Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Implantable cardiac stimulation devices.

Дисертації з теми "Implantable cardiac stimulation devices"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-20 дисертацій для дослідження на тему "Implantable cardiac stimulation devices".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Pannetier, Valentin. "Simulations numériques standardisées de dispositifs de stimulation électrique cardiaque." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0352.

Повний текст джерела
Анотація:
Les maladies cardiovasculaires représentent la principale cause de mortalité dans le monde, responsables d’environ 32% des décès en 2019 selon l’Organisation mondiale de la santé (OMS). Face à ces pathologies, la recherche médicale progresse continuellement pour développer des traitements et des dispositifs toujours plus performants. Parmi ces innovations, les stimulateurs cardiaques implantables jouent un rôle crucial dans le traitement des troubles du rythme cardiaque, en intervenant directement sur le cœur en cas de dysfonctionnement. Cependant, malgré leur importance, le développement de ces technologies reste lent et coûteux. Il faut souvent près d’une décennie entre la conception d’un prototype et sa mise sur le marché, ce qui retarde leur impact sur les vies humaines. Cette thèse s’inscrit dans le cadre du projet européen collaboratif SimCardioTest (EU H2020), dont l’objectif est d’accélérer l’adoption d’outils numériques pour la certification de médicaments et de dispositifs médicaux, tels que les stimulateurs cardiaques implantables. L’un des objectifs principaux du projet est d’intégrer les simulations numériques sous la forme d’essais cliniques in silico dans le processus de certification, afin de rendre ce dernier plus rapide à l’aide d’une plateforme web standardisée. Au cours de cette thèse, plusieurs modèles mathématiques ont été développés et analysés, allant de modèles génériques tridimensionnels à des modèles simplifiés sans dimension spatiale. Tous ces modèles comprennent un circuit électrique inspiré d’un stimulateur cardiaque commercial, des modèles de contacts reproduisant les couches ioniques à la surface des électrodes sous forme de circuits électriques équivalents, ainsi que des modèles de tissu cardiaque avec ou sans propagation spatiale de potentiels d’action cardiaque. La crédibilité de ces modèles est évaluée par des comparaisons avec des expérimentations animales menées durant la thèse, dans le but de démontrer leur capacité à reproduire des stimulations cardiaques réalistes. Ces comparaisons reposent principalement sur les tensions mesurées par les stimulateurs cardiaques et sur l’étude des courbes de seuil, aussi appelées courbes de Lapicque. Ces courbes, largement utilisées en clinique pour ajuster les stimulateurs, établissent la relation entre la durée et l’amplitude de la stimulation nécessaires pour provoquer une contraction cardiaque efficace. Elles permettent en particulier d’optimiser, en personnalisant individuellement, les réglages des stimulateurs, et ainsi de minimiser la consommation d’énergie, maximiser la durée de vie du dispositif, et ainsi améliorer le confort de vie des patients. L’adoption de modèles simplifiés sans dimension constitue une étape stratégique importante de cette thèse. Contrairement aux modèles spatiaux, très coûteux à résoudre numériquement, ces modèles sont plus simples à résoudre et ils ont permis de réaliser plusieurs études paramétriques, notamment pour effectuer une calibration à partir des données expérimentales. Des études supplémentaires de sensibilité, locales et globales, ont également été menées afin d’analyser l’influence et la pertinence des paramètres dans les modèles développés
Cardiovascular diseases are the world’s leading cause of death, responsible for around 32% of all deaths in 2019, according to the World Health Organization (WHO). Faced with these pathologies, medical research is making constant progress to develop ever more effective treatments and devices. Among these innovations, implantable pacemakers play a crucial role in the treatment of cardiac rhythm disorders, intervening directly on the heart in the event of malfunction. Despite, despite their importance, the development of these technologies remains slow and costly. It often takes almost a decade from early prototyping to market launch, delaying their impact on human lives. This thesis is part of the European collaborative project SimCardioTest (EU H2020), which aims to accelerate the adoption of numerical tools for the certification of drugs and medical devices, such as implantable pacemakers. One of the main goals of the project is to integrate numerical simulations in the form of in silico clinical trials on a standardized web plateform in oirder to speed up thecertification process. During of this thesis, several mathematical models were developed and analyzed, ranging from generic three-dimensional models to simplified models with no spatial dimension. All these models include a electrical circuit inspired by a commercial pacemaker, contact models representing the ionic layers on electrode surfaces as equivalent electrical circuits, and cardiac tissue models with or without spatial propagation of cardiac action potentials. The credibility of these models is assessed through comparisons with animal experiments conducted during the thesis, with the aim of demonstrating their ability to reproduce realistic cardiac stimulations. These comparisons are based mainly on the voltages measured by pacemakers and on the study of threshold curves, also known as Lapicque curves. These curves, widely used clinically to adjust pacemakers, establish the relationship between stimulation duration and amplitude required to induce an effective cardiac contraction. In particular, they enable pacemaker settings to be optimized through individual customization, thereby minimizing energy consumption, maximizing device life, and therefore improving patient’s life quality. The adoption of simplified dimensionless models is an valuable strategic step in this thesis. Unlike spatial models, which are very costly to solve numerically, these models are simpler to solve and have enabled several parametric studies to be carried out, in particular to perform calibration using experimental data. Additional sensitivity studies, both local and global, were also carried out to analyze the influence and relevance of the parameters in the developed models
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Satya, Sarina. "ST Monitoring on the Programmer for Implantable Cardioverter Devices." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/258.

Повний текст джерела
Анотація:
Cardiovascular disease is one of the most prevalent causes of death which has a high mortality rate. If identified early and treated appropriately, the mortality in patients with cardiovascular disease can be hugely reduced. For several decades, 12-Lead ECG has been the standard technique used to identify ischemia, and recent studies have shown that intracardiac electrogram has many benefits over external monitoring such as holter. ST Monitoring feature has been added to St. Jude Medical intracardiac cardioverter defibrillators (ICD) to leverage the ECG technology for identifying cardiovascular disease. This algorithm monitors the intracardiac electrogram to detect and report patterns which could be related to ischemic events. This feature is expected to enhance the process of identifying ischemia and infarction, and provides long-term management of the disease. In order to support the new implantable devices with ST Monitoring capability, the programmer software was updated to support this new feature in the device. This thesis discusses the work on the programmer. Chapter 1 begins with a background of how monitoring technology in an implantable device can benefit the patients facing high risk of myocardial infarction. Chapter 2 states the objective for the work on the programmer. Chapter 3 describes the implementation and the application of this feature. Conclusion and future development are discussed in Chapter 5.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maghsoudloo, Esmaeel, and Esmaeel Maghsoudloo. "Wireless power transfer for combined sensing and stimulation in implantable biomedical devices." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33348.

Повний текст джерела
Анотація:
Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.
Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.
Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.
Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.
Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.
Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cordero, Álvarez Rafael. "Subcutaneous Monitoring of Cardiac Activity for Chronically Implanted Medical Devices." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS020.

Повний текст джерела
Анотація:
L'objectif de cette thèse de doctorat est le développement de capteurs et d'algorithmes pour une meilleure surveillance de l'activité cardiaque dans un défibrillateur cardioverteur implantable sous-cutané (S-ICD), et plus précisément pour améliorer la spécificité de détection des tachyarythmies dangereuses telles que la tachycardie ventriculaire (TV) et la fibrillation ventriculaire (FV) dans le S-ICD. Deux schémas de détection TV/FV indépendants ont été développés dans ce but : l'un de nature électrophysiologique et l'autre hémodynamique. Le schéma de détection électrophysiologique repose sur un ECG spécial qui a été enregistré le long d'un dipôle «court» situé au-dessus du grand pectoral inférieur gauche. Ce dipôle court maximise le rapport R/T et le rapport signal/bruit chez 9 volontaires sains. En théorie, cela devrait réduire le risque de détections faussement positives de TV/ FV simplement en raison de la taille, de l'emplacement et de l'orientation du dipôle, indépendamment de toute autre méthode de traitement du signal. Le schéma de détection hémodynamique repose quant à lui sur les vibrations cardiaques enregistrées par deux prototypes de capteurs accéléromètres triaxiaux. Les vibrations cardiaques sous-cutanées mesurées ont été caractérisées, validées physiologiquement et optimisées via leur filtrage le long de bandes passantes spécifiques et leur projection le long d'un référentiel spécifique patient. Le premier algorithme au monde indépendant de détection de FV par vibration cardiaque a été développé en opérant sur ces signaux optimisés. Les mêmes prototypes d'accéléromètre se sont également avérés capables d'enregistrer des accélérations respiratoires et de détecter l'apnée. Enfin, un dernier prototype de sonde sous-cutanée composite, composé de trois électrodes, d'un accéléromètre bi-axial et de connecteurs d'appareil standard. Ce prototype est capable d'enregistrer l'ECG dipolaire court, les vibrations cardiaques et les accélérations respiratoires. Cette sonde prototype a été implantée dans un quatrième et dernier animal
The aim of this doctoral thesis was the development of sensors and algorithms for the improved monitoring of cardiac activity in the subcutaneous implantable cardioverter-defibrillator (SICD). More precisely, to improve the detection specificity of dangerous tachyarrhythmia such as ventricular tachycardia (VT) and ventricular fibrillation (VF). Two independent VT/VF detection schemes were developed for this: one electrophysiological in nature, and the other hemodynamic. The electrophysiological sensing scheme relied on a special ECG that was recorded along a short dipole located above the lower left pectoralis major. This short dipole maximised R/T ratio and signal-to-noise ratio in a total of 9 healthy volunteers. In theory, it will reduce the risk of false positive VT/VF detections simply by consequence of the dipole size, location, and orientation and independently of any further signal processing methods. The hemodynamic sensing scheme relied on cardiac vibrations recorded from two tri-axial accelerometer prototype sensors. These subcutaneous cardiac vibrations were characterised, physiologically validated, and optimised via their filtering along specific bandwidths and projection along a patient specific reference frame. The world’s first independent cardiac vibration VF detection algorithm was developed operating on these optimised signals. The same accelerometer prototypes were also shown to be able to record respiratory accelerations and detect apnoea. A final subcutaneous lead prototype was developed capable of recording the short dipole ECG, cardiac vibrations, and respiratory accelerations. It consisted of three electrodes, a bi-axial accelerometer, and industry-standard device connectors. The prototype lead was implanted in a fourth and final animal
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Salih, Anmar Mahdi. "Characterization of In-Vivo Damage in Implantable Cardiac Devices and the Lead Residual Properties." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1557851495921852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hudson, Felicity Jane. "Monitoring the effect of Radiation Therapy on cardiac implantable electronic devices to assess patient risk." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13901.

Повний текст джерела
Анотація:
Given the overlap in risk factors between cardiac disease and cancer, it is likely that the number of patients presenting to radiation therapy departments with cardiac implantable electronic devices (CIEDs) will continue to increase. CIED malfunction during radiation therapy is poorly understood, and there is a need for further investigation into the efficacy of current departmental protocols. This research aimed to assess the risks associated with radiation therapy when treating CIED patients, and whether these may be managed by the use of a treatment protocol. The research concluded that severe soft errors may be associated with up to a 22.2% failure rate of implantable cardioverter defibrillators (ICDs) treated at 18MV when not exposed to the direct beam; when exposed to the direct radiation beam the risk is increased with the severity of errors increased at 18MV when compared to 6MV in both ICDs and Pacemakers (PM). Removal of the CIED from the treatment field decreased, but did not eliminate, the risk associated with both low and high photon energy treatment. ICDs continued to prove more sensitive to radiation than PMs, with failure not considered a dose driven effect. Maximum heart doses during radiation therapy greater than 20Gy were associated with changes in PMs that may indicate early failure. Previous treatment, treatment technique and treatment intent did not affect the risk of failure. The implementation of management protocols during radiation therapy proved to be effective in managing these patients. CIED patients may be safely treated using radiation therapy when there is a departmental protocol followed with adequate cardiac monitoring during and after treatment. This research suggests limiting the treatment energy used in CIED irradiation to less than 10MV, and reducing the maximum accumulated heart dose to 40Gy. A number of radiation therapy treatment recommendations are included as a vital update to current protocols.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ASLIAN, HOSSEIN. "EFFECT OF MODERN RADIOTHERAPY ON PATIENTS WITH CARDIAC IMPLANTABLE ELECTRONIC DEVICES (CIEDs): A COMPREHENSIVE STUDY." Doctoral thesis, Università degli Studi di Trieste, 2020. http://hdl.handle.net/11368/2960311.

Повний текст джерела
Анотація:
During the last decades, cardiac implantable electronic device (CIED) therapy has become first line therapy for those who are at risk for life-threatening ventricular arrhythmias and those survived cardiac arrest. Therefore, there has be a continuous increase in the number of patients with CIEDs, especially in Europe and Italy. Also, the number of new cancer patients is expected to experience an increase of 53% for 2030. Because radiotherapy (RT) is considered as one of the main component of cancer treatment, approximately 50% of cancer patients will receive at least one course of RT during their treatment. Accordingly, over the last decades, there has been an ever-increasing growth in the number of cancer patients and comorbid cardiovascular disease using CIEDs. Since the publication of the American Association of Physicists in Medicine (AAPM)-TG34 report, as the earliest guideline published for the management of patients with CIEDs receiving general radiotherapy (RT) in 1994, technologies pertaining to all elements of the chain of RT have progressed. These developments, coupled with advancements in CIED technology, have led to a need for more research on this topic. Due to this fact, many studies have focused on the effect of radiotherapy on patients with CIEDs, and many aspects of this field have been investigated in the literature. However, with the widespread implementation of advanced RT technologies and techniques, the need to consider the different challenges of modern RT techniques when managing patients with CIEDs has arisen. The main goal of this comprehensive study is to investigate effects of modern radiotherapy on CIED patients. The thesis is divided in five chapters with an introductory chapter providing a very short explanation of CIED therapy and number of cancer patients with CIEDs. In the first part of the study, chapter2, a deep review of the literature and analysis study have been conducted. This review and analysis highlighted the available sparse information in the literature and ended up by posing questions for future research. In the second part of the research, chapter 3, the use of image-guided radiotherapy (IGRT) in patients with CIEDs was investigated. Accordingly, a multicenter dosimetry study to evaluate the imaging dose from Elekta XVI and Varian OBI kV-CBCT systems to cardiovascular implantable electronic devices (CIEDs) was carried out at four centers in the north of Italy, including university hospital of Trieste, Trento, Brescia, and Udine. The results of this study were applied to add new data in the literature and Associazione Italiana di Fisica Medica (aifm) working group. In the third part, chapter 4, the effect of a stereotactic body radiotherapy (SBRT) using flattening filter-free beams on implantable cardioverter-defibrillators (ICDs), as widespread modern modality for the treatment of cancer, was done. First, a retrospective analysis of patients with CIEDs who underwent radiosurgery SBRT and radiosurgery (SRS) at Peter MacCallum Cancer Centre (the largest cancer research group in Australia) between 2014 and 2018 was performed. This was complemented through a phantom study through a multidisciplinary study between medical physicists, radiation oncologists and electrophysiologists at the university of Trieste, Peter Mac and Royal Melbourne Hospital. The results of this study were used to update some of the policies applied to manage CIED patients undergoing SBRT/SRS at PeterMac. In the last part of this comprehensive study, chapter 5, a Monte Carlo (MC) study of out-of-field doses from an ELEKTA 6 and 15 MV photon beam in a homogeneous water phantom at depth of CIED and clinical depth was conducted. Correspondingly, a comparison between the MC results with MONACO treatment planning system (TPS), as a Monte Carlo-based TPS, and radiation dosimetry measurements was carried out to evaluate the accuracy of dose calculation outside the field, where a CIED is usually located.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Braunschweig, Frieder. "Implantable devices in heart failure : studies on biventricular pacing and continuous hemodynamic monitoring /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-345-7/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Boilevin-Kayl, Ludovic. "Modeling and numerical simulation of implantable cardiovascular devices." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS039.

Повний текст джерела
Анотація:
Cette thèse, réalisée dans le cadre du projet Mivana, est consacrée à la modélisation et à la simulation numérique de dispositifs cardiaques implantables. Ce projet est mené par les start-up Kephalios et Epygon, concepteurs de solutions chirurgicales non invasives pour le traitement de la régurgitation mitrale. La conception et la simulation de tels dispositifs nécessitent des méthodes numériques efficaces et précises capables de calculer correctement l’hémodynamique cardiaque. C’est le but principal de cette thèse. Dans la première partie, nous décrivons le système cardiovasculaire et les valves cardiaques avant de présenter quelques éléments de théorie concernant la modélisation mathématique de l’hémodynamique cardiaque. En fonction du degré de complexité adopté pour la modélisation des feuillets de la valve, deux approches sont identifiées : le modèle de surfaces résistives immergées et le modèle complet d’interaction fluide-structure. Dans la deuxième partie, nous étudions la première approche qui consiste à combiner une modélisation réduite de la dynamique des valves avec un découplage cinématique de l’hémodynamique cardiaque et de l’électromécanique. Nous l’enrichissons de données physiologiques externes pour la simulation correcte des phases isovolumétriques, pierres angulaires du battement cardiaque, permettant d’obtenir un modèle relativement précis qui évite la complexité des problèmes entièrement couplés. Ensuite, une série d’essais numériques sur des géométries 3D physiologiques, impliquant la régurgitation mitrale et plusieurs configurations de valves immergées, illustre la performance du modèle proposé. Dans la troisième et dernière partie, des modèles complets d’interaction fluide-structure sont considérés. Ce type de modélisation est nécessaire pour étudier des problèmes plus complexes où la précédente approche n’est plus satisfaisante, comme par exemple le prolapsus de la valve mitrale ou la fermeture d’une valve mécanique. D’un point de vue numérique, le développement de méthodes précises et efficaces est indispensable pour pouvoir simuler de tels cas physiologiques. Nous considérons alors une étude numérique complète dans laquelle plusieurs méthodes de maillages non compatibles sont comparées. Puis, nous présentons un nouveau schéma de couplage explicite dans le cadre d’une méthode de type domaine fictif pour lequel la stabilité inconditionnelle au sens de la norme en énergie est démontrée. Plusieurs exemples numériques en 2D sont proposés afin d’illustrer les propriétés et les performances de ce schéma. Enfin, cette méthode est finalement utilisée pour la simulation numérique 2D et 3D de dispositifs cardiovasculaires implantables dans un modèle complet d’interaction fluide-structure
This thesis, taking place in the context of the Mivana project, is devoted to the modeling and to the numerical simulation of implantable cardiovascular devices. This project is led by the start-up companies Kephalios and Epygon, conceptors of minimally invasive surgical solutions for the treatment of mitral regurgitation. The design and the simulation of such devices call for efficient and accurate numerical methods able to correctly compute cardiac hemodynamics. This is the main purpose of this thesis. In the first part, we describe the cardiovascular system and the cardiac valves before presenting some standard material for the mathematical modeling of cardiac hemodynamics. Based on the degree of complexity adopted for the modeling of the valve leaflets, two approaches are identified: the resistive immersed surfaces model and the complete fluidstructure interaction model. In the second part, we investigate the first approach which consists in combining a reduced modeling of the valves dynamics with a kinematic uncoupling of cardiac hemodynamics and electromechanics. We enhance it with external physiological data for the correct simulation of isovolumetric phases, cornerstones of the heartbeat, resulting in a relatively accurate model which avoids the complexity of fully coupled problems. Then, a series of numerical tests on 3D physiological geometries, involving mitral regurgitation and several configurations of immersed valves, illustrates the performance of the proposed model. In the third and final part, complete fluid-structure interaction models are considered. This type of modeling is necessary when investigating more complex problems where the previous approach is no longer satisfactory, such as mitral valve prolapse or the closing of a mechanical valve. From the numerical point of view, the development of accurate and efficient methods is mandatory to be able to compute such physiological cases. We then consider a complete numerical study in which several unfitted meshes methods are compared. Next, we present a new explicit coupling scheme in the context of the fictitious domain method for which the unconditional stability in the energy norm is proved. Several 2D numerical examples are provided to illustrate the properties and the performance of this scheme. Last, this method is finally used for 2D and 3D numerical simulation of implantable cardiovascular devices in a complete fluid-structure interaction framework
Стилі APA, Harvard, Vancouver, ISO та ін.
10

MIGNANO, Antonino. "IMPACT OF REMOTE MONITORING AND ATRIAL HIGH RATE EPISODES ON OUTCOME OF PATIENTS WITH CARDIAC IMPLANTABLE ELECTRONIC DEVICES." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/515509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Castagnola, Valentina. "Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2646/.

Повний текст джерела
Анотація:
Les prothèses neuronales implantables offrent de nos jours une réelle opportunité pour restaurer des fonctions perdues par des patients atteints de lésions cérébrales ou de la moelle épinière, en associant un canal non-musculaire au cerveau ce qui permet la connexion de machines au système nerveux. La fiabilité sur le long terme de ces dispositifs, se présentant sous la forme d'électrodes implantables, est un facteur crucial pour envisager des applications dans le domaine des interfaces cerveau-machine. Cependant, les électrodes actuelles pour l'enregistrement et la stimulation se détériorent en quelques mois voire quelques semaines. Ce défaut de fiabilité sur le long terme, principalement lié à une réaction chronique contre un corps étranger, est induit au départ par le traumatisme consécutif à l'insertion du dispositif et s'aggrave ensuite, durant les mouvements du cerveau, à cause des propriétés mécaniques inadaptées de l'électrode par rapport à celles du tissu. Au cours du temps, l'ensemble de ces facteurs inflammatoires conduit à l'encapsulation de l'électrode par une couche isolante de cellules réactives détériorant ainsi la qualité de l'interface entre le dispositif implanté et le tissu cérébral. Pour s'affranchir de ce phénomène, la biocompatibilité des matériaux et des procédés, ainsi que les propriétés mécaniques de l'électrode doivent être pris en considération. Durant cette thèse, nous avons abordé la question en développant un procédé de fabrication simple pour réaliser des dispositifs implantables souples en parylène. Les électrodes flexibles ainsi obtenues sont totalement biocompatibles et leur compliance est adaptée à celle du tissu cérébral ce qui limite fortement la réaction inflammatoire occasionnée par les mouvements du cerveau. Après avoir optimisé le procédé de fabrication, nous avons focalisé notre étude sur les performances du dispositif et sa stabilité. L'utilisation d'une grande densité d'électrodes micrométriques, avec un diamètre de 10 à 50 µm, permet de localiser les zones d'enregistrement en rendant possible, par exemple, la conversion d'un ensemble de signaux électrophysiologiques en une commande de mouvement. En contrepartie, la réduction de la taille des électrodes conduit à une augmentation de l'impédance ce qui dégrade la qualité d'enregistrement des signaux. Ici, un polymère conducteur organique, le poly(3,4-ethylenedioxythiophene), PEDOT, a été utilisé pour améliorer les caractéristiques électriques d'enregistrement d'électrodes de petites dimensions. Le PEDOT a été déposé sur la surface des électrodes par électrochimie avec une grande reproductibilité. Des dépôts homogènes avec des conductivités électriques très élevées ont été obtenus en utilisant différents procédés électrochimiques. Grâce à l'augmentation du rapport surface/volume induit par la présence de la couche de PEDOT, une diminution significative de l'impédance de l'électrode (jusqu'à 3 ordres de grandeur) a été obtenue sur une large plage de fréquences. De tests de vieillissement thermique accéléré ont également été effectués sans influence notable sur les propriétés électriques démontrant ainsi la stabilité de la couche de PEDOT durant plusieurs mois. Les dispositifs ainsi obtenus, fabriqués en parylène avec un dépôt de PEDOT sur la surface active des électrodes, ont été testés in vitro et in vivo sur des cerveaux de souris. Un meilleur rapport signal sur bruit a été mesuré durant des enregistrements neuronaux en comparaison avec des résultats obtenus avec des électrodes commerciales. En conclusion, la technologie décrite ici, associant stabilité sur le long terme et faible impédance, a permis d'obtenir des électrodes implantables parfaitement adaptées pour le développement d'interfaces neuronales chroniques
Implantable neural prosthetics devices offer, nowadays, a promising opportunity for the restoration of lost functions in patients affected by brain or spinal cord injury, by providing the brain with a non-muscular channel able to link machines to the nervous system. The long term reliability of these devices constituted by implantable electrodes has emerged as a crucial factor in view of the application in the "brain-machine interface" domain. However, current electrodes for recording or stimulation still fail within months or even weeks. This lack of long-term reliability, mainly related to the chronic foreign body reaction, is induced, at the beginning, by insertion trauma, and then exacerbated as a result of mechanical mismatch between the electrode and the tissue during brain motion. All these inflammatory factors lead, over the time, to the encapsulation of the electrode by an insulating layer of reactive cells thus impacting the quality of the interface between the implanted device and the brain tissue. To overcome this phenomenon, both the biocompatibility of materials and processes, and the mechanical properties of the electrodes have to be considered. During this PhD, we have addressed both issues by developing a simple process to fabricate soft implantable devices fully made of parylene. The resulting flexible electrodes are fully biocompatible and more compliant with the brain tissue thus limiting the inflammatory reaction during brain motions. Once the fabrication process has been completed, our study has been focused on the device performances and stability. The use of high density micrometer electrodes with a diameter ranging from 10 to 50 µm, on one hand, provides more localized recordings and allows converting a series of electrophysiological signals into, for instance, a movement command. On the other hand, as the electrode dimensions decrease, the impedance increases affecting the quality of signal recordings. Here, an organic conductive polymer, the poly(3,4-ethylenedioxythiophene), PEDOT, has been used to improve the recording characteristics of small electrodes. PEDOT was deposited on electrode surfaces by electrochemical deposition with a high reproducibility. Homogeneous coatings with a high electrical conductivity were obtained using various electrochemical routes. Thanks to the increase of the surface to volume ratio provided by the PEDOT coating, a significant lowering of the electrode impedance (up to 3 orders of magnitude) has been obtained over a wide range of frequencies. Thermal accelerated ageing tests were also performed without any significant impact on the electrical properties demonstrating the stability of the PEDOT coatings over several months. The resulting devices, made of parylene with a PEDOT coating on the active surface of electrodes, have been tested in vitro and in vivo in mice brain. An improved signal to noise ratio during neural recording has been measured in comparison to results obtained with commercially available electrodes. In conclusion, the technology described here, combining long-term stability and low impedance, make these implantable electrodes suitable candidates for the development of chronic neural interfaces
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Chalon, Antoine. "Développement d’un dispositif médical implantable d’assistance ventriculaire par compression cardiaque directe : l’exosquelette cardiaque." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0313.

Повний текст джерела
Анотація:
L’assistance ventriculaire constitue une voie thérapeutique prometteuse de l’insuffisance cardiaque terminale. En dépit des progrès, notamment dans le développement des assistances de type shunt ventriculo-aortique, les écueils relatifs à l’encombrement, à l’alimentation et/ou aux interactions avec le sang de ces dispositifs limitent leur application clinique. Récemment, le concept de Compression Cardiaque Directe (DCC) apparaît comme une piste prometteuse en palliant les difficultés sus-citées. Dans ce travail de thèse, nous avons mis l’accent sur la conception et le test de faisabilité d’une solution de Compression Cardiaque Directe de type mécanique et entièrement implantable appelée l’Exosquelette Cardiaque. Notre travail expérimental a porté, dans un premier temps, sur la conception assistée par ordinateur et sur la modélisation numérique permettant ainsi d’optimiser et de prédire (i) les interactions tissus myocardiques/dispositifs et (ii) les pressions ventriculaires générées. Ensuite, un prototype fonctionnel a été réalisé par fabrication additive (titane, polymères) en s’appuyant sur les données issues de la modélisation et en respectant les contraintes énergétiques, mécaniques et architecturales anatomiques. Enfin, nous avons conduit une phase d’évaluation du potentiel de ce dispositif original sur un modèle de cœur ex vivo. Nous avons pu concevoir et valider un modèle numérique fondé sur le principe des éléments finis. Ce modèle à la fois simple et robuste, a permis de simuler (i) l’impact des points de fixation du dispositif sur le tissu cardiaque, (ii) l’efficacité de la compression externe sur la genèse des pressions intraventriculaires et (iii) l’influence de la compression mécanique externe sur le tissu cardiaque. Le prototype issu de ce travail de thèse a pu produire des résultats prometteurs concernant (i) la restauration physiologique de la pression intraventriculaire, (ii) la consommation énergétique suffisamment basse et (iii) le design compatible avec les contraintes anatomiques thoracique. L’ensemble de ces résultats esquissent la possibilité d’une implantation totale de l’Exosquelette Cardiaque chez le patient
Ventricular assistance is a promising therapeutic pathway for terminal chronic heart failure. Notwithstanding the progress made for the development of aorto-ventricular shunt pump among other things, the difficulties relatives to footprint, power supply and/or blood-device interactions are somehow limiting their clinical applications. Recently, direct cardiac compression (DCC) was suggested as a promising lead to overcome the difficulties mentioned above. In this work, we focused on the design and the feasibility of an implantable and mechanical Direct Cardiac Compression device called: The Cardiac Exosqueleton. Our experimental work used Computer Assisted Design (CAD) and numerical modeling to optimize and predict (i) tissue-device interactions and (ii) pressure generation inside ventricular cavities. Then, a functional prototype was realized by additive manufacturing (titanium, polymer) with the help of modeling data and with respect to the anatomical, mechanical and energetical limitations. Finally, we conducted an evaluation of the ability of our device on both in vitro setup and ex vivo heart. We were able to conceive and validate a numerical model based on finite element techniques. This simple yet robust model allowed us to study (i) the impact of suture fixation of a device at the apex of the heart, (ii) the influence of the direct cardiac compression on intracardiac pressures and (iii) overall and local tissue stress in the myocardium. Our prototype showed promising results concerning (i) the restoration of physiological intraventricular pressures, (ii) a low energy consumption and (iii) a shape that is compatible with the thoracic anatomical constraints. All of these results allow us to envision a total implantation of the cardiac exoskeleton into the patient
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Rosatti, Silvio Fernando Castro. "Ressonância magnética de tórax em portadores de dispositivos cardíacos eletrônicos implantáveis condicionais para RM : contraindicação clássica ou exame seguro?" Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7187.

Повний текст джерела
Анотація:
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-14T14:02:58Z No. of bitstreams: 1 TeseSFCR.pdf: 2145878 bytes, checksum: 25a0ab9d4040cd73e66e1592d64617c4 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T14:00:49Z (GMT) No. of bitstreams: 1 TeseSFCR.pdf: 2145878 bytes, checksum: 25a0ab9d4040cd73e66e1592d64617c4 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T14:00:55Z (GMT) No. of bitstreams: 1 TeseSFCR.pdf: 2145878 bytes, checksum: 25a0ab9d4040cd73e66e1592d64617c4 (MD5)
Made available in DSpace on 2016-09-15T14:01:03Z (GMT). No. of bitstreams: 1 TeseSFCR.pdf: 2145878 bytes, checksum: 25a0ab9d4040cd73e66e1592d64617c4 (MD5) Previous issue date: 2015-03-30
Outra
The use of Magnetic Resonance Imaging (MRI) as a diagnostic imaging has grown every year due to its great benefits. MRI is a noninvasive test and decisiveness for diagnosis of various diseases and is widely used around the world. With the extension of human longevity, it is increasingly necessary to use new technologies for diagnosis and treatment of diseases. It is known that with increasing age, the individual develops certain diseases that require surgical correction resulting often the implant fixtures as, Cardiac Implantable Electronic Devices (DCEIs). Even though technologies that broke paradigms and transformed lives, extending life expectancy and facilitating diagnoses that were previously impossible and bad, these two medical advances were antagonists until recently, strictly forbidden and that patients with DCEI do use the examination RM due to the interference that this test could cause the DCEI and so harm the health of the patient. As this diagnostic imaging technology cannot be applied to most existing implants, it may be necessary to use alternatives with side effects or less valuable diagnostic information. Because it is an important and necessary for the progress of medical diagnostic advance, the potential risks and the influence of MRI on pacemakers have become research topic over the last ten years. As a result, we acquired a comprehensive understanding of the associated problems. This understanding and solutions to these problems have been integrated in the development of secure devices for MRI (MRI Pro). The objectives of this study were to determine if there is interference DCEI the image generated by Thoracic MRI and thus to understand their influence on the outcome of the review, and determine whether there were significant changes in the operation of this DCEI. Thoracic MRI was performed in 20 patients with DCEIs. The generated image, artifacts and pre and post test parameters were analyzed and compared; coming to the conclusion that Thoracic MRI in patients with DCEIs Pro MRI can be performed safely without changing the operation of the devices and without damaging the image of RM, since some rules and conditions are followed.
O uso da Ressonância Magnética (RM) como método de diagnóstico por imagem tem crescido a cada ano devido aos seus grandes benefícios. A RM é um exame não-invasivo e de caráter decisivo para diagnóstico de diversas doenças, sendo largamente usado ao redor do mundo. Com o prolongamento da longevidade humana, se faz cada vez mais necessário o uso de novas tecnologias para diagnóstico e tratamento de patologias. Sabe-se que com o avanço da idade, o indivíduo desenvolve certas doenças que necessitam correção cirúrgica acarretando, muitas vezes, o implante de dispositivos elétricos como, Dispositivos Cardíacos Eletrônicos Implantáveis (DCEIs). Mesmo sendo tecnologias que romperam paradigmas e transformaram vidas, prolongando a expectativa de vida e facilitando diagnósticos que antes eram impossíveis e duvidosos, esses dois avanços da medicina eram antagonistas até pouco tempo atrás, sendo terminantemente proibido que pacientes portadores de DCEI fizessem uso do exame de RM devido as interferências que este exame poderia causar no DCEI e assim prejudicar a saúde do paciente. Como essa tecnologia de diagnóstico por imagem não pode ser aplicada na maioria dos implantes existentes, pode ser necessário recorrer a alternativas com efeitos colaterais ou informações diagnósticas menos valiosas. Por se tratar de um avanço importante e necessário para o progresso da medicina diagnóstica, os riscos em potenciais e a influência do exame de RM sobre os marcapassos se tornaram tema de pesquisa no decorrer dos últimos dez anos. Como resultado foi adquirido um entendimento abrangente dos problemas associados. Este entendimento e as soluções para esses problemas foram integradas no desenvolvimento de dispositivos seguros para o exame de RM (Pro MRI). Os objetivos deste estudo foram determinar se existe interferência do DCEI na imagem gerada pela RM de Tórax e assim entender sua influência no resultado final do exame, e determinar se ocorreram alterações significativas no funcionamento desses DCEI. Foram realizados exames de RM de Tórax em 20 portadores de DCEIs. A imagem gerada, os artefatos e os parâmetros pré e pós exame foram analisados e comparados, chegando-se à conclusão de que o exame de RM de Tórax em portadores de DCEIs Pro RMI pode ser realizado com segurança, sem alterar o funcionamento dos dispositivos e sem prejudicar a imagem da RM, desde que algumas regras e condições sejam seguidas corretamente.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gercek, Cihan. "Immunité des implants cardiaques actifs aux champs électriques de 50/60 Hz." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0226/document.

Повний текст джерела
Анотація:
La directive européenne 2013/35/UE précise les exigences minimales pour la protection des travailleurs exposés aux champs électromagnétiques et définit les porteurs d’implants comme travailleurs à risques particuliers. Concernant les porteurs de défibrillateur automatique implantable (DAI) ou de stimulateur cardiaque (SC), l’exposition au champ électrique ou magnétique d’extrêmement basse fréquence crée des inductions à l'intérieur du corps humain pouvant générer une tension perturbatrice susceptible de causer le dysfonctionnement de l’implant. Le sujet de ce travail de thèse porte sur la compatibilité électromagnétique des implants cardiaques soumis à un champ électrique basses fréquences (50/60 Hz). Des simulations numériques ont été effectuées afin de concevoir un banc expérimental pour l’exposition de fantômes incluant des stimulateurs ou des défibrillateurs implantables. Une étude expérimentale a permis d’établir par provocation les seuils de champ électrique permettant d’éviter tout dysfonctionnement éventuel de l’implant. Dans la partie simulation numérique ; un modèle humain virtuel (fantôme numérique contenant un implant cardiaque) a été placé en position debout sous une exposition verticale à un champ électrique. La méthode des éléments finis a été utilisée pour définir les phénomènes induits au niveau de l’implant cardiaque avec une résolution de 2mm (logiciel CST®). Dans la partie expérimentale, un banc d'essai dimensionné pour permettre de générer un champ électrique pouvant atteindre 100 kV/m aux fréquences 50-60 Hz a été conçu, optimisé et réalisé afin d’analyser le comportement des implants cardiaques. Plusieurs configurations ont été étudiées. Sur 54 implants cardiaques actifs testés (43 stimulateurs et 11 défibrillateurs) à des niveaux de champs électriques très élevés (100 kV/m) générés par notre dispositif expérimental, aux fréquences de 50-60 Hz, aucune défaillance n’a été observée pour des niveaux d’exposition publics et pour la plupart des configurations (+99%) sauf pour six stimulateurs cardiaques dans le cas d’une configuration « pire cas » peu réaliste en clinique : mode unipolaire avec une sensibilité maximale et en détection auriculaire. Les implants configurés avec une sensibilité nominale en mode bipolaire résistent bien à des champs électriques dépassant les valeurs seuils telles que définies par 2013/UE/35
The European Directive 2013/ 35 / EU specify minimum requirements for the protection of workers exposed to electromagnetic fields and define with implants as “workers at particular risk”. Regarding the implantable cardioverter defibrillator wearers (ICD) or pacemaker (PM), exposure to electric or magnetic field of extremely low frequency creates inductions inside the human body that generate interference voltage which may cause the dysfunction of the implant. This thesis investigates the electromagnetic compatibility of cardiac implants subjected to an electric field low frequency (50/60 Hz). Computational simulations are effectuated in order to design an experimental bench for the exposure of a phantom including pacemakers or implantable defibrillators. A provocative study is established to define the electric field thresholds for preventing any malfunction of the implant. In numerical simulations; a virtual human model (digital phantom containing a cardiac implant) was placed in an upright position in a vertical exposure to an electric field. The finite element method was used to define the inductions in the cardiac implant level with a resolution of 2 mm (CST® software). In the experimental part, a test bench designed to allow generating an electric field up to 100 kV / m at frequencies 50-60 Hz was constructed, optimized and employed to investigate the behavior of cardiac implants.Several configurations were studied. 54 active cardiac implants (43 pacemakers and 11 defibrillators) are submitted to very high electric field of 50-60 Hz (up to 100 kV / m) inside the experimental bench. No failure was observed for public exposure levels for most configurations (+ 99%) except for six pacemakers in the case of a configuration clinically almost inexistent: unipolar mode with maximum sensitivity and atrial sensing.The implants configured with a nominal sensitivity in bipolar mode are resistant to electric fields exceeding the low action levels (ALs), even for the most high ALs, as defined by 2013 / 35 / EU
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gercek, Cihan. "Immunité des implants cardiaques actifs aux champs électriques de 50/60 Hz." Electronic Thesis or Diss., Université de Lorraine, 2016. http://www.theses.fr/2016LORR0226.

Повний текст джерела
Анотація:
La directive européenne 2013/35/UE précise les exigences minimales pour la protection des travailleurs exposés aux champs électromagnétiques et définit les porteurs d’implants comme travailleurs à risques particuliers. Concernant les porteurs de défibrillateur automatique implantable (DAI) ou de stimulateur cardiaque (SC), l’exposition au champ électrique ou magnétique d’extrêmement basse fréquence crée des inductions à l'intérieur du corps humain pouvant générer une tension perturbatrice susceptible de causer le dysfonctionnement de l’implant. Le sujet de ce travail de thèse porte sur la compatibilité électromagnétique des implants cardiaques soumis à un champ électrique basses fréquences (50/60 Hz). Des simulations numériques ont été effectuées afin de concevoir un banc expérimental pour l’exposition de fantômes incluant des stimulateurs ou des défibrillateurs implantables. Une étude expérimentale a permis d’établir par provocation les seuils de champ électrique permettant d’éviter tout dysfonctionnement éventuel de l’implant. Dans la partie simulation numérique ; un modèle humain virtuel (fantôme numérique contenant un implant cardiaque) a été placé en position debout sous une exposition verticale à un champ électrique. La méthode des éléments finis a été utilisée pour définir les phénomènes induits au niveau de l’implant cardiaque avec une résolution de 2mm (logiciel CST®). Dans la partie expérimentale, un banc d'essai dimensionné pour permettre de générer un champ électrique pouvant atteindre 100 kV/m aux fréquences 50-60 Hz a été conçu, optimisé et réalisé afin d’analyser le comportement des implants cardiaques. Plusieurs configurations ont été étudiées. Sur 54 implants cardiaques actifs testés (43 stimulateurs et 11 défibrillateurs) à des niveaux de champs électriques très élevés (100 kV/m) générés par notre dispositif expérimental, aux fréquences de 50-60 Hz, aucune défaillance n’a été observée pour des niveaux d’exposition publics et pour la plupart des configurations (+99%) sauf pour six stimulateurs cardiaques dans le cas d’une configuration « pire cas » peu réaliste en clinique : mode unipolaire avec une sensibilité maximale et en détection auriculaire. Les implants configurés avec une sensibilité nominale en mode bipolaire résistent bien à des champs électriques dépassant les valeurs seuils telles que définies par 2013/UE/35
The European Directive 2013/ 35 / EU specify minimum requirements for the protection of workers exposed to electromagnetic fields and define with implants as “workers at particular risk”. Regarding the implantable cardioverter defibrillator wearers (ICD) or pacemaker (PM), exposure to electric or magnetic field of extremely low frequency creates inductions inside the human body that generate interference voltage which may cause the dysfunction of the implant. This thesis investigates the electromagnetic compatibility of cardiac implants subjected to an electric field low frequency (50/60 Hz). Computational simulations are effectuated in order to design an experimental bench for the exposure of a phantom including pacemakers or implantable defibrillators. A provocative study is established to define the electric field thresholds for preventing any malfunction of the implant. In numerical simulations; a virtual human model (digital phantom containing a cardiac implant) was placed in an upright position in a vertical exposure to an electric field. The finite element method was used to define the inductions in the cardiac implant level with a resolution of 2 mm (CST® software). In the experimental part, a test bench designed to allow generating an electric field up to 100 kV / m at frequencies 50-60 Hz was constructed, optimized and employed to investigate the behavior of cardiac implants.Several configurations were studied. 54 active cardiac implants (43 pacemakers and 11 defibrillators) are submitted to very high electric field of 50-60 Hz (up to 100 kV / m) inside the experimental bench. No failure was observed for public exposure levels for most configurations (+ 99%) except for six pacemakers in the case of a configuration clinically almost inexistent: unipolar mode with maximum sensitivity and atrial sensing.The implants configured with a nominal sensitivity in bipolar mode are resistant to electric fields exceeding the low action levels (ALs), even for the most high ALs, as defined by 2013 / 35 / EU
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Rosier, Arnaud. "Raisonnement automatique basé ontologies appliqué à la hiérarchisation des alertes en télécardiologie." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1B017/document.

Повний текст джерела
Анотація:
Introduction :La télésurveillance des stimulateurs cardiaques et défibrillateurs sera à terme le standard pour le suivi des patients implantés. Pourtant, des alertes très nombreuses sont générées par ces dispositifs, et constituent un fardeau pour la prise en charge médicale. De plus, les alertes générées le sont indépendamment du contexte médical individuel du patient, et elles pourraient donc être mieux caractérisées. Cette thèse propose un outil de traitement automatique des alertes générées par la survenue de fibrillation atriale, et basé sur une modélisation des connaissances médicales de type ontologie en OWL2. En particulier, le score de risque cardio-embolique CHA2DS2VASc a été évalué par le biais de l’ontologie, ainsi que le statut d’anticoagulation du patient. Matériel et Méthodes :Une ontologie d’application a été créée en OWL2, afin de représenter les concepts nécessaires au raisonnement sur les alertes. Cette ontologie a été utilisée pour raisonner sur 1783 alertes de FA détectées chez 60 porteurs de stimulateurs cardiaques. Les alertes ont été classées automatiquement selon leur importance d’après une échelle de gravité de 1 à 4. La classification automatique a été comparée à celle réalisée par 2 experts médicaux comme référence. Résultats : 1749 alertes sur 1783 (98%) ont été classées correctement. 58 des 60 patients avaient toutes leurs alertes classées à l’identique par le système testé et par les évaluateurs-médecins. Une approche basée ontologie est à même de permettre un raisonnement automatique sur des données issues de dispositifs médicaux connectés, en les contextualisant en fonction des données médicales individuelles du patient
Introduction :Remote monitoring of cardiac implantable electronic devices (CIED) such as pacemakers and defibrillators is the new follow-up standard. However, the numerous alerts generated in remote monitoring causes a burden for physicians. Morever, many alerts are notified despite the knowledge of patient condition and could be refined. This work proposes an automatic tool for classifying atrial fibrillation alert, based on an ontological knowledge model in OWL2. In particular, CHA2DS2VASc thrombo-embolic risk score and patient anticogulation status are accounted in order to determine alert importance. Materials and methods :An application ontology was designed in OWL2, in order to represent the concepts needed for processing alerts. This ontology was used to infer the importance of 1783 AF alerts among 60 CIED recipients, using a 4-grade scale. Automatic classification was compared to that of 2 medical experts.Results :1749 of 1783 alerts (98%) were correctly classified. 58 of 60 patients had every alerts classified with the same importance by the prototype and the human experts. An ontology-driven automatic reasoning tool is able to classify remote monitoring alerts, by using individual medical context. This technology could be important for managing data generated by connected medical devices
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Silva, Evandro Drigo da. "Nova abordagem na transmissão de energia transcutânea para dispositivos de assistência ventricular implantáveis." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/98/98131/tde-18092018-095803/.

Повний текст джерела
Анотація:
Com a crescente demanda por dispositivos implantáveis de suporte cardíaco (vulgarmente chamados de Coração Artificial) no tratamento da insuficiência cardíaca, surge a demanda por sistemas de transmissão de energia transcutânea (TET) para recarregamento das baterias implantadas. Esses sistemas reduzem os riscos de infecções, por não terem cabos atravessando a pele para alimentar os implantes; evitando também intervenções cirúrgicas reincidentes para troca de baterias. Normalmente, são pesquisados e testados sistemas TET por acoplamento magnético (indutivo) entre bobinas através da pele. Este trabalho propõe um modelo para o acoplamento por meio do campo elétrico, através de um capacitor, cujo dielétrico é constituído por polímeros (materiais biocompatíveis) e tecido biológico vivo (pele humana). Provas de conceito para transmissão de energia pelo acoplamento capacitivo apresentaram a possibilidade de mitigar problemas relacionados ao alinhamento axial exigido pelo acoplamento indutivo. Simulações computacionais de circuitos elétricos equivalentes ao acoplamento capacitivo foram confrontadas com experimentos in vitro e ex vivo, com tecidos vivos, validando o modelo proposto e servindo de base para o desenvolvimento de uma nova tecnologia.
Heart failure (HF) is a complex syndrome and a problem in the world. Ventricular assistive devices (VADs) are being used as target therapy in the treatment of HF. In order to avoid infectious due to the driveline passing through the patients, transcutaneous energy transmission systems (TET) have been developed to VADs. These TETs usually act by magnetic coupling between coils. The present work proposes a modeling for capacitive coupling through a dielectric composed of polymer and human skin. Bench tests demonstrated advantages over the axial alignment required by inductive systems. Computational simulations of the equivalent electric circuit for capacitive coupling were compared with in vitro experiments and validated the proposed model.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bouldi, Melina. "Vers une application sûre de l'IRM en présence d'implants actifs." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY056/document.

Повний текст джерела
Анотація:
L'IRM est généralement considérée comme une méthode d'imagerie extrêmement sûre. Cependant, en présence d'implants conducteurs, des risques pour la santé du patient existent, plus particulièrement en terme d'échauffement radio-fréquence (RF) des tissus en contact avec l'implant. Suivant les recommandations des fabricants et des autorités sanitaires, certains dispositifs implantés sont autorisés en environnement IRM, sous conditions strictes qui limitent la qualité des images ou rendent l'acquisition impossible. Le but de cette thèse était d'optimiser et de valider les méthodes pour l'évaluation de la sécurité IRM en présence d'implants. Augmenter la prévisibilité des échauffements qui risquent de se produire dans chaque cas précis devrait permettre un élargissement des applications possibles de l'IRM chez des patients porteurs d'implants actifs.Ce projet est basé sur trois approches :- Des mesures et développements de méthodes IRM sur des objet-tests. Des techniques pré-existantes de cartographie du champ RF ont été optimisées afin de couvrir l'ensemble de la gamme dynamique présente dans le cas de courants RF induits dans des conducteurs. Pour ce faire, la technique AMFI (“Actual Multiple Flip-Angle Imaging”) a été développée. Un travail d'optimisation a également été mené sur la thermométrie IRM rapide via la méthode PRFS (“Proton Resonance Frequency Shift”).- Le développement de simulations numériques visant à étudier les interactions électromagnétiques entre les implants et le résonateur RF, ainsi que leurs répercussions thermiques. Un modèle de résonateur RF a été construit et validé à la fois théoriquement et expérimentalement. Le réglage du résonateur a donné lieu au développement d'une méthode numérique originale permettant de déterminer rapidement et précisément les valeurs des capacités. L'évaluation des courants RF induits dans des implants filaires conducteurs, via l'utilisation des cartes de champ RF, a également été développée. Cette méthode de mesure des courants RF induits ouvre la possibilité d'évaluer la sécurité au niveau individuel par une acquisition à faible débit d'absorption spécifique, avant toute autre acquisition IRM, dans le cas d'un possible futur protocole incluant des patients.- La construction d'un modèle numérique simplifié d'une électrode de stimulation cérébrale, via l'utilisation de la théorie des lignes de transmission. Ce modèle rend les simulations RF abordables, et présente les mêmes propriétés électriques que l'électrode réelle. L'échauffement RF en présence d'une électrode DBS a ainsi pu être évalué numériquement par l'intermédiaire de simulations recouvrant la taille du résonateur RF corps-entier.L'ensemble des outils développés au cours de cette thèse permet finalement une amélioration des méthodes disponibles afin d'évaluer la sécurité RF en présence d'implants conducteurs
MRI is generally considered to be an exceptionally safe imaging method. However, in the presence of electrically conducting implants health risks exist, particularly in terms of RF heating of the tissues in contact with the implant. Some implants are cleared by the manufacturers or regulatory agencies for MR imaging of patients, but only under strictly limited conditions which often degrade image quality and exclude many configurations. The goal of this thesis project was to optimize and validate the methods for the assessment of MR safety in the presence of active implants. Increasing the predictability of the risk of RF heating in individual subjects should allow MRI to find wider applications in patients implanted with active devices.This project is based on three distinct approaches:- Measurements and MR method developments performed on test objects. Existing B1-mapping techniques were optimized for the specific needs of high dynamic range encountered in the presence of induced RF currents in conductors, leading to the “Actual Multiple Flip-Angle Imaging” technique. Further work has been performed on the optimization of rapid “Proton Resonance Frequency Shift” MR thermography.- The development of numerical simulations of the electromagnetic interactions between the RF resonator and implants as well as their thermal impact. A numerical RF resonator model was built and validated it using both theoretical and experimental studies. The optimization of the resonator has led to the development of an original method to rapidly and precisely adjust the individual capacitor values to obtain a given targeted current distribution. Separately, the measurement of RF currents induced in conductive wires, via B1 mapping, was developed. This method to measure RF currents in a specific configuration opens the possibility to evaluate RF safety in individual subjects using a low-SAR prescan prior to other acquisitions, for use in hypothetical future protocols on patients.- The construction of a simplified numerical model of deep brain stimulation electrodes, using transmission line theory. This model renders RF simulations tractable, while exhibiting the same electrical behavior as the real implant, allowing evaluation of RF heating in simulations covering the size of a whole-body MR resonator.The set of tools developed improve upon the currently available methods for the evaluation of RF safety in the presence of conductive implants
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Schocket, Kimberly Gardner. "Presurgical behavioral medicine evaluation for implantable devices for pain management : clinical effectiveness for predicting outcomes." 2005. http://edissertations.library.swmed.edu/pdf/SchocketK081105/SchocketKimberly.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

(11197311), Jay V. Shah. "Development of a Closed-Loop, Implantable Electroceutical Device for Glaucoma." Thesis, 2021.

Знайти повний текст джерела
Анотація:

Glaucoma is the leading cause of irreversible blindness worldwide. While current therapies aim to lower elevated intraocular pressure (IOP) to prevent blindness, they often do not provide the desired long-term efficacy, can fail over time, and have systemic side effects. Electroceutical stimulation can be a solution to many of these current issues with glaucoma treatment, as it is believed to have fewer systemic side effects and quicker response times. The goal of this work is to develop and demonstrate a novel system using electrical stimulation to lower intraocular pressure. I present data from a human clinical study and an ongoing clinical trial of the IOPTx™ system, a wearable electroceutical for treating glaucoma, that provides preliminary evidence of efficacy and safety. Furthermore, no current glaucoma treatments allow for closed-loop, continuous monitoring of IOP, requiring more frequent doctor visits or forcing patients and clinicians to operate in the dark. Using an electroceutical therapeutic device with closed-loop feedback and continuous IOP recording can improve glaucoma management. I combined a pressure sensor with this electroceutical therapy, implanted the sensor and stimulation coils in rabbits, and stimulated the eyes. However, to better understand the optimal stimulation parameters, long-term effects, and mechanisms of action, an integrated circuit is designed as part of a fully implantable, closed-loop device. The chip was fabricated in 0.18 µm CMOS process and validated on the benchtop and in vivo. In the future, this electroceutical device has the potential to be a novel treatment for patients suffering from glaucoma.

Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії