." Journal of Constructional Steel Research 61, no. 8 (August 2005): 1135–46. http://dx.doi.org/10.1016/j.jcsr.2005.02.004.
Повний текст джерелаДисертації з теми "Industrial steel storage rack"
Bernardi, Martina. "Industrial steel storage racks subjected to static and seismic actions: an experimental and numerical study." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/322402.
Повний текст джерелаGusella, Federico [Verfasser], Klaus [Akademischer Betreuer] Thiele, and Maurizio [Akademischer Betreuer] Orlando. "On the mechanical behavior of steel rack connections and its influence on the seismic response of industrial storage systems / Federico Gusella ; Klaus Thiele, Maurizio Orlando." Braunschweig : Technische Universität Braunschweig, 2021. http://d-nb.info/1225038286/34.
Повний текст джерелаGusella, Federico Verfasser], Klaus [Akademischer Betreuer] [Thiele, and Maurizio [Akademischer Betreuer] Orlando. "On the mechanical behavior of steel rack connections and its influence on the seismic response of industrial storage systems / Federico Gusella ; Klaus Thiele, Maurizio Orlando." Braunschweig : Technische Universität Braunschweig, 2021. http://d-nb.info/1225038286/34.
Повний текст джерелаKoen, Damien Joseph. "Structural Capacity of Light Gauge Steel Storage Rack Uprights." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/3880.
Повний текст джерелаKoen, Damien Joseph. "Structural Capacity of Light Gauge Steel Storage Rack Uprights." University of Sydney, 2008. http://hdl.handle.net/2123/3880.
Повний текст джерелаThis report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
Gao, Yuan. "Seismic Evaluation and Performance Enhancement of Industrial Storage Racks." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1354905983.
Повний текст джерелаSabzehzar, Saman. "SEISMIC DESIGN AND EVALUATION OF BASE ISOLATED STEEL STORAGE RACKS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case14847725697335.
Повний текст джерелаTalebian, Nima. "Upright Frame Shear Stiffness and Upright Biaxial Bending in the Design of Cold-Formed Steel Storage Rack-Supported Buildings." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/381685.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Dai, Liusi. "The Hysteretic Behaviour of Beam-to-upright Connections and Their Role in Predicting the Structural Response of Steel Storage Racks under Seismic Action." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19645.
Повний текст джерелаCOSTA, GIULIA. "Accelerated carbonation of minerals and industrial residues for carbon dioxide storage." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/1003.
Повний текст джерелаCarbonation of specific types of minerals and anthropogenically derived products, such as cement or lime binders, is a well known naturally occurring process which exerts several significant effects on alkaline materials, including specifically: CO2 uptake by formation of a solid and thermodynamically stable carbonate phase, pH decrease and modifications of the leaching behaviour of the material, besides variations of some of its physical and mechanical properties. Since the kinetics of this reaction is very slow at ambient conditions, to exploit some of the above mentioned effects of chemical weathering for developing specific engineered processes, such as waste chemical stabilization and CO2 mineral storage, carbonation processes carried out under selected and controlled operational conditions have been developed, in order to significantly increase the kinetics of the reactions involved. Depending on the application of the process and the selected material, different operating conditions have been employed and several process routes have been tested. The main objective of this doctoral thesis was to investigate the accelerated carbonation process applied both to minerals and industrial residues in order to gain new insight on the key reaction mechanisms for each type of material. Regarding accelerated carbonation of minerals, the effects of the presence of high pressure CO2 (up to 100 bar) and salinity on olivine dissolution kinetics at 120 °C in a stirred flow-through reactor were specifically investigated, in order to assess whether these parameters may exert an enhancing or inhibiting effect on the kinetics of Mg dissolution. Batch carbonation experiments on humidified material (with liquid to solid ratios < 1 l/kg) at mild operating conditions (temperature of 30-50 °C and CO2 pressure of 1-10 bar) were specifically carried out on waste incineration residues such as bottom ash (BA) and air pollution control (APC) residues, as well as on stainless steel slag. The objectives of this study were essentially threefold: to assess the CO2 storage capacity achievable for each type of industrial residue correlating it to the particle size and to the chemical composition of the samples; to study the influence of the main operational parameters (temperature, pressure and liquid to solid ratio) on reaction kinetics; and finally to investigate the effects of carbonation on the mineralogy and leaching behaviour of the residues. The study on olivine dissolution kinetics showed that, under all the examined operating conditions (pH range 3-8), the only factor governing the specific dissolution rate was the pH of the solution. Hence CO2 pressure and salinity appeared to influence olivine dissolution kinetics only indirectly, by affecting the final pH of the solution. This is a significant finding, since it implies that carbonate precipitation, which occurs in presence of high pressure CO2 at pH values above 6, and olivine dissolution could theoretically be carried out in the same reactor without inhibition effects on Mg dissolution kinetics. As for the effects of accelerated carbonation on the leaching behaviour of the studied alkaline residues, significant results were obtained in particular for the BA and APC residues; for both types of materials, accelerated carbonation showed to exert a strong immobilization effect on Pb, Zn and Cu, which were among the critical elements in terms of heavy metal leaching for both types of untreated residues. For APC ash, chemical speciation modelling indicated a change in the solubility-controlling minerals from the untreated to the carbonated ash. For the latter, metal release was found to be clearly controlled by a number of carbonate minerals, indicating the potential of the carbonation process to convert the initial metal-containing minerals into generally less soluble carbonate forms, with positive implications on the environmental behaviour of the ash. Significant CO2 uptakes were achieved in particular for the APC ash (250 g/kg residue); however, owing due to the meagre quantities of this material generated in incineration plants compared to CO2 emissions, accelerated carbonation of this type of industrial residues, as well as of bottom ash, does not appear to be a feasible process for CO2 storage. Accelerated carbonation of stainless steel slag instead, appears to be an interesting technique for carrying out mineral storage of carbon dioxide in industrial facilities using part of the waste streams generated in the same plant, although more severe operating conditions than those used in this work should be applied in order to increase the CO2 uptake of the slag.
Книги з теми "Industrial steel storage rack"
Safety in the storage and handling of steel and other metal stock. Sudbury: HSE Books, 2004.
Знайти повний текст джерелаDigrado, Brian D., and Gregory A. Thorp. Aboveground Steel Storage Tank Handbook. Wiley & Sons, Incorporated, John, 2007.
Знайти повний текст джерелаDigrado, Brian D., and Gregory A. Thorp. The Aboveground Steel Storage Tank Handbook. Wiley, 1995.
Знайти повний текст джерелаЧастини книг з теми "Industrial steel storage rack"
Baldassino, N., M. Bernardi, R. Zandonini, and A. di Gioia. "Full-scale tests of industrial steel storage pallet racks." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 881–86. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-144.
Повний текст джерелаBaldassino, N., M. Bernardi, R. Zandonini, and A. di Gioia. "Full‐scale tests of industrial steel storage pallet racks." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 309–10. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-144.
Повний текст джерелаDai, L., and X. Zhao. "Experimental investigation on steel storage rack beam-to-upright connections under cyclic loading." In Insights and Innovations in Structural Engineering, Mechanics and Computation, 1068–73. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-176.
Повний текст джерелаGuerrini, Gabriele, Francesco Graziotti, and Andrea Penna. "Shake-Table Tests on an Industrial Steel Rack Isolated with Innovative Modular Devices." In Lecture Notes in Civil Engineering, 853–63. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21187-4_74.
Повний текст джерелаHuang, Z., X. Zhao, and K. S. Sivakumaran. "Experimental investigation of the rack-to-bracing joints between the high-rise steel storage rack frames and the independent bracing towers." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 1001–5. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-163.
Повний текст джерелаHuang, Z., X. Zhao, and K. S. Sivakumaran. "Experimental investigation of the rack-to-bracing joints between the high-rise steel storage rack frames and the independent bracing towers." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 347–48. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-163.
Повний текст джерелаChasapi, Margarita. "The Eurocode Approach to Seismic Design of Liquid-Filled Steel Storage Tanks." In Seismic Design of Industrial Facilities, 391–401. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-658-02810-7_33.
Повний текст джерелаHuang, Z., X. Zhao, and K. S. Sivakumaran. "Experimental tests on the rack-to-spine-bracing joints of high-rise steel storage racks." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 907–12. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-148.
Повний текст джерелаHuang, Z., X. Zhao, and K. S. Sivakumaran. "Experimental tests on the rack-to-spine-bracing joints of high-rise steel storage racks." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 317–18. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-148.
Повний текст джерелаNagy, Zsolt, and Annabella Sánduly. "Upright Base Connection Impact on Structural Design of Steel Storage Rack Systems in Seismic Zones." In Lecture Notes in Civil Engineering, 1124–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03811-2_125.
Повний текст джерелаТези доповідей конференцій з теми "Industrial steel storage rack"
Bernuzzi, Claudio, and Marco Simoncelli. "Advanced seismic design for storage pallet rack steel frames." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0081415.
Повний текст джерелаAlavi, Babak, and Akshay Gupta. "Performance-Based Seismic Design of an Industrial Storage Rack System." In Structures Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41016(314)204.
Повний текст джерелаHuang, Sheng, Oon Peen Gan, Sethu Jose, and Mo Li. "Localization for industrial warehouse storage rack using passive UHF RFID system." In 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2017. http://dx.doi.org/10.1109/etfa.2017.8247643.
Повний текст джерелаHe, Xiaoming, Ziqiang Zhu, Changlei Shao, and Ran Huang. "Additive Manufacturing of Spent Fuel Storage Rack Model by Selective Laser Melting." In ASME 2018 Nuclear Forum collocated with the ASME 2018 Power Conference and the ASME 2018 12th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/nuclrf2018-7409.
Повний текст джерелаGabbianelli, Giammaria, Daniele Perrone, Emanuele Brunesi, and Ricardo Monteiro. "Seismic Fragility Assessment of Steel Industrial Storage Tanks." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-84961.
Повний текст джерелаHuang, Sheng, and Zheng Hua Shi. "An Application of Autonomous Learning Multimodel System for Localization in Industrial Warehouse Storage Rack." In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00097.
Повний текст джерелаBaldassino, Nadia, Martina Bernardi, and Riccardo Zandonini. "An experimental investigation on base-plate joints of steel storage pallet racks." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0594.
Повний текст джерелаJohnson, David H., Robert J. Michael, Michael C. Pollino, Joseph D. Redovan, Eric E. Moser, and Blake A. Macdonald. "Development of a Seismic Isolation System for Commercial Storage Racks." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89112.
Повний текст джерелаA., Di Carluccio, Fabbrocino G., and Manfredi G. "Full Stress Analysis of Steel Storage Industrial Equipments under Seismic Loading." In 4th International Conference on Steel & Composite Structures. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-6218-3_ss-fr006.
Повний текст джерелаLYU, Zhi Jun, Pei Cai ZHAO, Qian XIANG, Meng WU, and Jun GU. "NUMERICAL EVALUATION OF THE SEISMIC RESPONSE OF STEEL STORAGE RACK BEAM-TO-COLUMN CONNECTIONS BASED ON FINITE ELEMENT ANALYSIS." In The 16th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures. Russian Association for Earthquake Engineering and Protection from Natural and Manmade Hazards, 2019. http://dx.doi.org/10.37153/2686-7974-2019-16-952-961.
Повний текст джерелаЗвіти організацій з теми "Industrial steel storage rack"
Muelaner, Jody Emlyn. Unsettled Issues in Electrical Demand for Automotive Electrification Pathways. SAE International, January 2021. http://dx.doi.org/10.4271/epr2021004.
Повний текст джерела