Добірка наукової літератури з теми "In silico calculations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "In silico calculations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "In silico calculations"
Triveni, S., C. Naresh Babu, E. Bhargav, and M. Vijaya Jyothi. "in silico Design, ADME Prediction, Molecular Docking, Synthesis of Novel Triazoles, Indazoles & Aminopyridines and in vitro Evaluation of Antitubercular Activity." Asian Journal of Chemistry 32, no. 11 (2020): 2713–21. http://dx.doi.org/10.14233/ajchem.2020.22790.
Повний текст джерелаHerrera-Calderon, Oscar, Andres F. Yepes-Pérez, Jorge Quintero-Saumeth, Juan Pedro Rojas-Armas, Miriam Palomino-Pacheco, José Manuel Ortiz-Sánchez, Edwin César Cieza-Macedo та ін. "Carvacrol: An In Silico Approach of a Candidate Drug on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR Receptors in the Breast Cancer". Evidence-Based Complementary and Alternative Medicine 2020 (26 жовтня 2020): 1–12. http://dx.doi.org/10.1155/2020/8830665.
Повний текст джерелаMaillard, Julien F., Johann Le Maître, Christopher P. Rüger, Mark Ridgeway, Christopher J. Thompson, Benoit Paupy, Marie Hubert-Roux, Melvin Park, Carlos Afonso, and Pierre Giusti. "Structural analysis of petroporphyrins from asphaltene by trapped ion mobility coupled with Fourier transform ion cyclotron resonance mass spectrometry." Analyst 146, no. 13 (2021): 4161–71. http://dx.doi.org/10.1039/d1an00140j.
Повний текст джерелаHajzer, Viktória, Roman Fišera, Attila Latika, Július Durmis, Jakub Kollár, Vladimír Frecer, Zuzana Tučeková, et al. "Stereoisomers of oseltamivir – synthesis, in silico prediction and biological evaluation." Organic & Biomolecular Chemistry 15, no. 8 (2017): 1828–41. http://dx.doi.org/10.1039/c6ob02673g.
Повний текст джерелаChen, Zihao, and Kristen A. Fichthorn. "Adsorption of alkylamines on Cu surfaces: identifying ideal capping molecules using first-principles calculations." Nanoscale 13, no. 44 (2021): 18536–45. http://dx.doi.org/10.1039/d1nr05759f.
Повний текст джерелаKawczak, Piotr, Leszek Bober, and Tomasz Bączek. "Application of QSAR Analysis and Different Quantum Chemical Calculation Methods in Activity Evaluation of Selected Fluoroquinolones." Combinatorial Chemistry & High Throughput Screening 21, no. 7 (November 15, 2018): 468–75. http://dx.doi.org/10.2174/1386207321666180827105856.
Повний текст джерелаAguilera-Porta, Neus, Giovanni Granucci, Jordi Muñoz-Muriedas, and Ines Corral. "Can in silico calculations assess phototoxicity of non-steroidal anti-inflammatory drugs?" Toxicology Letters 280 (October 2017): S282. http://dx.doi.org/10.1016/j.toxlet.2017.07.788.
Повний текст джерелаPitera, Jed W., and Peter A. Kollman. "Exhaustive mutagenesis in silico: Multicoordinate free energy calculations on proteins and peptides." Proteins: Structure, Function, and Genetics 41, no. 3 (2000): 385–97. http://dx.doi.org/10.1002/1097-0134(20001115)41:3<385::aid-prot100>3.0.co;2-r.
Повний текст джерелаManolov, Stanimir, Iliyan Ivanov, and Dimitar Bojilov. "Microwave-assisted synthesis of 1,2,3,4-tetrahydroisoquinoline sulfonamide derivatives and their biological evaluation." Journal of the Serbian Chemical Society, no. 00 (2020): 76. http://dx.doi.org/10.2298/jsc200802076m.
Повний текст джерелаFaletrov, Y. V., V. O. Maliugin, N. S. Frolova, and V. M. Shkumatov. "<i>In silico</i> evaluation of new affine interactions of methylcoumarin with cytochromes P450." Proceedings of the National Academy of Sciences of Belarus, Chemical Series 58, no. 2 (June 8, 2022): 186–90. http://dx.doi.org/10.29235/1561-8331-2022-58-2-186-190.
Повний текст джерелаДисертації з теми "In silico calculations"
Elisée, Eddy. "Towards in silico prediction of mutations related to antibiotic resistance." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS350.
Повний текст джерелаAntibiotic resistance is a global concern threatening worldwide health. Indeed, if we don't change our overconsumption of antibiotics, the current situation could worsen until a "post-antibiotic" era in which existing treatment would be ineffective against microbial infections. Despite the natural occurrence of antibiotic resistance, the misuse of antibiotics is speeding up the process. Furthermore, presence of multi-resistant pathogens negates the effect of modern treatments and usual surgeries (caesarean sections, organ transplantations...) might be riskier in the future, or even lethal. That's why, common guidelines have to be edicted by health authorities in order to control antibiotic use at every level of society, from individuals to healthcare industry including health professionals and agriculture sector. As for scientific research, new strategies have to be considered in order to limit the spread of antibiotic resistance. In that context, the presented thesis aimed at developing a protocol to predict, by free energy calculations, β-lactamase mutations which could promote the hydolysis of β-lactams antibiotics. In order to achieve that, we developed several methodological approaches including: (1) new parameters for zinc enzymes implemented in OPLS-AA force field and thereafter validated using molecular dynamics simulations of representative zinc-containing metalloenzymes, (2) a protocol to parameterize covalent ligands in order to analyze the dynamical behavior of some β-lactams in CMY-136, a novel β-lactamase recently characterized in our laboratory, and (3) a pmx-based free energy protocol. The latter was also assessed through several international blinded prediction challenges, and finally used to find out why carbamylation of the catalytic serine is not observed in certain OXA enzymes. Throughout this work, we made significant improvements in our protocol, and now everything is in place for an exhaustive prediction of possible mutations in β-lactamases
Ahmad, Shah Masood. "Filling the Structure-Reactivity Gap: in silico approaches to rationalize the design of molecular catalysts." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422346.
Повний текст джерела黃新祥 and Sun-cheung Wong. "Ab initio calculations of silicon clusters." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B3122197X.
Повний текст джерелаWong, Sun-cheung. "Ab initio calculations of silicon clusters." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20192708.
Повний текст джерелаWright, K. T. "Electrical transport calculations for off-axis silicon." Thesis, Cardiff University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373877.
Повний текст джерелаWu, Wei. "Exchange calculations between donors in silicon and metal-phthalocyanine dimer." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445188/.
Повний текст джерелаMarkevich, Alexander. "Ab-initio calculations of diffusion barriers of small vacancy clusters in silicon." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2288.
Повний текст джерелаEsta tese apresenta os resultados de um programa de investigação sobre a difusão da lacuna, bi-lacuna e tri-lacuna em silício utilizando simulações numéricas pelo método da teoria do funcional da densidade. Este método está implementado na forma de um programa informático referido como AIMPRO (Ab Initio Modelling PROgram). Para o cálculo dos pontos cela dos mecanismos de difusão foi usado o método “Nudged Elastic Band”. As condições fronteira dos problemas foram impostas recorrendo à utilização de agregados esféricos de silício com 275 atomos, cuja superfície foi saturada por ligações Si-H. As lacunas foram então introduzidas no centro destes agregados. Os valores calculados das barreiras de difusão para a lacuna simples e para a bi-lacuna são respectivamente 0.68 e 1.75 eV. Estes valores apresentam um acordo razoável com os obtidos experimentalmente e obtidos em outros cálculos anteriores. A barreira de difusão da tri-lacuna foi, de acordo com a literatura disponível, calculada pela primeira vêz. O mecanismo de difusão mais favorável apresenta uma barreira de 2.2 eV. No seguimento dos resultados para a lacuna e bi-lacuna, pensamos que este resultado sobrestima a barreira em cerca de 0.25 eV, colocando a nossa melhor estimativa em 1.9- 2.0 eV. Varias fontes de erro nos resultados são comentadas, assim como são sugeridas várias formas de as evitar. ABSTRACT: This work presents the results of a computational investigation into the diffusion of the single vacancy (V) and small vacancy clusters, divacancy (V2) and trivacancy (V3), in silicon. The calculations were performed principally using local density functional theory as implemented by the AIMPRO (Ab Initio Modelling PROgram) code. The Nudged Elastic Band Method was used for elucidating diffusion paths and obtaining the energy barriers for diffusion of the defects considered. Based on ab-initio calculations with H-terminated Si clusters with 275 host atoms, diffusion paths for neutral Vn (n = 1 to 3) defects were found. Calculated values of the activation energy for the diffusion of the Si vacancy and divacancy are 0.68 and 1.75 eV, respectively. These values are in a reasonable agreement with those derived from experimental and previous ab-initio modelling studies. The diffusion of trivacancy in Si has been modelled for the first time. The diffusion barrier of V3 along the proposed diffusion path was found to be about 2.2 eV. This result comes overestimated as the experimental data indicates that the values of diffusion barriers for divacancy and trivacancy in Si should be similar. Probable sources of the calculation errors have been considered and possible ways to surmount these difficulties are proposed.
Foster, A. S., M. A. Gosálvez, T. Hynninen, R. M. Nieminen, and K. Sato. "First-principles calculations of Cu adsorption on an H-terminated Si surface." American Physical Society, 2007. http://hdl.handle.net/2237/11269.
Повний текст джерелаCorsetti, Fabiano. "On the properties of point defects in silicon nanostructures from ab initio calculations." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9754.
Повний текст джерелаDiebel, Milan. "Application of ab-initio calculations to modeling of nanoscale diffusion and activation in silicon /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9727.
Повний текст джерелаКниги з теми "In silico calculations"
Townsend, Lawrence W. Optical model calculations of 14.6A GeV silicon fragmentation cross sections. Hampton, Va: Langley Research Center, 1993.
Знайти повний текст джерелаK, Tripathi Ram, Khan Ferdous, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Optical model calculations of 14.6A GeV silicon fragmentation cross sections. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Знайти повний текст джерелаZhang, Rui-Qin. Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40905-9.
Повний текст джерелаAlbers, John. Results of the Monte Carlo calculation of one-and two-dimensional distributions of particles and damage: Ion implanteddopants in silicon. Washington, D.C: National Bureau of Standards, 1987.
Знайти повний текст джерелаAlbers, John. Results of the Monte Carlo calculation of one- and two-dimensional distributions of particles and damage: Ion implanted dopants in silicon. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Знайти повний текст джерелаQuantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules. Storming Media, 2003.
Знайти повний текст джерелаZhang, Rui-Qin. Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. Springer London, Limited, 2013.
Знайти повний текст джерелаZhang, Rui-Qin. Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. Springer, 2013.
Знайти повний текст джерелаUse of Quantum Mechanical Calculations to Investigate Small Silicon Carbide Clusters. Storming Media, 2001.
Знайти повний текст джерелаЧастини книг з теми "In silico calculations"
Ezebuo, Fortunatus Chidolue, Prem P. Kushwaha, Atul K. Singh, Shashank Kumar, and Pushpendra Singh. "In-silico Methods of Drug Design: Molecular Simulations and Free Energy Calculations." In Phytochemistry: An in-silico and in-vitro Update, 521–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6920-9_28.
Повний текст джерелаRoma, Guido, Yves Limoge, and Layla Martin-Samos. "Oxygen and Silicon Self-Diffusion in Quartz and Silica: The Contribution of First Principles Calculations." In Defect and Diffusion Forum, 542–53. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-36-1.542.
Повний текст джерелаSverdlov, Viktor. "Perturbative Methods for Band Structure Calculations in Silicon." In Computational Microelectronics, 63–81. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0382-1_6.
Повний текст джерелаStrauch, Dieter, B. Dorner, A. A. Ivanov, M. Krisch, J. Serrano, A. Bosak, W. J. Choyke, B. Stojetz, and Michael Malorny. "Phonons in SiC from INS, IXS, and Ab-Initio Calculations." In Silicon Carbide and Related Materials 2005, 689–94. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.689.
Повний текст джерелаMöller, H. J., and H. H. Singer. "Computer Calculations of Grain Boundary Energies in Germanium and Silicon." In Springer Series in Solid-State Sciences, 18–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82441-8_2.
Повний текст джерелаSax, Alexander F., and Thomas Krüger. "Methodological Problems in the Calculations on Amorphous Hydrogenated Silicon, a-Si:H." In Lecture Notes in Computer Science, 950–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47789-6_100.
Повний текст джерелаMakhkamov, Sh, F. Umarova, A. Normurodov, N. Sulaymonov, O. Ismailova, A. E. Kiv, and M. Yu Tashmetov. "Quantum-Chemical Calculations of Pure and Phosphorous Doped Ultra-small Silicon Nanocrystals." In Advanced Nanomaterials for Detection of CBRN, 111–21. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2030-2_7.
Повний текст джерелаDiebel, Milan, Srini Chakravarthi, Scott T. Dunham, and Charles F. Machala. "Ab-initio Calculations to Predict Stress Effects on Boron Solubility in Silicon." In Simulation of Semiconductor Processes and Devices 2004, 37–40. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_9.
Повний текст джерелаWindl, Wolfgang. "Energetics and Kinetics of Defects and Impurities in Silicon from Atomistic Calculations." In Solid State Phenomena, 125–32. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.125.
Повний текст джерелаCheikh, M., M. Deyehe, A. Hairie, F. Hairie, G. Nouet, and E. Paumier. "Energy Calculation of the ∑9{511} Twist Grain Boundary in Silicon." In Springer Proceedings in Physics, 200–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76385-4_27.
Повний текст джерелаТези доповідей конференцій з теми "In silico calculations"
Miranda, Vanessa Regina, and Nelson Henrique Morgon. "Estudo Teórico in silico da Interação entre Geraniol e o Sítio Ativo da Opsina Bovina." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202053.
Повний текст джерелаOrlenson, Vulf, Alim Mazinov, and Alexey Shevchenko. "MODEL FOR CALCULATION OF THE OPTICAL ABSORPTION SPECTRA OF SEMICONDUCTOR MATERIALS." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1607.silicon-2020/224-226.
Повний текст джерелаSakiyama, Yukinori, Shu Takagi, and Yoichiro Matsumoto. "Multiscale Analysis of Silicon LPCVD Reactor." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72051.
Повний текст джерелаMiller, David A. B. "Designing Arbitrary Linear Optical Components Without Calculations." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/iprsn.2014.jm4b.1.
Повний текст джерелаDouhan, R. M. H., A. P. Kokhanenko, and K. A. Lozovoy. "Dark current behaviour analysis for avalanche photodiodes." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.n4-p-052901.
Повний текст джерелаHe, Yuhui, Chun Fan, Yu Ning Zhao, Jinfeng Kang, Xiao Yan Liu, and Ruqi Han. "Band structure calculations of Ge-Si core-shell nanowires." In 2008 IEEE Silicon Nanoelectronics Workshop (SNW). IEEE, 2008. http://dx.doi.org/10.1109/snw.2008.5418413.
Повний текст джерелаItoh, Kohei M. "Single atom calculation in silicon." In 2011 International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 2011. http://dx.doi.org/10.1109/imfedk.2011.5944823.
Повний текст джерелаPark, Yongjin, Ki-jeong Kong, Hyunju Chang, and Mincheol Shin. "Device characteristics of double-gate MOSFETs with Si-dielectric interface model from first principle calculations." In 2010 Silicon Nanoelectronics Workshop (SNW). IEEE, 2010. http://dx.doi.org/10.1109/snw.2010.5562571.
Повний текст джерелаHirasawa, Shigeki, and Satoru Isomura. "Fast Computation of Microscale Temperature Distribution in LSI Chips." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47014.
Повний текст джерелаBalan, Nikita, Vladimir Ivanov, Alexander Pankratov, and Ekaterina Kharchenko. "METHOD FOR CALCULATION OF MASK SPECIFICATION CONTRIBUTION TO LITHOGRAPHIC BUDGETS." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1653.silicon-2020/372-374.
Повний текст джерелаЗвіти організацій з теми "In silico calculations"
Rucinski, Russ. D0 Silicon Upgrade: Control Dewar Valve Calculations. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/1033294.
Повний текст джерелаCease, Herman. D0 Silicon Upgrade: Engineering Calculation for the Silicon Cooling System. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/1481391.
Повний текст джерелаXie, J., and S. P. Chen. Ab initio calculations of As-vacancy interactions in silicon. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/334208.
Повний текст джерелаZhu, Richard, Ernian Pan, Peter W. Chung, Xinli Cai, Kim M. Liew, and Alper Buldum. Atomistic Calculation of Elastic Moduli in Strained Silicon. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada466493.
Повний текст джерелаRucinski, Russ. D0 Silicon Upgrade: West End Assembly Hall Platform Design Calculations. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/1033290.
Повний текст джерелаКів, Арнольд Юхимович, D. Fuks, Наталя Володимирівна Моісеєнко, and Володимир Миколайович Соловйов. Silicon-aluminum bonding in Al alloys. Transport and Telecommunication Institute, 2002. http://dx.doi.org/10.31812/0564/1033.
Повний текст джерелаAnderson, Brent. D0 Silicon Upgrade: A Layer Drawbridge Access: Platforms Calculations and Analysis. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/1481382.
Повний текст джерелаKuwazaki, Andrew, and Todd Leicht. D0 Silicon Upgrade: ASME Code and Pressure Calculations for Liquid Nitrogen Subcooler. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/1033296.
Повний текст джерелаRatzmann, Paul M. D0 Silicon Upgrade: Heat Transfer and Thermal Bowing Calculations of the D0 F-Diskl. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/1033275.
Повний текст джерелаZaczek, Mauiusz. D0 Silicon Upgrade: Calculating Mass Flow Rates at Sub-Sonic Conditions Trhough Venturis (FT-4052-H & FT-4053-H) and an Orifice Plate (F)-2019-H). Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/1033281.
Повний текст джерела