Добірка наукової літератури з теми "Imogolite, Nanotubes, Synthesis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Imogolite, Nanotubes, Synthesis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Imogolite, Nanotubes, Synthesis"

1

Avellan, A., C. Levard, C. Chaneac, D. Borschneck, F. R. A. Onofri, J. Rose, and A. Masion. "Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes." RSC Advances 6, no. 109 (2016): 108146–50. http://dx.doi.org/10.1039/c6ra19275k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paineau, Erwan. "Imogolite Nanotubes: A Flexible Nanoplatform with Multipurpose Applications." Applied Sciences 8, no. 10 (October 15, 2018): 1921. http://dx.doi.org/10.3390/app8101921.

Повний текст джерела
Анотація:
Among a wide variety of inorganic nanotubes, imogolite nanotubes (INTs) represent a model of nanoplatforms with an untapped potential for advanced technological applications. Easily synthesized by sol-gel methods, these nanotubes are directly obtained with a monodisperse pore size. Coupled with the possibility to adjust their surface properties by using straightforward functionalization processes, INTs form a unique class of diameter-controlled nanotubes with functional interfaces. The purpose of this review is to provide the reader with an overview of the synthesis and functionalization of INTs. The properties of INTs will be stated afterwards into perspective with the recent development on their applications, in particular for polymer/INTs nanocomposites, molecular confinement or catalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paineau, Erwan, and Pascale Launois. "Influence of the Al/Ge Ratio on the Structure and Self-Organization of Anisometric Imogolite Nanotubes." Crystals 10, no. 12 (November 28, 2020): 1094. http://dx.doi.org/10.3390/cryst10121094.

Повний текст джерела
Анотація:
Synthetic imogolite-like nanotubes (INT) with well-defined diameters represent a considerable opportunity for the development of advanced functional materials. Recent progress has made it possible to increase their aspect ratio and unique self-organization properties were evidenced. We suggest that slight modification of the synthesis conditions may drastically affect the resulting liquid-crystalline properties. In this work, we investigate how the precursor’s [Al]/[Ge] molar ratio (R’) impacts the morphology and the colloidal properties of aluminogermanate INTs by combining a multi-scale characterization. While only double-walled nanotubes are found for R’ ≥ 1.8, the presence of single-walled nanotubes occurs when the ratio is lowered. Except for the lowest R’ ratio investigated (R’ = 0.66), all synthetic products present one-dimensional shapes with a high aspect ratio. Small-angle X-ray scattering experiments allow us to comprehensively investigate the colloidal properties of the final products. Our results reveal that a liquid-crystalline hexagonal columnar phase is detected down to R’ = 1.33 and that it turns into a nematic arrested phase for R’ = 0.90. These results could be useful for the development of novel stimuli-responsive nanocomposites based-on synthetic imogolite nanotubes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thomas, Bejoy, Thibaud Coradin, Guillaume Laurent, Romain Valentin, Zephirin Mouloungui, Florence Babonneau, and Niki Baccile. "Biosurfactant-mediated one-step synthesis of hydrophobic functional imogolite nanotubes." RSC Adv. 2, no. 2 (2012): 426–35. http://dx.doi.org/10.1039/c1ra00442e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Avellan, A., C. Levard, N. Kumar, J. Rose, L. Olivi, A. Thill, P. Chaurand, D. Borschneck, and A. Masion. "Structural incorporation of iron into Ge–imogolite nanotubes: a promising step for innovative nanomaterials." RSC Adv. 4, no. 91 (2014): 49827–30. http://dx.doi.org/10.1039/c4ra08840a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krasilin, Andrei A., Ekaterina K. Khrapova, and Tatiana P. Maslennikova. "Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications." Crystals 10, no. 8 (July 30, 2020): 654. http://dx.doi.org/10.3390/cryst10080654.

Повний текст джерела
Анотація:
The past two decades have been marked by an increased interest in the synthesis and the properties of geoinspired hydrosilicate nanoscrolls and nanotubes. The present review considers three main representatives of this group: halloysite, imogolite and chrysotile. These hydrosilicates have the ability of spontaneous curling (scrolling) due to a number of crystal structure features, including the size and chemical composition differences between the sheets, (or the void in the gibbsite sheet and SiO2 tetrahedron, in the case of imogolite). Mineral nanoscrolls and nanotubes consist of the most abundant elements, like magnesium, aluminium and silicon, accompanied by uncontrollable amounts of impurities (other elements and phases), which hinder their high technology applications. The development of a synthetic approach makes it possible to not only to overcome the purity issues, but also to enhance the chemical composition of the nanotubular particles by controllable cation doping. The first part of the review covers some principles of the cation doping approach and proposes joint criteria for the semiquantitative prediction of morphological changes that occur. The second part focuses on some doping-related properties and applications, such as morphological control, uptake and release, magnetic and mechanical properties, and catalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Ming, and Jonathan A. Brant. "Synthesis of polyamide thin-film nanocomposite membranes using surface modified imogolite nanotubes." Journal of Membrane Science 563 (October 2018): 664–75. http://dx.doi.org/10.1016/j.memsci.2018.06.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Levard, C., A. Masion, J. Rose, E. Doelsch, D. Borschneck, L. Olivi, P. Chaurand, et al. "Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes." Physical Chemistry Chemical Physics 13, no. 32 (2011): 14516. http://dx.doi.org/10.1039/c1cp20346k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bottero, Ilaria, Barbara Bonelli, Sharon E. Ashbrook, Paul A. Wright, Wuzong Zhou, Marco Tagliabue, Marco Armandi, and Edoardo Garrone. "Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption." Phys. Chem. Chem. Phys. 13, no. 2 (2011): 744–50. http://dx.doi.org/10.1039/c0cp00438c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Levard, Clément, Armand Masion, Jérôme Rose, Emmanuel Doelsch, Daniel Borschneck, Christian Dominici, Fabio Ziarelli, and Jean-Yves Bottero. "Synthesis of Imogolite Fibers from Decimolar Concentration at Low Temperature and Ambient Pressure: A Promising Route for Inexpensive Nanotubes." Journal of the American Chemical Society 131, no. 47 (December 2, 2009): 17080–81. http://dx.doi.org/10.1021/ja9076952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Imogolite, Nanotubes, Synthesis"

1

Yucelen, Gulfem Ipek. "Formation and growth mechanisms of single-walled metal oxide nanotubes." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44796.

Повний текст джерела
Анотація:
Single-walled metal oxide nanotubes have emerged as an important class of 'building block' materials for molecular recognition-based applications in catalysis, separations, sensing, and molecular encapsulation due to their vast range of potentially accessible compositions and structures, and their unique properties such as well-defined wall structure and porosity, tunable dimensions, and chemically modifiable interior and exterior surfaces. However, their widespread application will depend on the development of synthesis processes that can yield structurally and compositionally well-controlled nanotubes. Moreover, such processes should be amenable to scale-up and preferably operate via benign chemistries under mild conditions. There is currently very little knowledge on the molecular-level 'design rules' underlying the engineering of such materials. The capability to engineer single-walled tubular materials would lead to a range of structures, with novel properties relevant to diverse applications. In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. The class of aluminosilicate (AlSiOH)/germanate (AlGeOH) nanotubes are of particular interest to us, and serve as the exemplar materials for single-walled metal oxide nanotubes. They can be synthesized in pure form from inexpensive and easily accessible reactants at low temperatures (95 ˚C) from aqueous solutions. The synthesis of nanotubes occurs on a time-scale of hours to days, making them an ideal model system to study the nanotube formation mechanism. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 ˚C, disappear from the solution upon heating to 95 ˚C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Ångstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of shaped precursors. Having obtained considerable insight into aluminosilicate nanotube formation, in Chapter 4 the complex aqueous chemistry of nanotube-forming aluminogermanate solutions are examined. The aluminogermanate system is particularly interesting since it forms ultra-short nanotubes of lengths as small as ~20 nm. Insights into the underlying important mechanistic differences between aluminogermanate and aluminosilicate nanotube growth as well as structural differences in the final nanotube dimensions are provided. Furthermore, an experimental example of control over nanotube length is shown, using the understanding of the mechanistic differences, along with further suggestions for possible ways of controlling nanotube lengths. Ultimately, it is desired to produce the single-walled aluminosilicate nanotubes on a larger scale (e.g., kilogram or ton scales) for technological application. However, a quantitative multiscale understanding of nanotube growth via a detailed growth model, is critical to be able to predict and control key properties such as the length distribution and concentration of the nanotubes. Such a model can then be used to design liquid-phase reactors for scale-up of nanotube synthesis. In Chapter 5, a generalized kinetic model is formulated to describe the reactions leading to formation and growth of single-walled metal oxide nanotubes. This model is capable of explaining and predicting the evolution of nanotube populations as a function of kinetic parameters. It also allows considerable insight into meso/microscale nanotube growth processes. For example, it shows that two different mechanisms operate during nanotube growth: (1) growth by precursor addition, and (2) by oriented attachment of nanotubes to each other. In Chapter 6, a study of the structure of the nanotube walls is presented. It has usually been assumed in the literature that the nanotube wall is free of defects. A combination of 1H-29Si and 1H-27Al FSLG-HETCOR, 1H CRAMPS, and 1H-29Si CP/MAS NMR experiments were employed to evaluate the proton environments around Al and Si atoms during nanotube synthesis and in the final structure. The HETCOR experiments allowed to track the evolving Si and Al environments during the formation of the nanotubes from precursor species, and relate them to the Si and Al coordination environments found in the final nanotube structure. The 1H CRAMPS spectra of dehydrated aluminosilicate nanotubes revealed the proton environments in great detail. Integration of all the NMR results allows the structural assignment of all the chemical shifts and the identification of various types of defect structures in the aluminosilicate nanotube wall. In particular, five main types of defect structures are identified arising from specific atomic vacancies in the nanotube structure. It is estimated that ~16% of Si atoms in the nanotube inner wall are involved in a defect structure. The characterization of the detailed structure of the nanotube wall is expected to have significant implications for its chemical properties and applications. Chapter 7 contains concluding remarks, as well as suggestions for future directions in the engineering of single-walled nanotube materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mukherjee, Sanjoy. "Synthesis, Characterization, and Growth Mechanism of Single-Walled Metal Oxide Nanotubes." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16176.

Повний текст джерела
Анотація:
Nanotubes have numerous potential applications in areas such as biotechnology, electronics, photonics, catalysis and separations. There are several challenges to be overcome in order to realize their potential, such as: (1) Synthesis of monodisperse (in diameter and in length) single-walled nanotubes; (2) Quantitative understanding of the mechanism of formation and growth of nanotubes; (3) Capability to engineer the nanotube size; (4) Low temperature synthesis process; and (5) Synthesis of impurity free nanotubes. Our investigation focuses on a class of metal oxide (aluminosilicate/germanate) nanotubes, which are; single walled nanotubes with monodisperse inner and outer diameters, can be synthesized in the laboratory by a low temperature (95ºC) process in mildly acidic aqueous solutions, and their formation timescales is hours, which makes it convenient as a model system to study the mechanisms of nanotube formation. This work is focused on obtaining a qualitative and quantitative understanding of the mechanism of formation of aluminosilicate and aluminogermanate nanotubes. In order to achieve this overall objective, this thesis consists of the following aspects: (1) A systematic phenomenological study of the growth and structural properties of aluminosilicate and aluminogermanate nanotubes. The constant size and increasing nanotube concentration over the synthesis time strongly suggest that these nanotubular are assembled through self-assembly process. (II) Investigation of the mechanism of formation of single-walled aluminogermanate nanotubes provided the central phenomena underlying the formation of these nanostructures: (1) the generation (via pH control) of a precursor solution containing chemically bonded precursors, (2) the formation of amorphous nanoscale (~ 6 nm) condensates via temperature control, and (3) the self-assembly of short nanotubes from the amorphous nanoscale condensates. (III) Synthesis of mixed metal oxide (aluminosilicogermanate) nanotubes with precise control of elemental composition, diameter and length of the product nanotubes. (IV) Preliminary work towards generalization of the kinetic model developed for aluminogermanate nanotubes to a larger class of metal oxide nanotubes. It was found that the size of nanotubes is dependent on the amount of precursors that can be packed in a single ANP and in turn depends on the size of the ANP.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Avellan, Astrid. "Relation entre structure, réactivité et interactions cellulaires de nanotubes inorganiques : cas des imogolites." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4371/document.

Повний текст джерела
Анотація:
Aujourd’hui, les difficultés pour établir des liens entre caractéristiques des nanomatériaux et réponses biologiques sont principalement issues du manque de contrôle de la synthèse des nanomatériaux, ne permettant pas de faire varier leurs paramètres physico-chimiques clés une à une.Pour identifier certains mécanismes gouvernant la toxicité des nanomatériaux nous avons utilisé un nanotube inorganique modèle dont la synthèse est bien contrôlée : les Ge-imogolites. Les effets de la longueur, du nombre de parois, de la cristallinité et de la composition chimique des Ge-imogolites ont été étudiés sur une bactérie des sols: Pseudomonas brassicacearum. Il a été identifié que la présence de sites réactifs (en bordure de tubes) induit une toxicité due à une interaction forte des nanotubes avec les cellules bactériennes, ainsi que la génération d’espèces réactives de l’oxygène. Ajouter des sites réactifs via la présence de défauts structuraux augmente la dégradation des tubes ainsi que la rétention d’éléments nutritifs essentiels, ce qui augmente leur toxicité. Enfin, l’ajout de fer dans leur structure transforme les Ge-imogolites en source de fer, qui sont dégradées et deviennent promoteurs de croissance. Dans tous ces cas, les interactions entre nanomatériaux et cellules ont été identifiées comme cruciales pour comprendre et prévenir les effets des nanomatériaux. Ce travail de thèse a également permis de mettre en avant la capacité de nouveaux outils pour le suivi de l’internalisation de nanomatériaux dans les organismes
Only a few studies of (eco)toxicology linked the physico-chemical properties of nanoparticles to the toxicity mechanisms or the stress they induce. Moreover, no clear conclusions can be drawn at present because of the variability of nanoparticles used in studies. The present study used the inorganic Ge-imogolite nanotubes as a model compound. The toxic effects of length, number of walls, structural defects, and chemical composition were assessed towards the soil bacteria Pseudomonas brassicacearum. Several mechanisms modulating the toxicity of Ge-imogolite were then identified. Indeed, reactive sites at the tube ends induce a slight toxicity via a strong cell interaction and the generation of reactive oxygen species. Creating vacant sites on the surface of Ge-imogolite (ant thus increasing the number of reactive sites), appears to cause a deficiency of nutrients in the culture media correlated with a higher degradation of the tubes, leading to a high bacterial growth decrease. Finally, structural iron incorporation into Ge-imogolite transforms them into an iron source, being degraded and becoming growth promoters. In this work, the new tools capacities for the study of nanomaterials/cells interaction have been studied
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Imogolite, Nanotubes, Synthesis"

1

Suzuki, Masaya, and Keiichi Inukai. "Synthesis and Applications of Imogolite Nanotubes." In Topics in Applied Physics, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03622-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії