Добірка наукової літератури з теми "Imagerie neuronale"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Imagerie neuronale".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Imagerie neuronale"
Sokolov, Evgeni N. "Neuronal basis of imagery." Behavioral and Brain Sciences 25, no. 2 (April 2002): 210. http://dx.doi.org/10.1017/s0140525x02500042.
Повний текст джерелаSnene, H., H. El Kefi, A. Oumaya, and S. Gallali. "Hypothèses étiopathogéniques de la schizophrénie au décours d’un traumatisme crânien : revue de la littérature." European Psychiatry 28, S2 (November 2013): 32–33. http://dx.doi.org/10.1016/j.eurpsy.2013.09.080.
Повний текст джерелаLadouceur, Cecile D. "L’influence de la puberté sur les circuits neuronaux sous-tendant la régulation des émotions : implications pour la compréhension des risques de troubles affectifs." Santé mentale au Québec 41, no. 1 (July 5, 2016): 35–64. http://dx.doi.org/10.7202/1036965ar.
Повний текст джерелаMestre-Bach, Gemma, and Marc N. Potenza. "Neuroimaging Correlates of Internet Gaming Disorder: Can We Achieve the Promise of Translating Understanding of Brain Functioning Into Clinical Advances?" Canadian Journal of Addiction 14, no. 3 (September 2023): 7–17. http://dx.doi.org/10.1097/cxa.0000000000000178.
Повний текст джерелаDilsizian, V., and J. Narula. "Have Imagers Aptly or Inadvertently Overlooked the Neuronal Myocardial Compartment?" Journal of Nuclear Medicine 56, Supplement_4 (June 1, 2015): 1S—2S. http://dx.doi.org/10.2967/jnumed.114.142810.
Повний текст джерелаHerholz, Sibylle C., Andrea R. Halpern, and Robert J. Zatorre. "Neuronal Correlates of Perception, Imagery, and Memory for Familiar Tunes." Journal of Cognitive Neuroscience 24, no. 6 (June 2012): 1382–97. http://dx.doi.org/10.1162/jocn_a_00216.
Повний текст джерелаHunt, Andrea McGraw. "Protocol for a Neurophenomenological Investigation of a Guided Imagery and Music Experience (Part I)." Music and Medicine 9, no. 2 (April 16, 2017): 109. http://dx.doi.org/10.47513/mmd.v9i2.501.
Повний текст джерелаMechelli, A. "Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and Imagery." Cerebral Cortex 14, no. 11 (May 13, 2004): 1256–65. http://dx.doi.org/10.1093/cercor/bhh087.
Повний текст джерелаDumais, A., S. Potvin, G. Martin, S. Hodgins, A. Mendrek, O. Lungu, A. Tikasz, S. Richard-Devantoy, and C. Joyal. "Schizophrénie et violence : rôle de l’impulsivité, étude en imagerie fonctionnelle." European Psychiatry 30, S2 (November 2015): S33. http://dx.doi.org/10.1016/j.eurpsy.2015.09.097.
Повний текст джерелаIstoc, A., A. Abanou, C. Habas, T. H. Nguyen, M. T. Iba-Zizen, J. L. Stiévenart, M. Yoshida, L. Bellinger, and E. A. Cabanis. "NR-WS-23 Imagerie en tenseur de diffusion (IRMTD) et neurotractographie du deuxieme neurone visuel." Journal de Radiologie 90, no. 10 (October 2009): 1544. http://dx.doi.org/10.1016/s0221-0363(09)76041-x.
Повний текст джерелаДисертації з теми "Imagerie neuronale"
Nadeau, Gabriel. "Imagerie optique de la plasticité synaptique." Master's thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27375.
Повний текст джерелаClassical measurements of synaptic plasticity have involved electrophysiological methods which provide high sensitivity for detecting small changes in synaptic strength. However, this approach does not provide much information about the location of the synapses that undergo plastic changes. Because synaptic plasticity can be synapse-specific, having the ability to monitor changes in synaptic strength at individual synapses is important in order to enable simultaneously monitoring of local molecular mechanisms associated with the plasticity. New fluorescent tools developed in the last decades allow to directly visualize synaptic activity, signaling, and remodeling at individual synapses. During my Master studies, I used optical imaging of a genetically-encoded calcium (Ca2+) sensor, GCaMP6f, to record miniature synaptic Ca2+ transients (MSCTs) in cultured rat hippocampal neurons. For these experiments, I performed video-microscopy on neurons perfused with external solution lacking Mg2+ and containing Tetrodotoxin (0Mg2+/TTX). I have observed highly localized and transient increases of intracellular Ca2+ in dendritic compartments and spines. To test whether these MSCTs can be potentiated, I have measured them before and after a 5 min stimulation known to induce plasticity in cultured neurons (0Mg2+/Glycine/Bicuculline, cLTP). A lasting increase in the frequency and amplitude of MSCTs, for at least an hour, arose from this stimulation protocol. I have thus investigated the molecular mechanisms of this plasticity. The MSCTs are mostly mediated by NMDA receptors, since they are almost totally blocked by the selective antagonist to the receptor, AP5. Moreover, addition of AP5 only during the cLTP stimulation blocks the MSCT plasticity. It thus appears that both the MSCTs and their plasticity are NMDA receptor-dependent. Interestingly, the MSCTs and their plasticity are not blocked by the AMPA receptor antagonists NBQX, pointing to possible changes in NMDA receptor content, postsynaptic Ca2+ signaling, or presynaptic neurotransmitter release. Also, while we found that CaMKII signaling is non-essential for the induction of the plasticity, preliminary data are showing a plausible PKA-dependency of the plasticity. To test these hypotheses, I have also tried to combine Ca2+ imaging with imaging of other pre and postsynaptic components, to identify the molecular mechanisms responsible for the MSCT plasticity. Overall, this new approach presented in this thesis might provide new knowledge on the diversity of molecular processes that support synaptic potentiation.
Parpaleix, Alexandre. "Imagerie biphotonique de la Po2 intracérébrale : une mesure de l’activité neuronale." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T072/document.
Повний текст джерелаIn humans, functional mapping of brain activity mainly relies on the increase of cerebral blood flow (CBF) triggered by neuronal activation. This neurovascular coupling provides energy substrates such as oxygen and glucose to the activated area. The steady state concentration of oxygen, as well as its dynamics upon neuronal activation, have been investigated with numerous methods, however, none of them provided highly resolute measurements in depth. During my PhD, we combined a phosphorescence quenching approach with two-photon microscopy to detect, in depth and with a micrometer spatial resolution scale, the emission of phosphorescence by PtP-C343, a new oxygen nano-sensor designed for two-photon excitation. We first characterized the technique and then reported two biological results, using the olfactory bulb (OB) glomerulus as a model to study oxygen concentration, at rest and upon odor stimulation. We found an arterio-venous shunt, purely based on diffusion, in the superficial nerve layer of the OB, confirming the role of arterioles in brain oxygenation. Simultaneous measurements of Po2 and blood flow allowed us to reveal the presence of erythrocyte-associated transients (EATs), i.e. Po2 fluctuations that are associated with individual erythrocytes. Pursuing the investigation of EAT characteristics, we found that in capillaries, Po2 at mid-distance between two erythrocytes is at equilibrium with, and thus reports Po2 in the nearby neuropil. Finally, we could observe that even in capillaries, a small oxygen initial dip can be detected prior to functional hyperemia, upon odor activation
Dupont-Therrien, Olivier. "Développement d'outils pour l'imagerie de l'activité neuronale - des épines au comportement." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27491.
Повний текст джерелаDue to the scale of the observed structures and behaviours, neurosciences and microscopy have always been intertwined. Whether it is to observe the different cell morphologies in transmitted white light, or to follow complex dynamics using fluorescent probes, light is the tool of choice to study the brain and its composition. Specifically, the light has the proper spatial and temporal resolution to probe both locally and globally all levels of neuronal activity, while remaining minimally invasive. This thesis shows three techniques developed for different scales, in order to push the limits of the currently addressable biological questions by neuroscientists. In order to effectively probe the internal mechanisms for small structures like dendritic spines and dendrites, we have created a single-cell labeling protocol of the voltage-sensitive fluorophore ANNINE-6plus. The method is based on the intracellular loading of the fluorescent probe in samples both in dissociated cell cultures, than in preparations of acute and organotypic slices. The second project addresses the challenges of rapid imaging of the cellular network activity. Typically, there is a choice between the temporal resolution and the imaging surface. This choice is that the fast imaging techniques are usually widefield and do not provide optical sectioning, making their use in thick samples difficult. By combining a widefield multiphoton technique, the temporal focusing, with the structured illumination and an amplified laser, we have developed a widefield system with an optical sectioning below 10um. The third chapter describes the development of two software distributed with a product created by Doric Lenses Inc., an implantable miniature microscope for imaging of deep brain structures of freely moving animals. This product finally provides a link between the local neuronal activity, and the observed animal behaviours.
Radecki, Guillaume. "Imagerie cellulaire par résonance magnétique rehaussée au manganèse (CelMEMRI)." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112212/document.
Повний текст джерелаScience has evolved since the 19th century. New tools have appeared such as optical microscopy which gives us the vision of cells and electronic microscopy which leads us into their hearts. The magnetic resonance imaging appeared in the seventies. Evolving over time, the MRI has taken us farther and farther into the secret depths of our brains. The possibility of observing the neuronal activity thanks to the functional imaging is a major evolution. This thesis will show the possibility we have to observe the activity of a single neuron without modification of its network thanks to the manganese enhanced magnetic resonance imaging technique. The study was done on the Aplysia at very high field magnet (17T). These animals are marine gastropod mollusks with a peculiarity: their neurons are of important size and can reach 1 mm in diameter. Their neurons are grouped into several ganglia. My study concerns the buccal ganglion which is the most studied ganglia in the research in electrophysiology. Before making any acquisitions, I had to conceive several microscopic coils adapted to the size of the ganglions. By reducing the size of the coils, the signal of the noise ratio increases. Then, a double coil allowing the simultaneous acquisition of two samples was built. This antenna required the construction of pre-amplifiers operating at 730 MHz. The first series of experiments helped observe the evolution of the neuronal activity according to different stimuli linked to the eating habits of the Aplysia in vivo. Thanks to the technique implemented, I shall show that, using MRI, it is possible to distinguish the activity of each neuron with respect to a stimulus. Afterwards, to continue this work, a second series of experiments was made in vitro. I studied the behavior of neurons when perfused with neural stimulators: dopamine and serotonin, both naturally present in the Aplysia. Generally, all neurons were activated but when observing them individually, I noticed some differences. Studies in electrophysiology will allow us to get a better understanding and a confirmation of the results of this study. The MEMRI technique can be used in the future to study various disorders such as compulsive behaviors, which are present in the Aplysia, and probably have the same origins as in humans, given that many fundamental processes (such as memory studied by Eric Kandel who he demonstrated that human and Aplysia memories works with the same mechanism) are similar between the two species
LOISEL, DIDIER. "Imagerie des anomalies de la gyration et de la migration neuronale chez l'enfant." Angers, 1994. http://www.theses.fr/1994ANGE1077.
Повний текст джерелаBosque-Freeman, Léorah. "Imagerie de la dégénérescence neuronale dans une maladie démyélinisante : la sclérose en plaques." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066522/document.
Повний текст джерелаMultiple sclerosis (MS) has long been regarded as an inflammatory demyelinating disorder of the white matter. But post-mortem studies have recently shed light on the extensive involvement of the grey matter (GM). Neuronal damage, characterized by synaptic and dendritic loss as well as neuronal apoptosis, is thought to be a major substrate of physical and cognitive deterioration in MS patients. There is a crucial need for new imaging techniques able to specifically assess neuronal damage in MS. Using positron emission tomography (PET) with [11C]flumazenil ([11C]FMZ), an antagonist of the central benzodiazepine site located within the GABAA receptor, and a non-invasive quantification method, we measured and mapped neurodegenerative changes in the GM of patients with MS at distinct disease stages. A cohort of 18 MS patients was compared to 8 healthy controls and underwent neurological and cognitive evaluations, high-resolution dynamic [11C]FMZ PET imaging and brain MRI. PET data were evaluated using a region of interest and a surface-based approach. [11C]FMZ binding was significantly decreased in the cortical and subcortical GM of MS patients compared to controls. These changes were significant in both progressive and relapsing-remitting forms of the disease and correlated moderately with white matter lesion load. [11C]FMZ cortical binding was also associated with cognitive performance. This pilot study is the first to quantify in vivo the neurodegenerative changes occurring in MS. Our results show that PET with [11C]FMZ could be a promising and sensitive quantitative marker to assess and map the neuronal substrate of GM pathology in MS
Jung, Mathieu. "Évaluation univariante de la qualité des images par une approche neuronale." Toulouse, ENSAE, 2000. http://www.theses.fr/2000ESAE0012.
Повний текст джерелаLeclerc, Gabriel. "Apprendre de données positives et non étiquetées : application à la segmentation et la détection d'évènements calciques." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69813.
Повний текст джерелаTwo types of neurotransmission occur in brain’s neurons: evoked transmission and spontaneous transmission. Unlike the former, the role of spontaneous transmission on synaptic plasticity –a mechanism used to endow the brain learning and memory abilities – remain unclear. Spontaneous neurotransmissions are localized and randomly happening in neuron’s synapses. When such spontaneous events happen, so-called miniature synaptic Ca²⁺ transients(mSCT), second messenger calcium ions entered the spine, activating downstream signaling pathways of synaptic plasticity. Using calcium imaging of in vitro neuron enable spatiotemporal visual-ization of the entry of calcium ions. Resulting calcium videos enable quantitative study of mSCT’s impact on synaptic plasticity. However, mSCT localization in calcium imaging can be challenging due to their small size, their low intensity compared with the imaging noise and their inherent randomness. In this master’s thesis, we present a method for quantitative high-through put analysis of calcium imaging videos that limits the variability induced by human interventions to obtain evidence for characterizing the impact of mSCTs on synaptic plasticity. Based on a semi-automatic intensity thresholded detection (ITD) tool, we are able to generate data to train a fully convolutional neural network (FCN) to rapidly and automaticaly detect mSCT from calcium videos. Using ITD noisy segmentations as training data combine with a positive and unlabeled (PU) training schema, we leveraged FCN performances and could even detect previously undetected low instensity mSCTs missed by ITD. The FCN also provide better segmentation than ITD. We then characterized the impact of PU parameters such as the number of P and the ratio P:U. The trained FCN is bundled in a all-in-one pipeline to permit a high-thoughtput analysis of mSCT. The pipeline offers detection, segmentation,characterization and visualization of mSCTs as well as a software solution to manage multiple videos with different metadatas.
Panier, Thomas. "Imagerie par nappe laser de l'activité neuronale dans l'ensemble du cerveau d'un poisson-zèbre." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-00979762.
Повний текст джерелаFeydy, Antoine. "Plasticité cérébrale et récupération motrice après un accident vasculaire cérébral ischémique : étude en imagerie par résonance magnétique fonctionnelle (IRMf)." Paris 13, 2002. http://www.theses.fr/2002PA132018.
Повний текст джерелаКниги з теми "Imagerie neuronale"
Choi, Jaebin. Implantable Fluorescence Imager for Deep Neuronal Imaging. [New York, N.Y.?]: [publisher not identified], 2021.
Знайти повний текст джерелаIeee Engineering In Medicine and Biology (Other Contributor), ed. Ninth IEEE Symposium on Computer-Based Medical Systems: June 17-18, 1996 Ann Arbor, Michigan. Institute of Electrical & Electronics Enginee, 1996.
Знайти повний текст джерелаЧастини книг з теми "Imagerie neuronale"
Foody, G. M. "Soft Mapping of Coastal Vegetation from Remotely Sensed Imagery with a Feed-Forward Neuronal Network." In Artificial Neuronal Networks, 45–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57030-8_3.
Повний текст джерелаGlasner, Daniel, Tao Hu, Juan Nunez-Iglesias, Lou Scheffer, Shan Xu, Harald Hess, Richard Fetter, Dmitri Chklovskii, and Ronen Basri. "High Resolution Segmentation of Neuronal Tissues from Low Depth-Resolution EM Imagery." In Lecture Notes in Computer Science, 261–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23094-3_19.
Повний текст джерелаMIYASHITA, YASUSHI. "Neuronal origin of visual imagery." In Cognition, Computation, and Consciousness, 150–61. Oxford University Press, 1997. http://dx.doi.org/10.1093/acprof:oso/9780198524144.003.0009.
Повний текст джерелаCRAWFORD, HELEN J. "CEREBRAL BRAIN DYNAMICS OF EMOTIONS AND MENTAL IMAGERY: DIFFERENCES IN WAKING AND HYPNOSIS." In Neuronal Bases And Psychological Aspects Of Consciousness, 236–55. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814313254_0019.
Повний текст джерелаSaif, A. F. M. Saifuddin, and Zainal Rasyid Mahayuddin. "Robust Analysis of Motor Imagery From Brain Signals for a BCI-Controlled Virtual Reality System to Aid Paralysis Patients." In Handbook of Research on Artificial Intelligence and Knowledge Management in Asia’s Digital Economy, 119–28. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5849-5.ch007.
Повний текст джерелаChaurasia, Rajashree. "On the Principles of Imagination and Creativity." In Imagination, Creativity, and Responsible Management in the Fourth Industrial Revolution, 1–62. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9188-7.ch001.
Повний текст джерелаТези доповідей конференцій з теми "Imagerie neuronale"
Yu, Chen-Ping, Charles Duffy, William Page, and Roger Gaborski. "Computational model of cortical neuronal receptive fields for self-motion perception." In 2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009). IEEE, 2009. http://dx.doi.org/10.1109/aipr.2009.5466295.
Повний текст джерелаLeandri, Gaia. "THE HAND�S BRAIN: ITS ROLE IN ARCHITECTURAL IMAGERY." In 9th SWS International Scientific Conferences on SOCIAL SCIENCES - ISCSS 2022. SGEM WORLD SCIENCE, 2022. http://dx.doi.org/10.35603/sws.iscss.2022/s06.061.
Повний текст джерелаBihler, Manuel, Jiachen Zhou, and Michael Heizmann. "Semi-supervised methods for CNN based classification of multispectral imagery." In OCM 2023 - 6th International Conference on Optical Characterization of Materials, March 22nd – 23rd, 2023, Karlsruhe, Germany : Conference Proceedings. KIT Scientific Publishing, 2023. http://dx.doi.org/10.58895/ksp/1000155014-4.
Повний текст джерелаKurkin, Semen, Parth Chholak, Alexander Pisarchik, and Alexander Hramov. "Analysis of the features of brain neuronal sources during imagery motor activity: MEG study." In 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). IEEE, 2020. http://dx.doi.org/10.1109/dcnair50402.2020.9216932.
Повний текст джерела