Добірка наукової літератури з теми "II-VI Substrates"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "II-VI Substrates".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "II-VI Substrates"

1

Sato, K., Y. Seki, Y. Matsuda, and O. Oda. "Recent developments in II–VI substrates." Journal of Crystal Growth 197, no. 3 (February 1999): 413–22. http://dx.doi.org/10.1016/s0022-0248(98)00739-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ernst, K., I. Sieber, M. Neumann-Spallart, M. Ch Lux-Steiner, and R. Könenkamp. "Characterization of II–VI compounds on porous substrates." Thin Solid Films 361-362 (February 2000): 213–17. http://dx.doi.org/10.1016/s0040-6090(99)00836-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jones, K. M., F. S. Hasoon, A. B. Swartzlander, M. M. Al-Jassim, T. L. Chu, and S. S. Chu. "The morphology and microstructure of polycrystalline CdTe thin films for solar cell applications." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1384–85. http://dx.doi.org/10.1017/s0424820100131553.

Повний текст джерела
Анотація:
Polycrystalline thin films of II-VI semiconductors on foreign polycrystalline (or amorphous) substrates have many applications in optoelectronic devices. In contrast to the extensive studies of the heteroepitaxial growth of compound semiconductors on single-crystal substrates, the nucleation and growth of thin films of II-VI compounds on foreign substrates have received little attention, and the properties of these films are often controlled empirically to optimize device performance. A better understanding of the nucleation, growth, and microstructure will facilitate a better control of the structural and electrical properties of polycrystalline semiconductor films, thereby improving the device characteristics. Cadmium telluride (CdTe) has long been recognized as a promising thin-film photovoltaic material. Under NREL's sponsorship, the University of South Florida has recently developed a record high efficiency (14.6% under global AM1.5 conditions) thin-film CdS/CdTe heterojunction solar cell for potential low-cost photovoltaic applications. The solar cell has the structure:glass (substrate)/SnO2:F/CdS/CdTe/HgTe (contact)The CdS films were grown from an aqueous solution, while the CdTe films were deposited by the closespaced sublimation method.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ZAHN, DIETRICH R. T. "PROBING SURFACES AND INTERFACES WITH OPTICAL TECHNIQUES." Surface Review and Letters 01, no. 04 (December 1994): 421–28. http://dx.doi.org/10.1142/s0218625x94000382.

Повний текст джерела
Анотація:
The potential of optical techniques for probing semiconductor surfaces and interfaces is discussed using the example of Raman spectroscopy. The surface sensitivity of the technique is demonstrated by the detection of vibrational modes of atomic monolayers on semiconductor substrates, for instance arsenic on silicon(111). The special feature of Raman spectroscopy, namely its chemical sensivity, is illustrated by two examples: the interdiffusion of group III overlayers, e.g., In on the group V substrate Sb and the detection of reacted layers at II–VI/III– V heterointerfaces. The example of II–VI/III–V heteroepitaxy also serves as an example for demonstrating the growth monitoring capabilities of optical techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Belyaev, A. P., and V. P. Rubets. "Heteroepitaxy of II-VI compound semiconductors on cooled substrates." Semiconductors 35, no. 3 (March 2001): 279–82. http://dx.doi.org/10.1134/1.1356146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boney, C. "II–VI blue/green laser diodes on ZnSe substrates." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 3 (May 1996): 2259. http://dx.doi.org/10.1116/1.588914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cywiński, G., T. Wojtowicz, K. Kopalko, G. Karczewski, and J. Kossut. "Epitaxial Growths of II-VI Compounds on (110) Substrates." Acta Physica Polonica A 94, no. 2 (August 1998): 281–84. http://dx.doi.org/10.12693/aphyspola.94.281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thompson, J., K. T. Woodhouse, and C. Dineen. "Epitaxial growth of II–VI compounds on sapphire substrates." Journal of Crystal Growth 77, no. 1-3 (September 1986): 452–59. http://dx.doi.org/10.1016/0022-0248(86)90336-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schikora, D., H. Hausleitner, S. Einfeldt, C. R. Becker, Th Widmer, C. Giftge, K. Lübke, K. Lischka, M. von Ortenberg, and G. Landwehr. "Epitaxial overgrowth of II–VI compounds on patterned substrates." Journal of Crystal Growth 138, no. 1-4 (April 1994): 8–13. http://dx.doi.org/10.1016/0022-0248(94)90772-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brill, Gregory N., Yuanping Chen, Priyalal S. Wijewarnasuriya, and Nibir K. Dhar. "Hg based II-VI compounds on non-standard substrates." physica status solidi (a) 209, no. 8 (June 20, 2012): 1423–27. http://dx.doi.org/10.1002/pssa.201100734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "II-VI Substrates"

1

Shkurmanov, Alexander, Chris Sturm, Jörg Lenzner, Guy Feuillet, Florian Tendille, Mierry Philippe De, and Marius Grundmann. "Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-210898.

Повний текст джерела
Анотація:
We report the possibility to control the tilting of nanoneedles and nanowires by using structured sapphire substrates. The advantage of the reported strategy is to obtain well oriented growth along a single direction tilted with respect to the surface normal, whereas the growth in other directions is suppressed. In our particular case, the nanostructures are tilted with respect to the surface normal by an angle of 58°. Moreover, we demonstrate that variation of the nanostructures shape from nanoneedles to cylindrical nanowires by using SiO2 layer is observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O'Donnell, Cormac Brendan. "MBE growth and characterisation of ZnSe-based II-VI semiconductors." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Vishwanath. "Characterization Of Large Area Cadmium Telluride Films And Solar Cells Deposited On Moving Substrates By Close Spaced Sublimation." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Melhem, Hassan. "Epitaxial Growth of Hexagonal Ge Planar Layers on Non-Polar Wurtzite Substrates." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST011.

Повний текст джерела
Анотація:
Le silicium et le germanium, qui cristallisent dans la structure cubique du diamant (notée 3C), ont été les piliers de l'industrie électronique grâce à leurs propriétés intrinsèques. Néanmoins, l'ingénierie des phases cristallines métastables a émergé comme une méthode puissante pour ajuster les structures de bande électronique, ouvrant la voie à de nouvelles fonctionnalités tout en maintenant une compatibilité chimique. Notamment, le Ge dans la phase hexagonale 2H présente un gap direct de 0,38 eV. L'alliage SixGe(1-x)-2H présente une émission lumineuse intense avec une longueur d'onde modulable entre 1,8 µm et 3,5 µm, selon la concentration en silicium (40 % à 0 %). Ces propriétés positionnent SixGe(1-x)-2H comme un « matériau miracle» parmi les semi-conducteurs du groupe IV, avec des applications prometteuses dans l'émission lumineuse dans le moyen infrarouge et la détection sur des plateformes en silicium.Malgré les progrès récents, la synthèse de volumes importants de Ge-2H de haute qualité reste un défi. Jusqu'à présent, Le Ge-2H a été synthétisé sous forme de nanodomaines issus de transformations de phase induites par cisaillement, de nanofils cœur/enveloppe et de nanobranches. Ces approches limitent les volumes actifs et la fabrication évolutive de dispositifs. La synthèse de couches planaires de SixGe(1-x)-2H de haute qualité, avec un dopage contrôlé, est essentielle pour permettre une intégration optimale.Cette thèse vise à ouvrir la voie à la synthèse de couches planes de Ge hexagonal en utilisant l'épitaxie en phase vapeur sous ultra-haut vide (UHV-VPE) sur des substrats hexagonaux plan-m du groupe II-VI, tels que CdS-2H et ZnS-4H. Les travaux incluent le développement de techniques de préparation de surface pour les composés II-VI et des études détaillées sur la formation de structures hexagonales dans des matériaux tels que GaAs-4H, ZnS-2H via MOCVD, et le Ge dans les phases hexagonales 2H et 4H.Une étape préliminaire cruciale a consisté à préparer les surfaces des substrats, car leur qualité impacte directement celle des couches épitaxiées. La préparation des surfaces a inclus un polissage mecano-chimique avec une solution de Br2-MeOH pour éliminer les contaminants de surface. Les défis liés aux propriétés thermiques des substrats CdS-2H et ZnS-4H ont été abordés, notamment la désorption des composés II-VI et la formation de « negative whiskers » au-dessus de 500°C.La croissance épitaxiale par UHV-VPE a posé des contraintes de sélectivité sur les substrats II-VI, ce qui a conduit à explorer des configurations alternatives de croissance, telles que l'utilisation de couches buffer. Cette thèse présente la première synthèse d'une couche de GaAs dans la structure hexagonale 4H par épitaxie sur un substrat ZnS-4H plan-m, ainsi qu'une première caractérisation des défauts d'empilement basal dans cette couche. La faisabilité de la synthèse de Ge sur GaAs-4H a également été étudiée. Une part importante du travail a été consacrée à la croissance sur les substrats CdS-2H, démontrant la première couche de Ge avec des régions nanométriques de Ge-2H, offrant une preuve de concept pour la réplication de structures Ge-2H sur des surfaces II-VI sur plan-m. L'optimisation du processus a conduit au développement de couches tampons ZnS-2H sur CdS-2H via MOCVD. Une étude approfondie a montré que la température de croissance impacte fortement la qualité cristalline des substrats CdS. Les couches de ZnS cultivées à 360°C ont révélé une structure hexagonale pure avec une orientation épitaxiale optimale. La relaxation des contraintes s'est produite via des dislocations de réseau à l'interface, en raison des désaccords de maille de 7,63 % et 6,83 % le long des axes a et c, formant des défauts d'empilement basal et prismatique sur les plans {112 ̅0}. Enfin, pour appuyer notre étude, cette thèse présente des preuves démontrant la synthèse d'une couche de Ge avec une phase hexagonale partielle
Silicon and Germanium crystallizing in the cubic diamond (denoted 3C) structure, have been the cornerstone of the electronic industry due to their inherent properties. However, metastable crystal phase engineering has emerged as a powerful method for tuning electronic band structures and conduction properties, enabling new functionalities while maintaining chemical compatibility. Notably, Germanium within the hexagonal 2H phase exhibits a direct bandgap of 0.38 eV. The alloy SixGe(1-x)-2H demonstrates strong light emission with a tunable wavelength ranging from 1.8 µm to 3.5 µm, depending on silicon concentration (40% to 0%). These properties position SixGe(1-x)-2H as a "holy grail material" among group IV semiconductors, with promising applications in mid-infrared light emission (e.g., LEDs and lasers) and detection on silicon platform.Despite recent progress, synthesizing large volumes of high-quality Ge-2H remains a challenge. Until now, Ge-2H has been limited to nanostructures, including nanodomains formed by shear-induced phase transformation, core/shell nanowires, and nanobranches. These approaches restrict active volumes, hindering basic property investigation and scalable device manufacturing. Achieving high-quality planar crystals with controlled doping is essential for advancing SixGe(1-x)-2H integration.This thesis aims to pioneer the synthesis of planar layers of hexagonal Ge using Ultra High Vacuum - Vapor Phase Epitaxy (UHV-VPE) on hexagonal m-plane II-VI substrates such as CdS-2H and ZnS-4H. The work includes developing surface preparation techniques for II-VI compounds and conducting detailed studies on hexagonal structure formation in materials such as GaAs-4H, ZnS-2H (grown via Metal-Organic Chemical Vapor Deposition, MOCVD), and Ge in both 2H and 4H hexagonal phases.A crucial preliminary step involved preparing substrate surfaces, as their quality directly impacts the crystalline quality of the epitaxial layers. Surface preparation included chemical-mechanical polishing with a Br2-MeOH solution to remove surface contaminants, confirmed through XPS analysis. Challenges related to the thermal properties of CdS-2H and ZnS-4H substrates were addressed, including desorption of II-VI compounds and the formation of negative whiskers above 500°C.Epitaxial growth by UHV-VPE posed selectivity constraints on II-VI substrates, prompting the exploration of alternative growth configurations, such as using buffer template layers. This thesis presents the first synthesis of a GaAs layer in the 4H hexagonal structure grown by epitaxy on ZnS-4H m-plane substrate, along with a first characterization of basal stacking faults (BSFs) in this layer. The feasibility of synthesizing Ge on GaAs-4H was also investigated. A significant part of the work was dedicated to growth on the CdS-2H substrates, demonstrating the first Ge layer with nanoscale regions of Ge-2H epitaxy, providing proof of concept for structure replication of Ge-2H on II-VI m-plane surfaces. However, amorphous and highly defective regions were also observed. Process optimization led to the development of ZnS-2H template layers on CdS-2H using MOCVD, circumventing constraints of direct growth on CdS. A thorough investigation of growth regimes revealed a strong impact of growth temperature on the CdS substrate surface, significantly influencing crystalline quality. m-plane ZnS layers grown at 360°C exhibited a pure hexagonal structure with excellent epitaxial orientation relative to CdS-WZ substrates. Strain relaxation occurred through misfit dislocations at the interface due to lattice mismatches of 7.63% and 6.83% along the a- and c-axes, forming basal and prismatic stacking faults on {11-20} planes. Finally, as further proof of concept, the thesis presents evidence supporting the synthesis of a Ge layer with a partial hexagonal phase
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gros, Patricia. "Epitaxie métal sur semi-conducteur II-VI : cas des terres rares sur CdTe." Grenoble 1, 1993. http://www.theses.fr/1993GRE10079.

Повний текст джерела
Анотація:
Cette etude concerne l'epitaxie par jets moleculaires de couches metalliques sur du cdte (001). Nous avons montre que l'europium peut s'epitaxier sur du cdte, moyennant une rotation de 45 de ses axes 100 et 010 autour de l'axe de croissance 001. Nous avons mis en evidence que l'interface eu/cdte n'est pas abrupte: nous observons la formation d'une couche interfaciale (ci(eu)) entre la terre rare et le cdte. Nous avons egalement etudie les couches interfaciales formees par depot de samarium ou de neodyme. L'epaisseur de ces couches interfaciales depend de la temperature du substrat. La croissance de l'europium est bidimensionnelle sur une couche interfaciale a base de neodyme ou de samarium tandis qu'elle est tridimensionnelle sur une couche interfaciale a base d'europium. Nous avons pu realiser d'autre part des multicouches du type cdte/ci/cdte. . . Et des couches metalliques enterrees cdte/eu/ci/cdte. Les differentes heterostructures ont ete caracterisees structuralement par rbs et canalisation, et dans une moindre mesure par microscopie electronique en transmission et diffraction x. Nous avons aussi caracterise electriquement l'heterojonction eu/ci(nd)/cdte (dope indium), mis en evidence le caractere ohmique de la jonction et mesure une resistance specifique de contact de 5. 10##3. Cm#2
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Jie. "Spectroscopic Ellipsometry Studies of II-VI Semiconductor Materials and Solar Cells." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1286813480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Monocrystalline ZnTe/CdTe/MgCdTe Double Heterostructure Solar Cells Grown on InSb Substrates by Molecular Beam Epitaxy." Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.26867.

Повний текст джерела
Анотація:
abstract: There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies up to 21 % have been demonstrated by the company First Solar. However, this efficiency is still far from the detailed-balance limit of 32.1 % for CdTe. This work explores the use of monocrystalline CdTe/MgCdTe and ZnTe/CdTe/MgCdTe double heterostructures (DHs) grown on (001) InSb substrates by molecular beam epitaxy (MBE) for photovoltaic applications. Undoped CdTe/MgCdTe DHs are first grown in order to determine the material quality of the CdTe epilayer and to optimize the growth conditions. DH samples show strong photoluminescence with over double the intensity as that of a GaAs/AlGaAs DH with an identical layer structure. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a carrier lifetime of up to 179 ns for a 2 µm thick CdTe layer, which is more than one order of magnitude longer than that of polycrystalline CdTe films. MgCdTe barrier layers are found to be effective at confining photogenerated carriers and have a relatively low interface recombination velocity of 461 cm/s. The optimal growth temperature and Cd/Te flux ratio is determined to be 265 °C and 1.5, respectively. Monocrystalline ZnTe/CdTe/MgCdTe P-n-N DH solar cells are designed, grown, processed into solar cell devices, and characterized. A maximum efficiency of 6.11 % is demonstrated for samples without an anti-reflection coating. The low efficiency is mainly due to the low open-circuit voltage (Voc), which is attributed to high dark current caused by interface recombination at the ZnTe/CdTe interface. Low-temperature measurements show a linear increase in Voc with decreasing temperature down to 77 K, which suggests that the room-temperature operation is limited by non-radiative recombination. An open-circuit voltage of 1.22 V and an efficiency of 8.46 % is demonstrated at 77 K. It is expected that a coherently strained MgCdTe/CdTe/MgCdTe DH solar cell design will produce higher efficiency and Voc compared to the ZnTe/CdTe/MgCdTe design with relaxed ZnTe layer.
Dissertation/Thesis
Doctoral Dissertation Electrical Engineering 2014
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yuvaraj, D. "Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods." Thesis, 2009. https://etd.iisc.ac.in/handle/2005/1037.

Повний текст джерела
Анотація:
In recent years, there has been growing interests on II-VI semiconductor nanostructures, which are suitable for applications in electronics and optoelectronic devices such as solar cells, UV lasers, sensors, light emitting diodes and field emission displays. II-VI semiconductor nanostructures with different morphologies such as wires, belts, rods, tubes, needles, springs, tetrapods, plates, hierarchical structures and so on, have been widely grown by vapor transport methods. However the process conditions used for the growth of nanostructures still remains incompatible for device fabrication. The realization of practical nanoscale devices using nanostructured film depends mainly on the availability of low cost and lower processing temperatures to manufacture high purity nanostructures on a variety of substrates including glass and polymer. In this thesis work, studies have been made on the growth and characterization of II-VI semiconductor nanostructures prepared at room temperature, under high vacuum, without employing catalysts or templates. (i) ZnO nanostructured films with different morphology such as flowers, needles and shrubs were deposited at room temperature on glass and polymer substrates by plasma assisted reactive process. (ii) Zn/ZnO core/shell nanowires were grown on Si substrates under optimized oxygen partial pressure. Annealing of this core shell nanowire in high vacuum resulted in the formation of ZnO nanocanals. (iii) ZnS and ZnSe nano and microstructures were grown on Si substrates under high vacuum by thermal evaporation. The morphology, structural, optical properties and composition of these nano and microstructures were investigated by XRD, SEM, TEM, Raman, PL and XPS. The growth mechanism behind the formation of the different nanostructures has been explained on the basis of vapour-solid (VS) mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yuvaraj, D. "Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods." Thesis, 2009. http://hdl.handle.net/2005/1037.

Повний текст джерела
Анотація:
In recent years, there has been growing interests on II-VI semiconductor nanostructures, which are suitable for applications in electronics and optoelectronic devices such as solar cells, UV lasers, sensors, light emitting diodes and field emission displays. II-VI semiconductor nanostructures with different morphologies such as wires, belts, rods, tubes, needles, springs, tetrapods, plates, hierarchical structures and so on, have been widely grown by vapor transport methods. However the process conditions used for the growth of nanostructures still remains incompatible for device fabrication. The realization of practical nanoscale devices using nanostructured film depends mainly on the availability of low cost and lower processing temperatures to manufacture high purity nanostructures on a variety of substrates including glass and polymer. In this thesis work, studies have been made on the growth and characterization of II-VI semiconductor nanostructures prepared at room temperature, under high vacuum, without employing catalysts or templates. (i) ZnO nanostructured films with different morphology such as flowers, needles and shrubs were deposited at room temperature on glass and polymer substrates by plasma assisted reactive process. (ii) Zn/ZnO core/shell nanowires were grown on Si substrates under optimized oxygen partial pressure. Annealing of this core shell nanowire in high vacuum resulted in the formation of ZnO nanocanals. (iii) ZnS and ZnSe nano and microstructures were grown on Si substrates under high vacuum by thermal evaporation. The morphology, structural, optical properties and composition of these nano and microstructures were investigated by XRD, SEM, TEM, Raman, PL and XPS. The growth mechanism behind the formation of the different nanostructures has been explained on the basis of vapour-solid (VS) mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ya-wen, Tzeng, and 曾雅文. "Interface study of II-VI compound semiconductor thin film grown on GaAs substrate." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/25036883588018655769.

Повний текст джерела
Анотація:
碩士
中原大學
物理學系
88
ZnSe buffer layers were grown at low temperature (100 to 250 oC) on the GaAs substrates by molecular beam epitaxy. Resistivity was found to decrease with the growth temperature. While, etch pit density (EPD) of ZnSe epilayer grown at 300 oC on the low temperature ZnSe buffer layers was found independent on the growth temperature of the buffer layer. EPD of the ZnMgSe epilayers, which were grown on the tilted GaAs substrates, was found to decrease with the substrate tilted angle. The result is corroborated with the photoluminescence (PL) measurement, which shows an increasing PL intensity with the tilted substrate angle.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "II-VI Substrates"

1

Colibaba, G. V., E. V. Monaico, E. P. Goncearenco, I. Inculet, and I. M. Tiginyanu. "Features of Nanotemplates Manufacturing on the II-VI Compound Substrates." In 3rd International Conference on Nanotechnologies and Biomedical Engineering, 188–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Park, Robert M. "ZnSe Growth on Non-Polar Substrates by Molecular Beam Epitaxy." In Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors, 245–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5661-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hobart, Karl D., Fritz J. Kub, Henry F. Gray, Mark E. Twigg, Dowwon Park, and Phillip E. Thompson. "Growth of low-dimensional structures on nonplanar patterned substrates." In Selected Topics in Group IV and II–VI Semiconductors, 338–43. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50072-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bremond, G., A. Souifi, O. De Barros, A. Benmansour, P. Warren, and D. Dutartre. "Photoluminescence characterization of Si1−xGex relaxed “pseudo-substrates” grown on Si." In Selected Topics in Group IV and II–VI Semiconductors, 116–20. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50032-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kolodzey, J., P. R. Berger, B. A. Orner, D. Hits, F. Chen, A. Khan, X. Shao, et al. "Optical and electronic properties of SiGeC alloys grown on Si substrates." In Selected Topics in Group IV and II–VI Semiconductors, 386–91. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50081-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sochinskii, N. V., J. C. Soares, E. Alves, M. F. da Silva, P. Franzosi, S. Bernardi, and E. Diéguez. "Structural properties of CdTe and Hg1−xCdxTe epitaxial layers grown on sapphire substrates." In Selected Topics in Group IV and II–VI Semiconductors, 195–200. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50123-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Benisty, Henri, Jean-Jacques Greffet, and Philippe Lalanne. "More confined electrons: Quantum dots and quantum wires." In Introduction to Nanophotonics, 246–72. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198786139.003.0009.

Повний текст джерела
Анотація:
This chapter aims at introducing structures where the electron is confined in two or three dimensions, the so-called quantum wires and quantum dots. The basics of the density-of-states are explained, as its strong structure distinguishes these systems from higher-dimensional ones, in addition of the large interface/volume ratio. Fabrication routes of different nature are presented, either self-organised or epitaxial, and the tunability of photonic properties that result from variable size and shape is underlined. The semiconductor families and the applications of each route are presented. The emblematic case of InAs growth on III-V substrates provides the key phenomena of interest. The II-VI colloidal quantum dots are the other emblematic case, leading to the evolving uses of quantum dots, e.g. in displays or as nanoprobes. The description of porous silicon as a lower-dimensional version of silicon is used to introduce the reader to more subtle interplays of electronic and photonic properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kayambaki, M., R. Callec, G. Constantinidis, Ch Papavassiliou, E. Löchtermann, H. Krasny, N. Papadakis, P. Panayotatos, and A. Georgakilas. "Investigation of Si-substrate preparation for GaAs-on-Si MBE growth." In Selected Topics in Group IV and II–VI Semiconductors, 300–303. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50064-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Shaozhong, Qi Xiang, Dawen Wang, and Kang L. Wang. "Modeling of facet growth on patterned Si substrate in gas source MBE." In Selected Topics in Group IV and II–VI Semiconductors, 185–89. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50044-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gutheit, T., M. Heinau, H. J. Füsser, C. Wild, P. Koidl, and G. Abstreiter. "Molecular beam epitaxial grown Si1−xCx layers on Si(001) as a substrate for MWCVD of diamond." In Selected Topics in Group IV and II–VI Semiconductors, 426–30. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50088-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "II-VI Substrates"

1

Zogg, Hans, A. N. Tiwari, Stefan Blunier, Clau Maissen, and Jiri Masek. "Heteroepitaxy of II-VI and IV-VI semiconductors on Si substrates." In Physical Concepts of Materials for Novel Optoelectronic Device Applications, edited by Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Uusimma, P., M. Pessa, P. Blood, I. Auffret, and C. Cooper. "Blue-green II-VI quantum well lasers." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctug4.

Повний текст джерела
Анотація:
Blue-green laser diodes have been fabricated in the ZnSSe/CdZnSe quantum well system using structures grown on GaAs substrates in a dual-chamber MBE system. Short-lived room temperature CW operation has been achieved at a wavelength of 515nm with a threshold current density of 580Acm−2 and threshold voltage of 7V for a stripe-contact device 12μm × 1000μm with coated facets (90%/60%). The device had 1μm thick MgZnSSe optical confinement layers doped n = 8×1017cm−3 and 8×1016cm−3 respectively, ZnSSe waveguide core of total width 0.2 μm, with a centrally located 7nm wide CdZnSe quantum well. The structure was grown on an n-type substrate and was mounted p-side up. To reduce the operating voltage the devices used a new Te/Pd/Pt/Au contact technology and a ZnSe top contact layer grown by migration enhanced epitaxy. Studies of inverted (n on p) structures with GalnP and AlGaAs buffer layers, intended to reduce the internal barrier height at the Zn/Se heterojunction, showed these structures to have high forward voltages. Consequently only pulsed operation of these inverted lasers up to 250K was possible, with a threshold current of 600Acm−2.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ueta, A., A. Avramescu, K. Uesugi, T. Numai, I. Suemune, H. Machida, and H. Shimoyama. "Selective Area Growth of Widegap II-VI Semiconductors on Patterned Substrates." In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.c-5-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haase, M. A., J. Qiu, J. M. DePuydt, and H. Cheng. "Blue-green II–VI laser diodes." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuss1.

Повний текст джерела
Анотація:
Modern epitaxial growth techniques, such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), now allow device quality undoped and n-type ZnSe layers to be grown routinely, typically on GaAs substrates. In addition, low resistivity p-type ZnSe has been demonstrated using Li and N (NH3) dopants, (for example, Refs. 1–5). For a time, there seemed to be an upper limit on the attainable net acceptor concentration (NA-ND) of about 1017 cm-3. Recently, however, significantly higher NA-ND has been achieved in ZnSe:N grown by MBE using nitrogen free radicals produced by an rf plasma source. Thus far, the largest net acceptor concentration in ZnSe layers using this doping technique is 1.0 × 1018 cm-3, which is an order of magnitude greater than that ever obtained in Li-doped samples. Using these technologies, rudimentary blue light emitting diodes (LEDs) have been reported by several laboratories. Here we present what we believe is the first demonstration of diode lasers fabricated from wide band gap II–VI materials. These devices emit coherent light at 490 run (blue-green) from a ZnSe-based single quantum well structure under pulsed current injection at 77 K. Details of structure, output, and typical optical spectra are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Di Marzio, Don, David J. Larson, Jr., Louis G. Casagrande, Jun Wu, Michael Dudley, Stephen P. Tobin, and Peter W. Norton. "Large-area x-ray topographic screening of II-VI substrates and epilayers." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by Herbert K. Pollehn and Raymond S. Balcerak. SPIE, 1994. http://dx.doi.org/10.1117/12.179671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BONEY, C., D. B. EASON, Z. YU, W. C. HUGHES, J. W. COOK, J. F. SCHETZINA, G. CANTWELL, and W. C. HARSCH. "Blue/Green Light Emitters Based on II-VI Heterostructures on ZnSe Substrates." In 1995 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1995. http://dx.doi.org/10.7567/ssdm.1995.s-v-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Haase, Michael A. "Blue-green II-VI Laser Diodes: Progress in Reliability." In Symposium on Optical Memory. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/isom.1996.ofb.1.

Повний текст джерела
Анотація:
Blue-green laser diodes based on MgZnSSe-ZnSSe-CdZnSe separate confinement heterostructures grown lattice-matched to GaAs substrates have demonstrated performance suitable for optical data storage applications. The 3M-Philips collaboration has demonstrated index-guided devices featuring single transverse mode operation with room-temperature cw output power in excess of 40 mW per facet at wavelengths of 510-520 nm with less than 10 μm of astigmatism. Buried-ridge devices have been demonstrated with threshold currents as low as 2.5 mA. Improvements in p-type ohmic contacts have enabled threshold voltages of 3.7 V.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tamargo, Maria C., Ning Dai, Abdullah Cavus, Rhonda Dzakpasu, Wojciech Krystek, Fred H. Pollak, Alph F. Semendy, et al. "Growth of wide bandgap II-VI alloys on InP substrates by molecular beam epitaxy." In Photonics for Industrial Applications, edited by Robert L. Gunshor and Arto V. Nurmikko. SPIE, 1994. http://dx.doi.org/10.1117/12.197267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ichirou Nomura, Katsumi Kishino, Tomoya Ebisawa, Shun Kushida, Jun Uota, Kunihiko Tasai, Hitoshi Nakamura, Tsunenori Asatsuma, and Hiroshi Nakajima. "Proposal of BeZnSeTe/MgZnCdSe II–VI compound semiconductors on InP substrates for green laser diodes." In 2008 IEEE 21st International Semiconductor Laser Conference (ISLC). IEEE, 2008. http://dx.doi.org/10.1109/islc.2008.4636070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Johnson, Anthony M. "Femtosecond Exciton Dynamics of II-VI Semiconductor Multiple Quantum Wells (Invited)." In Inaugural Forum for the Research Center for Optical Physics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/rcop.1993.tpls2.

Повний текст джерела
Анотація:
Room temperature excitonic absorption peaks have been difficult to observe in II-VI semiconductors and has been attributed to strong exciton-phonon interactions. The first well-defined room temperature excitonic absorption peaks were measured in CdZnTe/ZnTe multiple quantum wells (MQWs), grown by molecular beam epitaxy on GaAs substrates. We report the first direct measurement of the relative bleaching strength of room temperature excitonic absorption by "cool" free or ionized electron-hole (e-h) pairs and "cold" excitons. In these II-VI MQWs, the exciton binding energy (E b x ≈23meV), the longitudinal-optic (LO) phonon energy (ℏωLO≈25 meV), and the thermal energy (kT ≈ 26 meV) are all comparable and thus the ionized e-h pairs are "cool" (ΔE ≈ 2 meV), in contrast to the "hot" ionized e-h pairs (ΔE ≈ 27 meV) generated in GaAs/AlGaAs MQWs Ebx≈9 meV,ℏωLO≈36 meV. Utilizing 80 fs duration pump pulses to resonantly create a distribution of "cold" excitons followed by a broad band 14 fs probe pulse to measure the induced transmission, we found that the bleaching effect of "cold" neutral excitons on the excitonic absorption was nearly twice as strong as the same density of "cool" uncorrelated e-h pairs, in contrast to theoretical estimates. We have measured a very fast exciton ionization time, τion ≈ 110 fs, which agrees well with the measured homogeneous exciton linewidth broadening, supporting a model of thermal broadening due to the ionization of excitons through LO-phonon scattering. These are the first reported room temperature experiments on femtosecond exciton dynamics in II-VI semiconductor MQWs.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "II-VI Substrates"

1

Wilson, Thomas E., Avraham A. Levy, and Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7697124.bard.

Повний текст джерела
Анотація:
Gene targeting (GT) is a much needed technology as a tool for plant research and for the precise engineering of crop species. Recent advances in this field have shown that the presence of a DNA double-strand break (DSB) in a genomic locus is critical for the integration of an exogenous DNA molecule introduced into this locus. This integration can occur via either non-homologous end joining (NHEJ) into the break or homologous recombination (HR) between the broken genomic DNA and the introduced vector. A bottleneck for DNA integration via HR is the machinery responsible for homology search and strand invasion. Important proteins in this pathway are Rad51, Rad52 and Rad54. We proposed to combine our respective expertise: on the US side, in the design of zincfinger nucleases (ZFNs) for the induction of DNA DSBs at any desired genomic locus and in the integration of DNA molecules via NHEJ; and on the Israeli side in the HR events, downstream of the DSB, that lead to homology search and strand invasion. We sought to test three major pathways of targeted DNA integration: (i) integration by NHEJ into DSBs induced at desired sites by specially designed ZFNs; (ii) integration into DSBs induced at desired sites combined with the use of Rad51, Rad52 and Rad54 proteins to maximize the chances for efficient and precise HR-mediated vector insertion; (iii) stimulation of HR by Rad51, Rad52 and Rad54 in the absence of DSB induction. We also proposed to study the formation of dsT-DNA molecules during the transformation of plant cells. dsT-DNA molecules are an important substrate for HR and NHEJ-mediatedGT, yet the mode of their formation from single stranded T-DNA molecules is still obscure. In addition we sought to develop a system for assembly of multi-transgene binary vectors by using ZFNs. The latter may facilitate the production of binary vectors that may be ready for genome editing in transgenic plants. ZFNs were proposed for the induction of DSBs in genomic targets, namely, the FtsH2 gene whose loss of function can easily be identified in somatic tissues as white sectors, and the Cruciferin locus whose targeting by a GFP or RFP reporter vectors can give rise to fluorescent seeds. ZFNs were also proposed for the induction of DSBs in artificial targets and for assembly of multi-gene vectors. We finally sought to address two important cell types in terms of relevance to plant transformation, namely GT of germinal (egg) cells by floral dipping, and GT in somatic cells by root and leave transformation. To be successful, we made use of novel optimized expression cassettes that enable coexpression of all of the genes of interest (ZFNs and Rad genes) in the right tissues (egg or root cells) at the right time, namely when the GT vector is delivered into the cells. Methods were proposed for investigating the complementation of T-strands to dsDNA molecules in living plant cells. During the course of this research, we (i) designed, assembled and tested, in vitro, a pair of new ZFNs capable of targeting the Cruciferin gene, (ii) produced transgenic plants which expresses for ZFN monomers for targeting of the FtsH2 gene. Expression of these enzymes is controlled by constitutive or heat shock induced promoters, (iii) produced a large population of transgenic Arabidopsis lines in which mutated mGUS gene was incorporated into different genomic locations, (iv) designed a system for egg-cell-specific expression of ZFNs and RAD genes and initiate GT experiments, (v) demonstrated that we can achieve NHEJ-mediated gene replacement in plant cells (vi) developed a system for ZFN and homing endonuclease-mediated assembly of multigene plant transformation vectors and (vii) explored the mechanism of dsTDNA formation in plant cells. This work has substantially advanced our understanding of the mechanisms of DNA integration into plants and furthered the development of important new tools for GT in plants.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії