Добірка наукової літератури з теми "Immune subversion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Immune subversion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Immune subversion"
Melief, C. J. M., T. Braciale, U. Kozinowski, H. Hengartner, A. McMichael, R. Steinman, H. Morse, and A. Rickinson. "Subversion of immune responses." Research in Immunology 144, no. 6-7 (January 1993): 534–36. http://dx.doi.org/10.1016/0923-2494(93)80163-s.
Повний текст джерелаBaldari, Cosima T., Antonio Lanzavecchia, and John L. Telford. "Immune subversion by Helicobacter pylori." Trends in Immunology 26, no. 4 (April 2005): 199–207. http://dx.doi.org/10.1016/j.it.2005.01.007.
Повний текст джерелаLachmann, P. J. "Microbial subversion of the immune response." Proceedings of the National Academy of Sciences 99, no. 13 (June 19, 2002): 8461–62. http://dx.doi.org/10.1073/pnas.132284499.
Повний текст джерелаTortorella, Domenico, Benjamin E. Gewurz, Margo H. Furman, Danny J. Schust, and Hidde L. Ploegh. "Viral Subversion of the Immune System." Annual Review of Immunology 18, no. 1 (April 2000): 861–926. http://dx.doi.org/10.1146/annurev.immunol.18.1.861.
Повний текст джерелаBaxt, L. A., A. C. Garza-Mayers, and M. B. Goldberg. "Bacterial Subversion of Host Innate Immune Pathways." Science 340, no. 6133 (May 9, 2013): 697–701. http://dx.doi.org/10.1126/science.1235771.
Повний текст джерелаHARNETT, WILLIAM, and L. H. CHAPPELL. "Subversion of immune cell signalling by parasites." Parasitology 130, S1 (March 2005): S1—S2. http://dx.doi.org/10.1017/s0031182005008334.
Повний текст джерелаMAULE, A. G., T. A. DAY, and L. H. CHAPPELL. "Subversion of immune cell signalling by parasites." Parasitology 131, S1 (March 29, 2006): S1. http://dx.doi.org/10.1017/s0031182005009388.
Повний текст джерелаMarrack, Philippa, and John Kappler. "Subversion of the immune system by pathogens." Cell 76, no. 2 (January 1994): 323–32. http://dx.doi.org/10.1016/0092-8674(94)90339-5.
Повний текст джерелаScott, Terence, and Louis Nel. "Subversion of the Immune Response by Rabies Virus." Viruses 8, no. 8 (August 19, 2016): 231. http://dx.doi.org/10.3390/v8080231.
Повний текст джерелаBuzoni-Gatel, Dominique, and Catherine Werts. "Toxoplasma gondii and subversion of the immune system." Trends in Parasitology 22, no. 10 (October 2006): 448–52. http://dx.doi.org/10.1016/j.pt.2006.08.002.
Повний текст джерелаДисертації з теми "Immune subversion"
Goodridge, Helen Sara. "Regulation of macrophage function and its subversion by pathogens." Thesis, University of Glasgow, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327566.
Повний текст джерелаGay, Gabrielle. "Subversion de la réponse immune de l'hôte par Toxoplasma gondii." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV029/document.
Повний текст джерелаAn early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii–targeting activities in immune and nonimmune cells but can also con- tribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ–stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1+ inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ–mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism
Leroux, Louis-Philippe. "Subversion of MHC-II antigen presentation by «Toxoplasma gondii» involves parasite secretory organelles and the modulation of host immune effectors in the endocytic pathway." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114251.
Повний текст джерелаLe parasite protozoaire intracellulaire obligatoire Toxoplasma gondii, l'agent causant la toxoplasmose, est un pathogène ubiquitaire capable d'infecter tout animal à sang chaud. En dépit du fait que l'infection reste généralement asymptomatique chez les individus en bonne santé, le parasite s'enkyste inévitablement. Il a été démontré que T. gondii est capable d'atteindre ce but en partie en interférant avec la présentation d'antigène par le complexe majeur d'histocompatibilité (CMH)-II pour diminuer le développement de la réponse des cellules T CD4+ et pour ainsi devancer la réponse adaptative du système immunitaire. Il a été démontré que T. gondii inhibe la transcription de CMH-II et autres gènes liés, mais les molécules inhibitrices causatives restent inconnues.Pour identifier ces molécules, une stratégie pour un criblage génétique avait été élaborée. Une mutagénèse insertionelle à travers le génome devait être conduite pour perturber les gènes codant pour ces molécules inhibitrices, suivie d'un tri par cytométrie en flux de cellules infectées avec des mutants. En isolant les mutants incapables d'inhiber l'expression de CMH-II, l'isolement des locus génétiques et l'exploration des bases de données auraient pu permettre l'identification des molécules codées. Cependant, ce criblage ne fut complété dû à des limitations expérimentales. Des analyses biochimiques ont démontré que l'activité inhibitrice se retrouvait dans le surnageant d'haute-vitesse (HSS) préparé à partir de parasites soniqués, et était enrichie avec des vitesses de centrifugation croissantes. L'activité inhibitrice était dose-dépendante de protéines et était complètement abrogée lorsque le SHV était préalablement traité avec une protéase. Un fractionnement subcellulaire révéla que l'activité se retrouvait dans les fractions enrichies d'organelles sécrétoires (rhoptries et granules denses). Aussi, des antigènes excrétés-sécrétés (ESA) obtenus de tachyzoïtes fraîchement lysés possédaient une activité inhibitrice. Les protéines d'ESA furent séparées par fractionnement en deux étapes, commençant par une chromatographie par échange d'ions, suivi par une chromatographie d'exclusion par taille et analysées par spectrométrie de masse en tandem (MS/MS). Les résultats obtenus furent comparés aux bases de données, et une liste fut dressée avec de candidats potentiels, la majorité d'entre eux provenant d'organelles de sécrétion.Malgré l'expression réduite, quelques molécules de CMH-II étaient détectés dans les cellules infectées ou traitées. Nos résultats démontrent que la régulation transcriptionelle doit être complémentée par une interférence au niveau post-traductionel dans la voie endocytique de la cellule hôte qui implique la chaîne invariante associée au CMH-II (Ii) et l'éditeur de peptide H2-DM. Les niveaux d'ARNm et de protéines d'Ii étaient induits dans les cellules infectées, alors que ceux de CMH-II et d'H2-DM étaient inhibés. Ii s'accumulait dans les cellules infectées dès 20 heures post-infection, principalement dans le RE. Dans les cellules Ii KO, l'absence d'Ii rétablit la capacité de cellules dendritiques à présenter un antigène du parasite dans le contexte de CMH-II, proposant ainsi qu'Ii agit comme un dominant négatif sur la présentation d'antigènes endogènes provenant du parasite. Des protéases de l'hôte (légumaine, cathepsines L et S) et l'acidification des compartiments endosomaux étaient modulées par le parasite, révélant une manipulation plus étendue de la voie endocytique. Les modes d'expression opposés d'Ii et H2-DM avaient un effet in vivo sur la dissémination des parasites vers des organes lymphoïdes, l'activation des cellules T CD4+, la production d'IFN, le nombre de kystes et la survie. Collectivement, nos résultats montrent l'étendue des processus de manipulation par T. gondii, révélant de complexes interactions avec l'hôte et sa capacité de subvertir les fonctions immunitaires pour établir une infection chronique.
Niveau, Camille. "Impact des glycans tumoraux sur les propriétés phénotypiques, fonctionnelles et métaboliques des cellules dendritiques (cDC2, pDC, cDC1) humaines en contexte de mélanome." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALV022.
Повний текст джерелаDendritic cells (DCs), mostly consisting of BDCA1+ cDC2s, BDCA3+ cDC1s, and BDCA2+ pDCs are the conductors of immune responses. Their plasticity plays a crucial role in the orientation of immune responses, especially in the context of cancer. However, escape from immune surveillance is a key step for tumor development. In the context of melanoma, tumor-infiltrating and circulating DCs harbor an altered functionality, negatively linked with the clinical outcome of patients. The mechanisms employed by melanoma to modulate immunity are only partially deciphered. Immuno-metabolism emerges as a decisive factor for the orientation of immune responses in cancer. In parallel, tumor cells display aberrant glycans on surface protein and lipids that can be recognized by lectin receptors, expressed by DCs. Among them, C-type lectin receptors (CLRs) are crucial for DCs’ plasticity and the modeling of immune responses, and their expression is perturbed on DCs from melanoma patients. In addition, the tumor cells’ glycocode correlates with DC function and clinical outcome of patients. Nevertheless, influence of the various glycosylation motifs on immunity remains unknown in melanoma.We investigated the interactions of DC subsets with six glycans present on the surface of melanoma tumor cells (Gal, Man, GalNAc, s-Tn, Fuc, GlcNAc). We analyzed the effect of these glycans on the phenotype (activation status, immune checkpoints (ICP)), and the function (cytokines/chemokines) of DCs. In order to better understand DCs dysregulation in melanoma, we explored their metabolism among patients thanks to the SCENITH technique, and analyzed the correlation with their phenotype, their function and the clinical outcome of patients. We also assessed the impact of tumor cells and their glycocode on DCs’ metabolism, and we evaluated the possibility to modulate metabolic pathways with the aim of reverting the impact of glycans on DCs’ function.DCs are able to interact with and to internalize the studied glycans, at different intensities according to the DC subset and to the nature of the glycan. Fucose induces a remodeling of ICP expression and increases activation molecules, in addition to trigger the secretion of pro-inflammatory and pro-tumoral cytokines/chemokines. After activation, DC’s secretome is completely reshaped by glycan exposure, particularly with fucose. In parallel, we highlight major metabolic disturbances in DCs from patients’ blood and tumor compared to healthy donors. The expression of activation markers and ICPs by DCs as well as the clinical outcome of patients are linked with the metabolic profile of DCs. Moreover, DCs’ metabolism in co-culture with melanoma cells correlates with the expression of particular tumor glycans. Coherently, the studied glycans directly modulate DCs’ metabolism in addition to their phenotype and function. The blockade of the MCT-1 lactate transporter allows restoring DCs’ function altered by glycans.This study unveils the importance of glycan motifs in the modulation and regulation of DCs. The glycan-lectin-DC axis emerges as a new immune checkpoint in melanoma, linked with metabolism, and which could enable the restoration of anti-tumor immunity by preventing DC-glycan interactions or by acting on their metabolism. This axis opens the way for the development of new therapeutic strategies with the aim of improving clinical success for melanoma patients
Girard, Pauline. "Pathophysiologie des pDCs et des Lymphocytes Tγδ en contexte de mélanome, et potentiel de leur interaction pour le développement de nouvelles thérapies The features of circulating and tumor-infiltrating gdT cells in melanoma patients display critical perturbations with prognostic impact on clinical outcome Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALV042.
Повний текст джерелаBoth pDCs and γδT cells harbor critical roles in immune responses induction and orientation. Their unique features, high functional plasticity and ability to interact with many immune cell types allow them to bridge innate and adaptive immunity. They actively contribute to protective and pathogenic immune responses, which render them very attractive both as targets and vectors for cancer immunotherapy. Yet, γδT cells have not been extensively explored in melanoma, and despite strategic and closed missions, cross-talks between pDCs and γδT cells have not been deciphered yet, neither in healthy context nor in cancers, especially in melanoma where the long-term control of the tumor still remains a challenge. We provided here a detailed investigation of the phenotypic and functional properties of circulating and tumor-infiltrating γδT cells in melanoma patients, as well as their impact on clinical evolution. We also characterized the bidirectional cross-talks between pDCs and γδT cells both from healthy donor’s blood, patient’s blood and tumor micro-environment. Our study highlighted that melanoma hijacked γδT cells to escape from immune control, and revealed that circulating and tumor-infiltrating γδT cell features are promising potential biomarkers of clinical evolution. We also demonstrated crucial bidirectional interactions between these key potent immune players though type I and II IFN and BTN3A that are dysfunctional in the context of melanoma. Reversion of the dysfunctional bidirectional cross-talks in melanoma context could be achieved by specific cytokine administration and immune checkpoint targeting. We also revealed an increased expression of BTN3A on circulating and tumor-infiltrating pDCs and γδT cells from melanoma patients but stressed out its potential functional impairment.Thus, our study uncovered that melanoma hijacked pDCs/ γδT cells bidirectional interplay to escape from immune control, and pointed out BTN3A dysfunction. Such understanding will help harnessing and synergizing the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes. Our findings pave the way to manipulate these potent and promising cell partners to design novel immunotherapeutic strategies and restore appropriate immune responses in cancers, infections and autoimmune diseases
Baloul, Leïla. "Modulation dans le système nerveux central de facteurs de survie neuronale (Bcl-2 et Fas-L) au cours de l'infection par le virus de la rage." Paris 7, 2002. http://www.theses.fr/2002PA077226.
Повний текст джерелаTrinath, Jamma. "Mechanistic and Functional Insights into Mycobacterium bovis BCG Triggered PRR Signaling : Implications for Immune Subversion Strategies." Thesis, 2013. https://etd.iisc.ac.in/handle/2005/4580.
Повний текст джерелаYeddula, Narayana. "Delineation Of Signal Transduction Events During The Induction Of SOCS3 By Mycobacterium Bovis BCG : Possible Implications For Immune Subversion Mechanisms." Thesis, 2008. https://etd.iisc.ac.in/handle/2005/895.
Повний текст джерелаYeddula, Narayana. "Delineation Of Signal Transduction Events During The Induction Of SOCS3 By Mycobacterium Bovis BCG : Possible Implications For Immune Subversion Mechanisms." Thesis, 2008. http://hdl.handle.net/2005/895.
Повний текст джерелаKapoor, Nisha. "Delineation Of Signaling Events Regulating Mycobacterium Bovis BCG Induced Expression Of MMR-9 And SPI6 : Possible Implications For Immune Subversion Mechanisms." Thesis, 2010. https://etd.iisc.ac.in/handle/2005/2222.
Повний текст джерелаКниги з теми "Immune subversion"
L, Ploegh Hidde, ed. Viral subversion of immune responses. London: Academic Press, 2001.
Знайти повний текст джерела(Editor), William Harnett, and Les Chappell (Editor), eds. Subversion of Immune Cell Signalling by Parasites. Cambridge University Press, 2006.
Знайти повний текст джерелаLlewellyn, Matthew P., and John Gleaves. Selling Out the Amateur Ideal. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040351.003.0008.
Повний текст джерелаЧастини книг з теми "Immune subversion"
Gillet, Laurent, and Alain Vanderplasschen. "Viral Subversion of the Immune System." In Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries, 257–91. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3312-5_20.
Повний текст джерелаHodgins, D. C., and P. E. Shewen. "Subversion of the Immune Response by Bacterial Pathogens." In Pathogenesis of Bacterial Infections in Animals, 15–32. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780470958209.ch2.
Повний текст джерелаPowell, Fiona, and Florian Kern. "CMV Subversion of the Immune System in Later Life." In Immunosenescence, 127–43. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0346-0219-8_6.
Повний текст джерелаMumm, John B., and Martin Oft. "Subversion and Coercion: The Art of Redirecting Tumor Immune Surveillance." In Current Topics in Microbiology and Immunology, 25–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/82_2010_47.
Повний текст джерелаMaussang, David, Gerold Bongers, Sergio A. Lira, and Martine J. Smit. "Constitutively Active Viral Chemokine Receptors: Tools for Immune Subversion and Pathogenesis." In Methods and Principles in Medicinal Chemistry, 177–205. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631995.ch9.
Повний текст джерелаMomburg, F., and H. Hengel. "Corking the Bottleneck: The Transporter Associated with Antigen Processing as a Target for Immune Subversion by Viruses." In Current Topics in Microbiology and Immunology, 57–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59421-2_4.
Повний текст джерелаWan, Muyang, Yan Zhou, and Yongqun Zhu. "Subversion of Macrophage Functions by Bacterial Protein Toxins and Effectors." In Bacterial Evasion of the Host Immune System. Caister Academic Press, 2017. http://dx.doi.org/10.21775/9781910190692.03.
Повний текст джерелаAbu-Dayyeh, Issa. "Subversion of Host Cell Signalling by Leishmania: Role of Protein Tyrosine Phosphatases." In Immune Response to Parasitic Infections Vol-1, 137–64. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805148911001010137.
Повний текст джерелаHooda-Nehra, Anupama, Tracey L. Smith, Alejandra I. Ferrer, Fernanda I. Staquicini, Wadih Arap, Renata Pasqualini, and Pranela Rameshwar. "Targeted Regulation and Cellular Imaging of Tumor-Associated Macrophages in Triple-Negative Breast Cancer: From New Mechanistic Insights to Candidate Translational Applications." In Macrophages celebrating 140 years of discovery [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105654.
Повний текст джерелаCarroll, Brian. "Symbolic Rupture." In The Circus Is in Town, 119–41. University Press of Mississippi, 2022. http://dx.doi.org/10.14325/mississippi/9781496836502.003.0005.
Повний текст джерелаТези доповідей конференцій з теми "Immune subversion"
Bransi, Ali, Hideo Yagita, Alexander Knuth, and Maries van den Broek. "Abstract A18: Mouse models of autochthonous cancer to study local immune subversion." In Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-a18.
Повний текст джерела