Добірка наукової літератури з теми "Impulse converter"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Impulse converter".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Impulse converter"
Gusev, Nikolay, Larisa Svatovskaya, and Alexandr Kucherenko. "Effect of changing of the parameters of the cable network of monitoring systems of high-rise buildings on the basis of string converters on their operability." E3S Web of Conferences 33 (2018): 02069. http://dx.doi.org/10.1051/e3sconf/20183302069.
Повний текст джерелаSergiienko, Anna S., and Sergej S. Starostin. "IMPULSE MODEL OF A FREQUENCY MATRIX CONVERTER." ELECTRICAL AND COMPUTER SYSTEMS 19, no. 95 (July 2, 2015): 88–91. http://dx.doi.org/10.15276/eltecs.19.95.2015.22.
Повний текст джерелаVolkov, I. V., and S. V. Podolny. "ENERGY CHARACTERISTICS OF THE RESONANT TYPE CONVERTER WITH METERED ENERGY TRANSMISSION." Tekhnichna Elektrodynamika 2021, no. 2 (February 23, 2021): 42–46. http://dx.doi.org/10.15407/techned2021.02.042.
Повний текст джерелаJadeja, R. B., S. A. Kanitkar, and Anurag Shyam. "FFT Analysis of a Series Loaded Resonant Converter-Based Power Supply for Pulsed Power Applications." International Journal of Plasma Science and Engineering 2008 (April 24, 2008): 1–5. http://dx.doi.org/10.1155/2008/284549.
Повний текст джерелаWrzuszczak, Maria, Volodymyr Khoma, and Roman Baran. "Impulse-Code Converter with Selected Resolution and Square-Root Transform Function." Pomiary Automatyka Robotyka 19, no. 4 (December 14, 2015): 21–25. http://dx.doi.org/10.14313/par_218/21.
Повний текст джерелаTang, Bei Bei, Yun Zhang, Zhi Jing Xu, and Jun Li. "Research on Performance of Analog to Information Converter." Applied Mechanics and Materials 333-335 (July 2013): 601–4. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.601.
Повний текст джерелаCHUDAKOV, Alexander I., Valery O. IVASHCHENKO, Alexey P. ZELENCHENKO, and Nikolay V. LYSOV. "Optimization of control systems for suburban trains." Proceedings of Petersburg Transport University 2021, no. 4 (December 2021): 499–506. http://dx.doi.org/10.20295/1815-588x-2021-4-499-506.
Повний текст джерелаAntipina, E. S., S. N. Zhilin, and G. V. Kukinova. "Technological Capabilities of Impulse Rotators." IOP Conference Series: Earth and Environmental Science 988, no. 5 (February 1, 2022): 052002. http://dx.doi.org/10.1088/1755-1315/988/5/052002.
Повний текст джерелаClautice, Edward G. "A presentation of acoustical impulse responses with an analog‐to‐digital converter." Journal of the Acoustical Society of America 81, S1 (May 1987): S31. http://dx.doi.org/10.1121/1.2024189.
Повний текст джерелаRenzi, E., Y. Wei, and F. Dias. "The pressure impulse of wave slamming on an oscillating wave energy converter." Journal of Fluids and Structures 82 (October 2018): 258–71. http://dx.doi.org/10.1016/j.jfluidstructs.2018.07.007.
Повний текст джерелаДисертації з теми "Impulse converter"
Bolyukh, V. F., O. I. Kocherga, and I. S. Shchukin. "Investigation of linear impulse electromechanical converter." Thesis, NTU "KhPI", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32129.
Повний текст джерелаSantos, Kristian Pessoa dos. "Voltage impulse generator using a cascaded boost converter for the inspection of grounding systems." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13994.
Повний текст джерелаThis paper presents the study and development of a voltage impulse generator using a cascaded boost converter topology operating in Discontinuous Conduction Mode (DCM) which will be used for the inspection of grounding systems used by electric power companies. The output voltage of the converter is applied to the grounding system which behaves as a load. The signal applied to the ground was measured by the data acquisition system and analyzed by an intelligent algorithms software. The voltage has the characteristics of a double exponential waveform which is a mathematical model used for study of lightning. Furthermore, the impulse generator has the option to produce a square waveform output voltage. Unlike, the traditional impulse generator with spark gaps, which was disadvantages of poor lifetime and the need of external system to operating the same, the developed generator uses only semiconductor devices in its construction. A theoretical study was carried out through qualitative and quantitative analyzes moreover, the switching process and the losses in the converter components were studied. In this work was performed the design of a cascaded boost converter for evaluating grounding systems with approximated 156 W, input voltage of 110 Vac rms and an output peak voltage of approximately 880 VDC, which correspond to the sum each voltage capacitor of the boost converter, when they are connected in series. A prototype with the indicated specifications was implemented and experimentally tested in the laboratory and real conditions using four grounding systems configurations. Tests were performed considering that the grounding impedance is resistive. The obtained experimental and simulation results are used to validate the theoretical analysis and the designed converter.
Este trabalho apresenta o estudo e desenvolvimento de um gerador de impulsos de tensÃo usando a topologia de um conversor boost em cascata operando em Modo de ConduÃÃo DescontÃnua (MCD) que serà utilizado para inspeÃÃo de sistemas de aterramentos usados pelas concessionÃrias de energia elÃtrica. A tensÃo obtida na saÃda do conversor à aplicada ao sistema de aterramento que se comporta como uma carga. O sinal aplicado ao aterramento à medido pelo sistema de aquisiÃÃo de dados e analisado pelo software por algoritmos inteligentes. A tensÃo aplicada tem as caracterÃsticas de uma onda tipo dupla exponencial que à um modelo matemÃtico para estudo de descargas atmosfÃricas. AlÃm disso, o gerador poderà gerar tensÃes com caracterÃsticas de uma onda quadrada. O gerador de impulsos desenvolvido utiliza apenas dispositivos semicondutores na sua construÃÃo que apresentam as vantagens de possuir uma longa vida Ãtil, podem operar em altas frequÃncias, sÃo acionados com baixa tensÃo e possuem uma baixa queda de tensÃo ao contrÃrio dos tradicionais geradores de impulsos que utilizam os spark gaps para chaveamento que apresentam como desvantagens a baixa vida Ãtil e a necessidade de um sistema externo para funcionamento da mesma. Um estudo teÃrico foi realizado atravÃs das anÃlises qualitativa e quantitativa, alÃm das anÃlises do processo de comutaÃÃo e das perdas nos componentes do conversor. Neste trabalho foi realizado o projeto do conversor boost em cascata para inspeÃÃo de sistemas de aterramento com uma potÃncia aproximada de 156 W, tensÃo de entrada eficaz de 110 Vca e tensÃo de pico de aproximadamente 880 Vcc que corresponde à soma da tensÃo dos capacitores do conversor boost quando estÃo dispostos em sÃrie. Um protÃtipo com as especificaÃÃes indicadas foi construÃdo e testado experimentalmente em laboratÃrio e em campo utilizando quatro topologias de sistemas de aterramento. Foram realizados testes considerando que a impedÃncia de aterramento era puramente resistiva. Os resultados de simulaÃÃo e experimentais obtidos sÃo utilizados para validar a anÃlise teÃrica e o projeto realizado.
Болюх, Володимир Федорович. "Науково-технічні основи створення електромеханічних імпульсних перетворювачів індукційного типу з кріорезистивними обмотками". Thesis, НТУ "ХПІ", 2003. http://repository.kpi.kharkov.ua/handle/KhPI-Press/30142.
Повний текст джерелаThesis for a Doctor's degree in Engineering Sciences by specialty 05.09.01 – Electrical Machines and Apparatus. – National Technical University “Kharkov Polytechnic Institute”, Kharkov, 2003. The dissertation deals with designing electromechanical impulse induction converters (EIIC) with liquid-nitrogen-cooled cryoresistive windings. On the basis of generalization of accumulated data in impulse electromechanics, a technique for designing cryogenic EIICs has been developed which takes into account interrelated electrical, magnetic, thermal, and mechanical complex processes with nonlinear critical parameters. The basic mechanisms of power and energy EIIC functioning which result in linear motion of the armature when the converter is excited from a capacitive accumulator or a constant-voltage source have been revealed. Structure-geometry, circuit, and design approaches for perfecting single- and multi-stage EIICs with valid parameters have been suggested. Experimental data have been obtained to validate developed mathematical models and engineering solutions. The main research results have been utilized and implemented at execution of seven state and commercial research projects, in research enterprises, and for students’ training.
U, Seng-Pan. "Impulse sampled switched-capacitor sampling rate converters." Thesis, University of Macau, 1997. http://umaclib3.umac.mo/record=b1445562.
Повний текст джерелаFiala, Zbyněk. "Budiče spínacích výkonových tranzistorů GaN MOSFET." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242073.
Повний текст джерелаКочерга, Олександр Іванович. "Підвищення ефективності лінійних імпульсних електромеханічних перетворювачів за рахунок мультиякірних конфігурацій". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49202.
Повний текст джерелаDissertation for Candidate of Science Degree in Specialty 05.09.01 "Electrical Machines and Apparatuses" (14 – Electrical Engineering) – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2020. The dissertation work is devoted to the improvement of linear pulse electromechanical converters due to multi - core configurations. To achieve this goal, the following tasks were set: – to analyze the structures and areas of use of linear pulse electromechanical converters of induction, electrodynamics and electromagnetic types as shockpower and accelerating devices; – to implement in the COMSOL Multiphysics software environment a mathematical model of a linear pulse electromechanical converter of multi-core configuration, which takes into account the interconnected electrical, magnetic, mechanical and thermal processes and nonlinear magnetic and thermophysical dependences; – to analyze the electromechanical characteristics of linear pulse electromechanical converters of multicore configurations and to evaluate their efficiency with the help of a complex criterion; – to establish the influence of the shape of the excitation current on the efficiency of linear pulse electromechanical transducers of multicore configurations; – to conduct experimental studies of linear pulse electromechanical transducers, to propose and test models of electromagnetic catapult for unmanned aerial vehicle, magnetic pulse press for ceramic powder materials, electromechanical device for discharging ice and snow deposits from the transmission line wire and transmission line. Object of research – electromechanical processes and indicators of linear pulse electromechanical converters of multicore configurations. Subject of research – linear pulse electromechanical converters of multicore configurations of power and speed purpose. Research methods. Mathematical modeling of electromagnetic, mechanical and thermophysical processes in linear pulse electromechanical converters of pulse action was used to solve the tasks to analyze the electromechanical characteristics and establish the influence of the shape of the excitation current on the efficiency of the converters. Experimental studies of linear pulse electromechanical transducers of multicore configuration were performed on experimental stands, which allowed to test device models. The following scientific results are obtained in the work: – the classification of linear pulse electromechanical converters of multicore configurations, which include ferromagnetic, coil and continuous conductive armature, was further developed; – the mathematical model of the linear pulse electromechanical converter due to inclusion of the ferromagnetic, coil and continuous electrically conductive anchors which interact with a mobile anchor is improved. The mathematical model, which is implemented in the COMSOL Multiphysics software environment, contains interconnected electrical, magnetic, mechanical and thermal processes and takes into account magnetic and thermophysical nonlinear dependencies; – for the first time the peculiarities of the course of electromagnetic processes are established and the electrical, magnetic and power indicators of linear pulse electromechanical converters of multi-core configurations of power purpose are determined. It is shown that almost all converters of multi-arc configurations provide an increase in the amplitude and magnitude of the pulse of electrodynamics forces in comparison with the converter, which has one continuous conductive armature; – for the first time the influence of geometrical parameters of movable and fixed electrically conductive armatures that interact with the movable inductor was established, which allowed to increase the speed indicators of the linear pulse electromechanical converter; – for the first time it is established that when excited by oscillatingattenuating, aperiodic and aperiodic with feeding forms of current in converters of multicore configurations the magnitude of the electrodynamics force pulse increases in comparison with the converter having one continuous electrically conductive armature. The dissertation work was performed at the National Technical University "Kharkiv Polytechnic Institute" and is part of the research work of the Department of General Electrical Engineering. The work was carried out on the basis of financing by state budget topics: "Development of means of increasing the efficiency of linear shock electromechanical accelerators and power devices" (DR №0115U000522), "Improvement of technical systems and devices by means of impulse electromechanical converters. (DR № 0117U004881), the contractual theme "Development and research of high-speed electrodynamics actuator" (at the expense of LLC "TETRA, Ltd", Kharkiv), and the initiative theme "Modern problems and prospects for the development of electrotechnical devices and systems" (DR №0119U002551) where the author was a co-author.
Picmaus, Michal. "Výkonový měnič pro umělou napájecí síť." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220895.
Повний текст джерелаSantos, Kristian Pessoa dos. "Gerador de impulsos de tensão usando um conversor boost em cascata para inspeção de sistemas de aterramento." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/11666.
Повний текст джерелаSubmitted by Marlene Sousa (mmarlene@ufc.br) on 2015-04-27T12:15:09Z No. of bitstreams: 1 2014_dis_kpsantos.pdf: 3381650 bytes, checksum: 04f67570baea97ca0cb1ae70db533de4 (MD5)
Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-04-27T18:05:29Z (GMT) No. of bitstreams: 1 2014_dis_kpsantos.pdf: 3381650 bytes, checksum: 04f67570baea97ca0cb1ae70db533de4 (MD5)
Made available in DSpace on 2015-04-27T18:05:29Z (GMT). No. of bitstreams: 1 2014_dis_kpsantos.pdf: 3381650 bytes, checksum: 04f67570baea97ca0cb1ae70db533de4 (MD5) Previous issue date: 2014-10-03
This paper presents the study and development of a voltage impulse generator using a cascaded boost converter topology operating in Discontinuous Conduction Mode (DCM) which will be used for the inspection of grounding systems used by electric power companies. The output voltage of the converter is applied to the grounding system which behaves as a load. The signal applied to the ground was measured by the data acquisition system and analyzed by an intelligent algorithms software. The voltage has the characteristics of a double exponential waveform which is a mathematical model used for study of lightning. Furthermore, the impulse generator has the option to produce a square waveform output voltage. Unlike, the traditional impulse generator with spark gaps, which was disadvantages of poor lifetime and the need of external system to operating the same, the developed generator uses only semiconductor devices in its construction. A theoretical study was carried out through qualitative and quantitative analyzes moreover, the switching process and the losses in the converter components were studied. In this work was performed the design of a cascaded boost converter for evaluating grounding systems with approximated 156 W, input voltage of 110 Vac rms and an output peak voltage of approximately 880 VDC, which correspond to the sum each voltage capacitor of the boost converter, when they are connected in series. A prototype with the indicated specifications was implemented and experimentally tested in the laboratory and real conditions using four grounding systems configurations. Tests were performed considering that the grounding impedance is resistive. The obtained experimental and simulation results are used to validate the theoretical analysis and the designed converter
Este trabalho apresenta o estudo e desenvolvimento de um gerador de impulsos de tensão usando a topologia de um conversor boost em cascata operando em Modo de Condução Descontínua (MCD) que será utilizado para inspeção de sistemas de aterramentos usados pelas concessionárias de energia elétrica. A tensão obtida na saída do conversor é aplicada ao sistema de aterramento que se comporta como uma carga. O sinal aplicado ao aterramento é medido pelo sistema de aquisição de dados e analisado pelo software por algoritmos inteligentes. A tensão aplicada tem as características de uma onda tipo dupla exponencial que é um modelo matemático para estudo de descargas atmosféricas. Além disso, o gerador poderá gerar tensões com características de uma onda quadrada. O gerador de impulsos desenvolvido utiliza apenas dispositivos semicondutores na sua construção que apresentam as vantagens de possuir uma longa vida útil, podem operar em altas frequências, são acionados com baixa tensão e possuem uma baixa queda de tensão ao contrário dos tradicionais geradores de impulsos que utilizam os spark gaps para chaveamento que apresentam como desvantagens a baixa vida útil e a necessidade de um sistema externo para funcionamento da mesma. Um estudo teórico foi realizado através das análises qualitativa e quantitativa, além das análises do processo de comutação e das perdas nos componentes do conversor. Neste trabalho foi realizado o projeto do conversor boost em cascata para inspeção de sistemas de aterramento com uma potência aproximada de 156 W, tensão de entrada eficaz de 110 Vca e tensão de pico de aproximadamente 880 Vcc que corresponde à soma da tensão dos capacitores do conversor boost quando estão dispostos em série. Um protótipo com as especificações indicadas foi construído e testado experimentalmente em laboratório e em campo utilizando quatro topologias de sistemas de aterramento. Foram realizados testes considerando que a impedância de aterramento era puramente resistiva. Os resultados de simulação e experimentais obtidos são utilizados para validar a análise teórica e o projeto realizado
Kuzdas, Jan. "Nové koncepce výkonových pulsních měničů s použitím extrémně rychlých spínacích polovodičů na bázi karbidu křemíku." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233651.
Повний текст джерелаZemánek, Miroslav. "Užití výkonových měničů ve zdrojích vysokého napětí." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-233463.
Повний текст джерелаКниги з теми "Impulse converter"
Jordan, William Chester. The Apple of His Eye. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691190112.001.0001.
Повний текст джерелаUlianova, Olga, Alessandro Santoni, and Raffaele Nocera. Un protagonismo recobrado: la Democracia Cristiana chilena y sus vínculos internacionales (1973-1990). Ariadna Ediciones, 2021. http://dx.doi.org/10.26448/ae9789566095170.3.
Повний текст джерелаHavard, John Owen. Disaffected Parties. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198833130.001.0001.
Повний текст джерелаDíaz, Melina. Catorce amapolas. Editorial de la Universidad Nacional de La Plata (EDULP), 2017. http://dx.doi.org/10.35537/10915/60592.
Повний текст джерелаЧастини книг з теми "Impulse converter"
Pavan, Shanthi. "Continuous-Time Delta-Sigma Converters with Finite-Impulse-Response (FIR) Feedback." In Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits, 77–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25267-0_5.
Повний текст джерела"Discharge and Flashover Behavior in Oil-Paper." In Electrical Insulation Breakdown and Its Theory, Process, and Prevention, 105–28. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-8885-6.ch004.
Повний текст джерелаKling, David W. "Conclusion." In A History of Christian Conversion, 661–70. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780195320923.003.0025.
Повний текст джерелаWu, Albert Monshan. "The Missionary Impulse." In From Christ to Confucius. Yale University Press, 2016. http://dx.doi.org/10.12987/yale/9780300217070.003.0002.
Повний текст джерелаJain, Vivek, and Navneet Agrawal. "Implement Multichannel Fractional Sample Rate Convertor using Genetic Algorithm." In Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms, 482–94. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8048-6.ch024.
Повний текст джерелаMilic, Ljiljana. "Sampling Rate Converison by a Fractional Factor." In Multirate Filtering for Digital Signal Processing, 171–205. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-178-0.ch006.
Повний текст джерелаWiniarski, Douglas L. "Exercised Bodies, Impulsive Bibles." In Darkness Falls on the Land of Light. University of North Carolina Press, 2017. http://dx.doi.org/10.5149/northcarolina/9781469628264.003.0004.
Повний текст джерелаCressler, Matthew J. "The Living Stations of the Cross." In Authentically Black and Truly Catholic. NYU Press, 2017. http://dx.doi.org/10.18574/nyu/9781479841325.003.0004.
Повний текст джерелаSchainker, Ellie R. "The Genesis of Confessional Choice." In Confessions of the Shtetl. Stanford University Press, 2016. http://dx.doi.org/10.11126/stanford/9780804798280.003.0002.
Повний текст джерелаFitzGerald, David Scott. "Origins and Limits of Remote Control." In Refuge beyond Reach, 41–57. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190874155.003.0003.
Повний текст джерелаТези доповідей конференцій з теми "Impulse converter"
George, A., Balakrishnan Ranjith, A. Samad, and P. V. Dudhgaonkar. "Evaluation of Impulse Turbines for a Wave Energy Converter." In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4567.
Повний текст джерелаZajac, Ludwik, Mariusz Malinowski, Sebastian Stynski, and Marek Jasinski. "A new topology of high instantaneous power impulse converter." In 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2016. http://dx.doi.org/10.1109/cpe.2016.7544207.
Повний текст джерелаZajac, Ludwik, Mariusz Malinowski, Sebastian Stynski, and Marek Jasinski. "A new current control of High Instantaneous Power Impulse Converter." In IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2015. http://dx.doi.org/10.1109/iecon.2015.7392962.
Повний текст джерелаGui, Yu. "Study on the DC-DC Converter with Impulse Sequence Control." In 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). IEEE, 2012. http://dx.doi.org/10.1109/cdciem.2012.163.
Повний текст джерелаGupta, Shalabh, and Bahram Jalali. "Impulse response of the photonic time-stretched analog-to-digital converter." In 2009 IEEE Avionics, Fiber-Optics and Phototonics and Photonics Technology Conference (AVFOP). IEEE, 2009. http://dx.doi.org/10.1109/avfop.2009.5342647.
Повний текст джерелаRadha Sree, K., and Akshay Kumar Rathore. "Impulse commutated zero current switching current-fed three-phase DC/DC converter." In 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2014. http://dx.doi.org/10.1109/pedes.2014.7042130.
Повний текст джерелаIvanova, Yanka, Svetoslav Ivanov, Evgenia Vasileva, and Dimitar Nyagolov. "Control of Impulse Converter with Reverse Energy Transmission with Active Driver Circuit." In 2020 XI National Conference with International Participation (ELECTRONICA). IEEE, 2020. http://dx.doi.org/10.1109/electronica50406.2020.9305097.
Повний текст джерелаdos Santos, Kristian P., Tobias R. F. Neto, and Cicero M. T. Cruz. "Voltage impulse generator using boost converter array applied in electrical grounding systems." In 2015 IEEE 13th Brazilian Power Electronics Conference (COBEP) and 1st Southern Power Electronics Conference (SPEC). IEEE, 2015. http://dx.doi.org/10.1109/cobep.2015.7420210.
Повний текст джерелаIvanova, Yanka, Svetoslav Ivanov, Evgenia Vasileva, and Dimitar Nyagolov. "Control of Impulse Converter with Reverse Energy Transmission with Active Driver Circuit." In 2020 XI National Conference with International Participation (ELECTRONICA). IEEE, 2020. http://dx.doi.org/10.1109/electronica50406.2020.9305097.
Повний текст джерелаTandon, Swati, and Akshay K. Rathore. "Current-Fed Full-Bridge Series LC Resonance Impulse ZCS Commutated DC-DC Converter." In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE). IEEE, 2020. http://dx.doi.org/10.1109/pesgre45664.2020.9070481.
Повний текст джерелаЗвіти організацій з теми "Impulse converter"
López Gross, Juan Pablo, Alison Elías González, César Buenadicha Sánchez, Felipe Muñoz Gómez, Cecilia Franco Segura, and Xoán Fernández García. MIGnnovación: La oportunidad del sector privado y la sociedad civil ante el desafío migratorio en América Latina y el Caribe. Inter-American Development Bank, March 2021. http://dx.doi.org/10.18235/0003096.
Повний текст джерела