Статті в журналах з теми "III-V compound semiconductor nanostructures"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: III-V compound semiconductor nanostructures.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "III-V compound semiconductor nanostructures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

John Chelliah, Cyril R. A., and Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures." Nanotechnology Reviews 6, no. 6 (November 27, 2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.

Повний текст джерела
Анотація:
AbstractThe quest for high device density in advanced technology nodes makes strain engineering increasingly difficult in the last few decades. The mechanical strain and performance gain has also started to diminish due to aggressive transistor pitch scaling. In order to continue Moore’s law of scaling, it is necessary to find an effective way to enhance carrier transport in scaled dimensions. In this regard, the use of alternative nanomaterials that have superior transport properties for metal-oxide-semiconductor field-effect transistor (MOSFET) channel would be advantageous. Because of the extraordinary electron transport properties of certain III–V compound semiconductors, III–Vs are considered a promising candidate as a channel material for future channel metal-oxide-semiconductor transistors and complementary metal-oxide-semiconductor devices. In this review, the importance of the III–V semiconductor nanostructured channel in MOSFET is highlighted with a proposed III–V GaN nanostructured channel (thickness of 10 nm); Al2O3 dielectric gate oxide based MOSFET is reported with a very low threshold voltage of 0.1 V and faster switching of the device.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dubrovskii V. G. "Limiting factors for the growth rate of epitaxial III-V compound semiconductors." Technical Physics Letters 49, no. 4 (2023): 77. http://dx.doi.org/10.21883/tpl.2023.04.55886.19512.

Повний текст джерела
Анотація:
Limiting factors for the growth rate of epitaxial III-V compound semiconductors are investigated. A model based on the two connected diffusion equations for the group III and V adatoms applies for planar layers and different nanostructures including III-V nanowires. An expression for the step growth rate is obtained and a physical parameter is revealed which determines an element which actually limits the growth process. Keywords: III-V compound semiconductors, surface diffusion of adatoms, desorption, step growth rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xu, Bo, Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye, and Feng Qi Liu. "Controlled Growth of III-V Compound Semiconductor Nano-Structures and Their Application in Quantum-Devices." Materials Science Forum 475-479 (January 2005): 1783–86. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1783.

Повний текст джерела
Анотація:
This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at ~1 µm, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Jong Su, Im Sik Han, Sang Jun Lee, and Jin Dong Song. "Droplet Epitaxy for III-V Compound Semiconductor Quantum Nanostructures on Lattice Matched Systems." Journal of the Korean Physical Society 73, no. 2 (July 2018): 190–202. http://dx.doi.org/10.3938/jkps.73.190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Zuoming, Kameshwar Yadavalli, Zhibiao Hao, and Kang L. Wang. "Direct integration of III–V compound semiconductor nanostructures on silicon by selective epitaxy." Nanotechnology 20, no. 3 (December 16, 2008): 035304. http://dx.doi.org/10.1088/0957-4484/20/3/035304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Noh, Joo-Hyong, Hajime Asahi, Seong-Jin Kim, Minori Takemoto, and Shun-ichi Gonda. "Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy Observation of III–V Compound Semiconductor Nanostructures." Japanese Journal of Applied Physics 35, Part 1, No. 6B (June 30, 1996): 3743–48. http://dx.doi.org/10.1143/jjap.35.3743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Дубровский, В. Г. "Лимитирующие факторы скорости роста при эпитаксии полупроводниковых соединений III-V". Письма в журнал технической физики 49, № 8 (2023): 39. http://dx.doi.org/10.21883/pjtf.2023.08.55137.19512.

Повний текст джерела
Анотація:
Limiting factors for the growth rate of epitaxial III-V compound semiconductors are investigated. A model based on the two connected diffusion equations for the group III and V adatoms applies for planar layers and different nanostructures including III-V nanowires. An expression for the step growth rate is obtained and a physical parameter is revealed which determines an element which actually limits the growth process.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kang, M., J. H. Wu, S. Huang, M. V. Warren, Y. Jiang, E. A. Robb, and R. S. Goldman. "Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces." Applied Physics Letters 101, no. 8 (August 20, 2012): 082101. http://dx.doi.org/10.1063/1.4742863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zanotti, Simone, Momchil Minkov, Shanhui Fan, Lucio C. Andreani, and Dario Gerace. "Doubly-Resonant Photonic Crystal Cavities for Efficient Second-Harmonic Generation in III–V Semiconductors." Nanomaterials 11, no. 3 (February 28, 2021): 605. http://dx.doi.org/10.3390/nano11030605.

Повний текст джерела
Анотація:
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly-resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly-resonant nanocavities with low mode volume and large quality factor via localized defects in a photonic crystal structure. We built on this approach by applying an evolutionary optimization algorithm in connection with Maxwell equations solvers; the proposed design recipe can be applied to any material platform. We explicitly calculated the second-harmonic generation efficiency for doubly-resonant photonic crystal cavity designs in typical III–V semiconductor materials, such as GaN and AlGaAs, while targeting a fundamental harmonic at telecom wavelengths and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realization of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mi, Zetian. "III-V compound semiconductor nanostructures on silicon: epitaxial growth, properties, and applications in light emitting diodes and lasers." Journal of Nanophotonics 3, no. 1 (January 1, 2009): 031602. http://dx.doi.org/10.1117/1.3081051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Cai, Yu, Chengbao Yao, and Jie Yuan. "Enhancement of Photoelectrochemical Performance of Ag@ZnO Nanowires: Experiment and Mechanism." Journal of Nanomaterials 2020 (March 20, 2020): 1–9. http://dx.doi.org/10.1155/2020/6742728.

Повний текст джерела
Анотація:
This paper focuses on the enhancement of photoelectrochemical (PEC) performance of uniform silver nanoparticles-decorated ZnO (Ag@ZnO) nanowires, which have been synthesized by two-step chemical vapor deposition to prepare ZnO nanowires then magnetron sputtering method to deposit Ag nanoparticles. Moreover, we analyzed the mechanisms of the PEC behavior of the Ag@ZnO nanowires. The PEC characteristics show that the current density of Ag@ZnO nanowires increased comparing to that of unmodified ZnO nanowires. The optimized content of the Ag-decorated ZnO photoelectrode is up to the maximum photocurrent density of 24.8 μAcm-2 at 1 V vs. Ag/AgCl, which was almost four times than that of the unmodified ZnO photoelectrode. Based on the surface plasmon resonance (SPR), effect of Ag nanoparticles was enhanced PEC performance of the Ag@ZnO nanowires. Because SPR effect of Ag nanoparticles extended the light absorption and enhanced the separation efficiency of the photogenerated electron-hole pairs. The remarkable PEC properties offer metals-semiconductor compound nanostructures materials as a promising electron source for high current density applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hadia, Nomery, Santiago Garcia-Granda, and Jose Garcia. "Nanocrystalline Oxides: CdS nanowires synthesized by solvothermal method." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1414. http://dx.doi.org/10.1107/s2053273314085854.

Повний текст джерела
Анотація:
Recent advances in the field of nanotechnology produced an assortment of one-dimensional (1D) structures, such as nanowires and nanorods. These fascinating materials are the potential building blocks for a wide range of nanoscale electronics, optoelectronics, magnetoelectronics, or sensing devices [1]. Parallel to the success with group IV and groups III–V compounds semiconductor nanostructures, semiconducting metal oxide materials with wide band gaps are attracting attention [2-3]. The main aim of this communication is to report our results on the application of several new techniques, particularly the use of hydrothermal synthesis, to fabricate single crystal one-dimensional nanostructured materials, study their growth processes, understand the growth mechanisms and investigate their physical properties. A wide range of remarkable features are then presented, to cover a number of metal oxides, such as ZnO, Sb2O3, CdS, MgO, α-Fe2O3, or TiO2, describing their structures, optical, magnetic, mechanical and chemical sensing properties. These studies constitute the basis for developing versatile applications based on metal oxide 1D systems as well as highlighting the current progress in device development. To exemplify, the as-prepared CdS nanowires have average 28 nm in diameter and length up to several micrometres. The direct band gap of the CdS nanowires is 2.56 eV calculated by the UV-vis absorption spectra. The PL spectrum has two distinct emission bands at 502 nm and 695 nm, which are associated with the near-band-edge emission and defect emission, respectively. These synthesized single-crystal CdS nanowires have a high potential in the optoelectronic applications of nanolasers, solar cells, lighting-emitting diodes or photodetectors. Acknowledgments: Erasmus Mundus MEDASTAR (Mediterranean Area for Science, Technology and Research) Programme, 2011–4051/002–001-EMA2, Spanish MINECO (MAT2010-15094, Factoría de Cristalización – Consolider Ingenio 2010) and ERDF.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Witt, Elena, Jürgen Parisi, and Joanna Kolny-Olesiak. "Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles." Zeitschrift für Naturforschung A 68, no. 5 (May 1, 2013): 398–404. http://dx.doi.org/10.5560/zna.2013-0016.

Повний текст джерела
Анотація:
Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS2). CuInS2/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Schmidt, W. G. "III-V compound semiconductor (001) surfaces." Applied Physics A: Materials Science & Processing 75, no. 1 (July 1, 2002): 89–99. http://dx.doi.org/10.1007/s003390101058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Alonso-González, P., L. González, D. Fuster, J. Martín-Sánchez, and Yolanda González. "Surface Localization of Buried III–V Semiconductor Nanostructures." Nanoscale Research Letters 4, no. 8 (May 9, 2009): 873–77. http://dx.doi.org/10.1007/s11671-009-9329-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Paiman, S., H. J. Joyce, J. H. Kang, Q. Gao, H. H. Tan, Y. Kim, X. Zhang, J. Zou, and C. Jagadish. "ChemInform Abstract: III-V Compound Semiconductor Nanowires." ChemInform 42, no. 43 (September 29, 2011): no. http://dx.doi.org/10.1002/chin.201143202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Reznik R. R., Gridchin V. O., Kotlyar K. P., Khrebtov A. I., Ubyivovk E. V., Mikushev S. V., Li D., et al. "Formation of InGaAs quantum dots in the body of AlGaAs nanowires via molecular-beam epitaxy." Semiconductors 56, no. 7 (2022): 492. http://dx.doi.org/10.21883/sc.2022.07.54653.16.

Повний текст джерела
Анотація:
The results of experimental studies on the synthesis by molecular-beam epitaxy of AlGaAs nanowires with InGaAs quantum dots are presented. It was shown that, as in the case of the InP/InAsP material system, the formation of predominantly two objects is observed in the body of AlGaAs nanowire: InGaAs quantum dot due to axial growth and InGaAs quantum well due to radial growth. It is important to note that the grown nanostructures were formed predominantly in the wurtzite crystallographic phase. The results of the grown nanostructures physical properties studies indicate that they are promising for moving single-photon sources to the long-wavelength region. The proposed technology opens up new possibilities for integration direct-gap III-V materials with a silicon platform for various applications in photonics and quantum communications. Keywords: semiconductors, nanowires, quantum dots, III-V compounds, silicon, molecular-beam epitaxy.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Cipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni, and Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures." Nanoscale 12, no. 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lee, Jeong-Oh, Jong-Wook Lee, Kwan-Hyi Lee, Won-Young Jeung, and Jong-Yup Lee. "Electrochemical Formation of III-V Compound Semiconductor InSb." Journal of the Korean Electrochemical Society 8, no. 3 (August 1, 2005): 135–38. http://dx.doi.org/10.5229/jkes.2005.8.3.135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Heinrich, M., C. Domke, Ph Ebert, and K. Urban. "Charged steps on III-V compound semiconductor surfaces." Physical Review B 53, no. 16 (April 15, 1996): 10894–97. http://dx.doi.org/10.1103/physrevb.53.10894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Pearton, S. J. "Critical issues of III–V compound semiconductor processing." Materials Science and Engineering: B 44, no. 1-3 (February 1997): 1–7. http://dx.doi.org/10.1016/s0921-5107(96)01744-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Coelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Stress-engineered orderings of self-assembled III-V semiconductor nanostructures." physica status solidi (c) 2, no. 4 (March 2005): 1245–50. http://dx.doi.org/10.1002/pssc.200460413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kohl, P. A., and F. W. Ostermayer. "Photoelectrochemical Methods for III-V Compound Semiconductor Device Processing." Annual Review of Materials Science 19, no. 1 (August 1989): 379–99. http://dx.doi.org/10.1146/annurev.ms.19.080189.002115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

GAO, Q., H. J. JOYCE, S. PAIMAN, J. H. KANG, H. H. TAN, Y. KIM, L. M. SMITH, et al. "III-V COMPOUND SEMICONDUCTOR NANOWIRES FOR OPTOELECTRONIC DEVICE APPLICATIONS." International Journal of High Speed Electronics and Systems 20, no. 01 (March 2011): 131–41. http://dx.doi.org/10.1142/s0129156411006465.

Повний текст джерела
Анотація:
GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si ) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB , can also be engineered by carefully controlling the V/III ratio and catalyst size.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hughes, R. C. "III-V Compound Semiconductor Superlattices For Infrared Photodetector Applications." Optical Engineering 26, no. 3 (March 1, 1987): 263249. http://dx.doi.org/10.1117/12.7974058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Xia, W., S. A. Pappert, B. Zhu, A. R. Clawson, P. K. L. Yu, S. S. Lau, D. B. Poker, C. W. White, and S. A. Schwarz. "Ion mixing of III‐V compound semiconductor layered structures." Journal of Applied Physics 71, no. 6 (March 15, 1992): 2602–10. http://dx.doi.org/10.1063/1.351079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hill, D. M., F. Xu, Zhangda Lin, and J. H. Weaver. "Atomic distributions across metal–III-V-compound-semiconductor interfaces." Physical Review B 38, no. 3 (July 15, 1988): 1893–900. http://dx.doi.org/10.1103/physrevb.38.1893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Gerischer, H. "Physics and Chemistry of III—V Compound Semiconductor Interfaces." Electrochimica Acta 31, no. 12 (December 1986): 1680. http://dx.doi.org/10.1016/0013-4686(86)87096-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ansara, I., C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, et al. "A binary database for III–V compound semiconductor systems." Calphad 18, no. 2 (April 1994): 177–222. http://dx.doi.org/10.1016/0364-5916(94)90027-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Wessels, Bruce. "Physics and chemistry of III–V compound semiconductor interfaces." Materials Science and Engineering 96 (December 1987): 325–26. http://dx.doi.org/10.1016/0025-5416(87)90568-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

PEARTON, S. J. "ION IMPLANTATION IN III–V SEMICONDUCTOR TECHNOLOGY." International Journal of Modern Physics B 07, no. 28 (December 30, 1993): 4687–761. http://dx.doi.org/10.1142/s0217979293003814.

Повний текст джерела
Анотація:
A review is given of the applications of ion implantation in III–V compound semiconductor device technology, beginning with the fundamentals of ion stopping in these materials and describing the use of implantation for both doping and isolation. There is increasing interest in the use of MeV implantation to create unique doping profiles or for the isolation of thick device structures such as heterojunction bipolar transistors or multi quantum well lasers, and we give details of these areas and the metal masking layers necessary for selective area processing. Finally, examples are given of the use of implantation in a variety of III–V devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Silveira, J. P., J. M. Garcia, and F. Briones. "Surface stress effects during MBE growth of III–V semiconductor nanostructures." Journal of Crystal Growth 227-228 (July 2001): 995–99. http://dx.doi.org/10.1016/s0022-0248(01)00966-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Riel, Heike, Lars-Erik Wernersson, Minghwei Hong, and Jesús A. del Alamo. "III–V compound semiconductor transistors—from planar to nanowire structures." MRS Bulletin 39, no. 8 (August 2014): 668–77. http://dx.doi.org/10.1557/mrs.2014.137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Malheiros-Silveira, Gilliard N., Fanglu Lu, Indrasen Bhattacharya, Thai-Truong D. Tran, Hao Sun, and Connie J. Chang-Hasnain. "III–V Compound Semiconductor Nanopillars Monolithically Integrated to Silicon Photonics." ACS Photonics 4, no. 5 (April 21, 2017): 1021–25. http://dx.doi.org/10.1021/acsphotonics.6b01035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Xue, Q. "Scanning tunneling microscopy of III-V compound semiconductor (001) surfaces." Progress in Surface Science 56, no. 1-2 (October 1997): 1–131. http://dx.doi.org/10.1016/s0079-6816(97)00033-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Gao, Q., H. H. Tan, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Jin Zou, and C. Jagadish. "Growth and properties of III–V compound semiconductor heterostructure nanowires." Semiconductor Science and Technology 26, no. 1 (December 15, 2010): 014035. http://dx.doi.org/10.1088/0268-1242/26/1/014035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Gao, Q., H. H. Tan, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Jin Zou, and C. Jagadish. "Growth and properties of III–V compound semiconductor heterostructure nanowires." Semiconductor Science and Technology 27, no. 5 (March 27, 2012): 059501. http://dx.doi.org/10.1088/0268-1242/27/5/059501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Shi, W. S., Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee. "A General Synthetic Route to III-V Compound Semiconductor Nanowires." Advanced Materials 13, no. 8 (April 2001): 591–94. http://dx.doi.org/10.1002/1521-4095(200104)13:8<591::aid-adma591>3.0.co;2-#.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kalem, S., A. Curtis, Q. Hartmann, B. Moser, and G. Stillman. "Sub-Gap Excited Photoluminescence in III-V Compound Semiconductor Heterostructures." physica status solidi (b) 221, no. 1 (September 2000): 517–22. http://dx.doi.org/10.1002/1521-3951(200009)221:1<517::aid-pssb517>3.0.co;2-m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Clemans, Jim E., William A. Gault, and Eric M. Monberg. "The Production of High Quality, III-V Compound Semiconductor Crystals." AT&T Technical Journal 65, no. 4 (July 8, 1986): 86–98. http://dx.doi.org/10.1002/j.1538-7305.1986.tb00469.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kasenov, B. K. "ELECTROPHYSICAL PROPERTIES OF NEW NANOSTRUCTURED COPPER-ZINC MANGANITE OF LANTHANUM AND MAGNESIUM." Eurasian Physical Technical Journal 19, no. 2 (40) (June 15, 2022): 42–47. http://dx.doi.org/10.31489/2022no2/42-47.

Повний текст джерела
Анотація:
The polycrystalline copper-zinc manganite was synthesized by the solid-phase interaction in the range of 800-1200 °C of oxides of lanthanum (III), copper (II), zinc (II), manganese (III) and magnesium carbonate, thus its nanostructured particles were first obtained by grinding on the vibrating mill “Retsch” (Germany). The X-ray investigations determined that the nanostructured manganite is crystallized in the cubic syngony. On the LCR-7817/827 device(Company «Good Will Instrument Co., Ltd., Taiwan») in the range of 293-483 K at frequencies equal to 1.5 and 10 kHz, the dielectric constantand electrical resistance were investigated and it was found that this compound at 293-353 K has the semiconductorconductivity, at 353-373 K -metal and at 373-483 K -semiconductor conductivity again. The band gap widths were calculated. The permittivity at 483 K reaches gigantic values at all frequencies.Referring to the above, the objective of this paper is to study the temperature dependence of the dielectric constantand the electrical resistance of a new nanostructured copper-zinc manganite of lanthanum and magnesium.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Glas, F., J. Coelho, G. Patriarche, and G. Saint-Girons. "Buried dislocation networks for the controlled growth of III–V semiconductor nanostructures." Journal of Crystal Growth 275, no. 1-2 (February 2005): e1647-e1653. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Coelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Dislocation networks adapted to order the growth of III-V semiconductor nanostructures." physica status solidi (c) 2, no. 6 (April 2005): 1933–37. http://dx.doi.org/10.1002/pssc.200460528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lee, Kwan-Hyi, Jong-Wook Lee, Ho-Dong Park, Won-Young Jeung, and Jong-Yup Lee. "Electrochemical Formation and Characterization of III-V Compound Semiconductor InSb Nanowires." Journal of the Korean Electrochemical Society 8, no. 3 (August 1, 2005): 130–34. http://dx.doi.org/10.5229/jkes.2005.8.3.130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Nishio, Kenya, Suguru Saito, Yoshiya Hagimoto, and Hayato Iwamoto. "Effect of WET treatment on Group III-V Compound Semiconductor Surface." Solid State Phenomena 282 (August 2018): 43–47. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.43.

Повний текст джерела
Анотація:
In this work, we investigated interfacial properties of InP, which is a typical group III-V compound used for semiconductors, by using a chemical-treated metal oxide semiconductor (MOS) capacitor. The interfacial properties of InP is more affected by interface state density than the surface roughness and is greatly affected by In2O3in particular. Additionally, we evaluated In2O3growth during 24-hour rinsing and air exposure and found that In2O3on an InP surface grows larger during rinsing than during air exposure. To reduce In2O3, the rinse needs to be optimized.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Burstein, L., J. Bregman, and Yoram Shapira. "Characterization of interface states at III‐V compound semiconductor‐metal interfaces." Journal of Applied Physics 69, no. 4 (February 15, 1991): 2312–16. http://dx.doi.org/10.1063/1.348712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhang, Ao, Jianjun Gao, and Hong Wang. "An empirical noise model for III-V compound semiconductor based HBT." Solid-State Electronics 163 (January 2020): 107679. http://dx.doi.org/10.1016/j.sse.2019.107679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wade, Travis L., Raman Vaidyanathan, Uwe Happek, and John L. Stickney. "Electrochemical formation of a III–V compound semiconductor superlattice: InAs/InSb." Journal of Electroanalytical Chemistry 500, no. 1-2 (March 2001): 322–32. http://dx.doi.org/10.1016/s0022-0728(00)00473-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Nakamura, M., H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui, and M. Oshima. "Molecular dynamics simulation of III–V compound semiconductor growth with MBE." Journal of Crystal Growth 209, no. 2-3 (February 2000): 232–36. http://dx.doi.org/10.1016/s0022-0248(99)00546-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Dautremont-Smith, William C., R. J. McCoy, Randolph H. Burton, and Albert G. Baca. "Fabrication Technologies for III-V Compound Semiconductor Photonic and Electronic Devices." AT&T Technical Journal 68, no. 1 (January 2, 1989): 64–82. http://dx.doi.org/10.1002/j.1538-7305.1989.tb00647.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії