Дисертації з теми "Identification and Authentication Techniques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Identification and Authentication Techniques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bhamra, Sukvinder. "Investigating the use and identity of traditional herbal remedies amongst South Asian communities using surveys and biomolecular techniques." Thesis, De Montfort University, 2016. http://hdl.handle.net/2086/12392.
Повний текст джерелаBrandão, Luís T. A. N. "The Forge-and-Lose Technique and Other Contributions to Secure Two-Party Computation with Commitments." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1001.
Повний текст джерелаGe, He. "Flexible Digital Authentication Techniques." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5277/.
Повний текст джерелаNastasiu, Dragos-Florin. "Développement de solutions pour l’identification (THID) et l’authentification par des approches non intrusives dans le domaine THz." Electronic Thesis or Diss., Chambéry, 2024. http://www.theses.fr/2024CHAMA007.
Повний текст джерелаTHz imaging is an emerging field since the technological advances in terms of THz radiation emission and detection equipment. The main objective of the thesis is to contribute and to improve THz imaging systems, from image reconstruction and analysis to image classification tasks. In the first part of the thesis, we tackle the amplitude estimation challenge under ideal and multiplicative noise conditions. The multiplicative noise deforms the phase and introduces complex artefacts, such as contour information loss and contrast degradation, that cannot be eliminated using state-of-the-art image reconstruction techniques. In this regard, we introduce five novel reconstruction methods which exploit the phase diagram representation of signals. Two of the methods are based on phase-diagram match filtering to estimate the amplitude in both conditions. Another two methods use the concept of dynamic time warping (DTW) to increase the capability to model the multiplicative type of noise. Lastly, we exploit the dynamic of the phase trajectory described by the curvatures to reconstruct the image. From the large pool of methods, we evaluate throughout the thesis that the curvature-based method efficiently reconstructs the image in both ideal and noisy contexts. After an efficient image reconstruction, the second part of the thesis, we study image analysis and classification methods considering the instabilities of real-world imaging systems, such as translations and rotations. In this sense, we propose to use translation and rotation invariant wavelet packet decompositions, that provide a unique and optimal representation of an image, regardless if the image is translated or rotated. Based on the invariant image representations, novel feature extraction techniques are introduced such as vertical, horizontal, N-directional and N-zonal frameworks. Additionally, two feature structures are introduced and that consider the frequency partitioning of the wavelet decomposition and are adapted to work with Graph Neural Networks (GNNs) and classic ML classifiers such as k-nearest neighbors (k-NN), support vector machine (SVM), etc. Overall, our proposed approaches increase the accuracy of all classifiers
Wong, Chin Man. "Personal identification/authentication by using hand geometry /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?COMP%202003%20WONG.
Повний текст джерелаIncludes bibliographical references (leaves 104-109). Also available in electronic version. Access restricted to campus users.
Jiang, Feng. "Efficient Public-Key Watermark Techniques for Authentication." Thesis, Purdue University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10618833.
Повний текст джерелаThe security of digital media content has received significant attention as the usage of multimediahas increased in today's society. Digital watermarking is widely applied for digital image copyright protection and authentication. The extraction and verification of the watermark can be used for many applications, for example, authenticating the image. In some situations, the authentication should be accessible to all, thus public-key watermarking would be necessary.
In addition, many essential image-embedded documents are kept in a physical format and used widely for authentication purposes. These documents include the personal ID, license, passport, immigration document, commercial ticket with identity information, personal medical report, etc.
A digital watermarking system with high embedding capacity, robust to various attacks, high extraction efficiency is needed for such practical use. A public-key watermarking system is proposed for such applications. The embedded watermark/message can be extracted and verified publicly using a public-key. The watermark extraction process is efficient and blind. The watermark can be only embedded by the document issuer. The watermark embedded is robust against not only common digital signal processing attacks, geometric attacks but also the print-scan process. Differing from existing watermarking approaches, the watermark is embedded according to the result of proposed object weight map detection and automatic object segmentation. Higher watermark robustness and embedding capacity are achieved. Our simulation results demonstrate that the proposed approach is effective and is able to be applied to various applications.
Balisane, Hewa. "Human gait analysis for biometric identification and authentication." Thesis, Manchester Metropolitan University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539385.
Повний текст джерелаJiang, Weina. "Multi-level image authentication techniques in printing-and-scanning." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576163.
Повний текст джерелаParker, William A. "Evaluation of data processing techniques for unobtrusive gait authentication." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41429.
Повний текст джерелаThe growth in smartphone usage has led to increased storage of sensitive data on these easily lost or stolen devices. In order to mitigate the effects of users who ignore, disable, or circumvent authentication measures like passwords, we evaluate a method employing gait as a source of identifying information. This research is based on previously reported methods with a goal of evaluating gait signal processing and classification techniques. This thesis evaluates the performance of four signal normalization techniques (raw signal, zero-scaled, gravity-rotated, and gravity rotated with zero-scaling). Additionally, we evaluate the effect of carrying position on classification. Data was captured from 23 subjects carrying the device in the front pocket, back pocket, and on the hip. Unlike previous research, we analyzed classifier performance on data collected from multiple positions and tested on each individual location, which would be necessary in a robust, deployable system. Our results indicate that restricting device position can achieve the best overall performance using zero-scaling with 6.13% total error rate (TER) on the XY-axis but with a high variance across different axes. Using data from all positions with gravity rotation can achieve 12.6% TER with a low statistical variance.
Bhide, Priyanka. "Design and Evaluation of Aceelerometer Based Mobile Authentication Techniques." Thesis, Linköpings universitet, Datorteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133968.
Повний текст джерелаRashid, Rasber Dhahir. "Robust steganographic techniques for secure biometric-based remote authentication." Thesis, University of Buckingham, 2015. http://bear.buckingham.ac.uk/236/.
Повний текст джерелаCetin, Cagri. "Authentication and SQL-Injection Prevention Techniques in Web Applications." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7766.
Повний текст джерелаALI, ARSLAN. "Deep learning techniques for biometric authentication and robust classification." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2910084.
Повний текст джерелаBreedt, Morné. "Integrating biometric authentication into multiple applications." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-08282007-135540.
Повний текст джерелаAl-Athamneh, Mohammad Hmoud. "Studies in source identification and video authentication for multimedia forensics." Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725326.
Повний текст джерелаDasun, Weerasinghe P. W. H. "Parameter based identification, authentication and authorization method for mobile services." Thesis, City University London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510696.
Повний текст джерелаPalombo, Hernan Miguel. "A Comparative Study of Formal Verification Techniques for Authentication Protocols." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/6008.
Повний текст джерелаNorrington, Peter. "Novel, robust and cost-effective authentication techniques for online services." Thesis, University of Bedfordshire, 2009. http://hdl.handle.net/10547/134951.
Повний текст джерелаShcherbina, Anna. "Short tandem repeat (STR) profile authentication via machine learning techniques." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77020.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 169-171).
Short tandem repeat (STR) DNA profiles have multiple uses in forensic analysis, kinship identification, and human biometrics. However, as biotechnology progresses, there is a growing concern that STR profiles can be created using standard laboratory techniques such as whole genome amplification and molecular cloning. Such technologies can be used to synthesize any STR profile without the need for a physical sample, only knowledge of the desired genetic sequence. Therefore, to preserve the credibility of DNA as a forensic tool, it is imperative to develop means to authenticate STR profiles. The leading technique in the field, methylation analysis, is accurate but also expensive, time-consuming, and degrades the forensic sample so that further analysis is not possible. The realm of machine learning offers techniques to address the need for more effective STR profile authentication. In this work, a set of features were identified at both the channel and profile levels of STR electropherograms. A number of supervised and unsupervised machine learning algorithms were then used to predict whether a given STR electropherogram was authentic or synthesized by laboratory techniques. With the aid of the LNKnet machine learning toolkit, various classifiers were trained with the default set of parameters and the full set of features to quantify their baseline performance. Particular emphasis was placed on detecting profiles generated by Whole Genome Amplification (WGA). A greedy forward-backward search algorithm was implemented to determine the most useful subset of features from the initial group. Though the set of optimal feature values varied by classifier, a trend was observed indicating that the inter-locus imbalance error, stutter count, and range of peak widths for a profile were particularly useful features. These were selected by over two thirds of the classifiers. The signal-to- noise ratio was also a useful feature, selected by seven out of 16 classifiers. The selected features were in turn used to tune the parameters of machine learning algorithms and to compare their performance. From a set of 16 initial classifiers, the K-nearest neighbors, condensed K-nearest neighbors, multi-layer perceptron, Parzen window, and support vector machine classifiers achieved the best performance. These classification algorithms all attained error rates of approximately ten percent, defined as the percentage of profiles misclassified with the highest performing classifier achieving an error rate of less than eight percent. Overall, the classifiers performed well at detecting artificial profiles but had more difficulty accurately distinguishing natural profiles. There were many false positives for the artificial class, since profiles in this category took on a greater range of feature values. Finally, preliminary steps were taken to form classifier committees. However, combining the top performing classifiers via a majority vote did not significantly improve performance. The results of this work demonstrate the feasibility of a completely software-based approach to profile authentication. They confirm that machine learning techniques are a useful tool to trigger further investigation of profile authenticity via more expensive approaches.
by Anna Shcherbina.
M.Eng.
Kapoor, Gaurav. "Secure ownership transfer and authentication protocols for Radio Frequency Identification (RFID)." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022783.
Повний текст джерелаDooley, John J. "Molecular techniques for rhizobium identification." Thesis, University of Bath, 1997. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338595.
Повний текст джерелаKomanduri, Saranga. "Improving Password Usability with Visual Techniques." Bowling Green State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1194297698.
Повний текст джерелаAbbadi, Laith. "Multi-factor Authentication Techniques for Video Applications over the Untrusted Internet." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23413.
Повний текст джерелаMaddi, Satyanarayana. "DNA-based food authentication techniques : differentiation of tetraploid and hexaploid wheat." Thesis, Glasgow Caledonian University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517961.
Повний текст джерелаCarrillo, Cassandra M. "Continuous biometric authentication for authorized aircraft personnel : a proposed design." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FCarrillo.pdf.
Повний текст джерелаQuinn, Marguerite Claire. "The characterization of olive oils by various chromatographic and spectroscopic techniques." Thesis, University of South Wales, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265732.
Повний текст джерелаArteaga, Falconi Juan Sebastian. "ECG Authentication for Mobile Device." Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30221.
Повний текст джерелаWang, Tao. "Wireless Physical Layer Design for Confidentiality and Authentication." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7985.
Повний текст джерелаAtilgan, Erdinc Levent. "Target Identification Using Isar Imaging Techniques." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606765/index.pdf.
Повний текст джерелаAslan, Mehmet Kadir. "Emitter Identification Techniques In Electronic Warfare." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607675/index.pdf.
Повний текст джерелаLindgren, David. "Projection techniques for classification and identification /." Linköping : Univ, 2004. http://www.bibl.liu.se/liupubl/disp/disp2005/tek915s.pdf.
Повний текст джерелаLiu, Xuefeng. "Vibration-based structural damage identification techniques." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445826.
Повний текст джерелаEyecioglu, Ozmutlu Asli. "Paraphrase identification using knowledge-lean techniques." Thesis, University of Sussex, 2016. http://sro.sussex.ac.uk/id/eprint/65497/.
Повний текст джерелаAzevedo, João Henrique Albino de. "Aeroelastic studies using system identification techniques." Instituto Tecnológico de Aeronáutica, 2013. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2864.
Повний текст джерелаJANAKIRAMAN, KRISHNAMOORTHY. "ENTITY IDENTIFICATION USING DATA MINING TECHNIQUES." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin989852516.
Повний текст джерелаCamara, C. D. J. "Plant identification using model reference techniques." Thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/23544.
Повний текст джерелаFrushour, John H. "Design considerations for a computationally-lightweight authentication mechanism for passive RFID tags." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep%5FFrushour.pdf.
Повний текст джерелаThesis Advisor(s): Fulp, J.D. ; Huffmire, Ted. "September 2009." Description based on title screen as viewed on November 6, 2009. Author(s) subject terms: Passive RFID Systems, Tags, Clock, Electro-magnetic induction, authentication, hash, SHA--1. Includes bibliographical references (p. 59-60). Also available in print.
El, Khoury Franjieh. "Modélisation de la sécurisation d’accès aux réseaux par la technique de cryptographie asymétrique en utilisant la reconnaissance de l’iris et la technologie des agents." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10308.
Повний текст джерелаThe exponential growth in the use of the Internet as well as the emergence of new types of applications has increased the network’s constraints in terms f security. Fort the last several years, biometric techniques have proven their applicability and reliability in providing secure access to shared resources in different domains. Furthermore, software agents and multi-agent systems (MAS) have evidently been efficient in resolving several problems in network. Therefore, the aim of this research is to propose a model “IrisCryptoAgentSystem” (ICAS) that is based on a biometric method for authentication using the iris of the eyes and an asymmetric cryptography method using “Rivest-Shamir-Adleman” (RSA) in an agent-based architecture. This model should provide secure access to information and ensure the protection of confidential information. Therefore, our work focuses on the development of new methods in biometric autheitcation in order to provide greater efficiency in the ICAS model. We introduce pretopological aspects in the development of the indexed hierarchy to classify DHVA templates. Our approach aims to improve the existing methods for the localization of the external and the internal edges of the iris
Henriksson, Michael. "Authentication and Identification of Sensor Nodes to Avoid Unauthorized Access in Sensor Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279558.
Повний текст джерелаMed en ökad popularitet av att koppla upp sensorer och apparater mot ett nät- verk för att enklare kunna samla in data är säkerhet en aspekt som inte får glömmas bort. När känslig data, så som personlig eller privat data, skickas över nätverket oskyddat kan någon som vill komma åt datan lättare få tag på den. Denna risk ökar med värdet av datan som skickas och en ökningen av säkerhet bör darav följa ökning av värdet på datan. Utav denna anledning är det viktigt att se över säkerheten i sensornätverk och finna lösningar som lätt kan integreras med ett sensornätverk. Detta för att säkerhetsställa att endast de snesornoder som har auktoritet kan gå med i, samt skicka data på nätverket och därmed undvika oönskad åtkomst. Denna avhandling fukuserar på autentisering och identifiering av de noder som ska anslutas till nätverket för att säkerhetsställa att endast pålitliga och auktoriserade noder blir insläppta. Det protokoll som är i fokus i denna avhandling är ZigBee men den föreslagna lösningen kan även integreras med andra protokoll. Den föreslagna lösning- en använder sig även av ett Key Distribution Center (KDC) samt en autentiseringsmetod som baseras på Challenge Handshake Authentication Protocol (CHAP) för att authentisera nya noder innan de blir insläppta i nätverket. Denna lösning är säker och relativt enkel vilket gör det enkelt att integrera med all typer av sensornätverk.
Akif, Omar Zeyad. "Secure authentication procedures based on timed passwords, honeypots, honeywords and multi-factor techniques." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/16124.
Повний текст джерелаAlsulaiman, Fawaz Abdulaziz A. "Towards a Continuous User Authentication Using Haptic Information." Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23946.
Повний текст джерелаGorti, Bhaskar M. "Techniques for discrete, time domain system identification." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-11242009-020121/.
Повний текст джерелаAlkaabi, Juma A. "Improved materials management using automatic identification techniques." Thesis, Loughborough University, 1994. https://dspace.lboro.ac.uk/2134/11155.
Повний текст джерелаQiao, Guofeng. "Bioimpedence analysis techniques for malignant tissue identification." Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/id/eprint/7439/.
Повний текст джерелаPatil, Jitendra. "Vehicle identification based on image processing techniques." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=1606096.
Повний текст джерелаThe current project presents a method based on image processing techniques for the identification of moving vehicles as they approach a signaled intersection. A set of fixed cameras located before the intersection monitor the street continuously, taking pictures of the approaching object. A feature extraction algorithm is presented, which identifies a set of features in the image, and calculates a distance metric, measuring the difference of the current image from images stored in a database of vehicles. If the calculated distance metric is very small, then the present vehicle is successfully classified as being the same type as one of the vehicles stored in the database. A successful application of this method was implemented using real-time data. In the particular application presented in this project the vehicle to be identified is an ambulance car, whose images have been previously stored in the vehicle database.
MARINELLI, GIUSEPPE. "Road geometry identification with mobile mapping techniques." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2606568.
Повний текст джерелаZhang, Yanbo. "Molecular approach to the authentication of lycium barbarum and its related species." HKBU Institutional Repository, 2000. http://repository.hkbu.edu.hk/etd_ra/227.
Повний текст джерелаKoppikar, Samir Dilip. "Privacy Preserving EEG-based Authentication Using Perceptual Hashing." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955127/.
Повний текст джерелаSiorat, Catherine. "Techniques d'identification odonto-stomatologique en médecine légale." Bordeaux 2, 1990. http://www.theses.fr/1990BOR25089.
Повний текст джерела"Face authentication on mobile devices: optimization techniques and applications." 2005. http://library.cuhk.edu.hk/record=b5892581.
Повний текст джерелаThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 106-111).
Abstracts in English and Chinese.
Chapter 1. --- Introduction --- p.1
Chapter 1.1 --- Background --- p.1
Chapter 1.1.1 --- Introduction to Biometrics --- p.1
Chapter 1.1.2 --- Face Recognition in General --- p.2
Chapter 1.1.3 --- Typical Face Recognition Systems --- p.4
Chapter 1.1.4 --- Face Database and Evaluation Protocol --- p.5
Chapter 1.1.5 --- Evaluation Metrics --- p.7
Chapter 1.1.6 --- Characteristics of Mobile Devices --- p.10
Chapter 1.2 --- Motivation and Objectives --- p.12
Chapter 1.3 --- Major Contributions --- p.13
Chapter 1.3.1 --- Optimization Framework --- p.13
Chapter 1.3.2 --- Real Time Principal Component Analysis --- p.14
Chapter 1.3.3 --- Real Time Elastic Bunch Graph Matching --- p.14
Chapter 1.4 --- Thesis Organization --- p.15
Chapter 2. --- Related Work --- p.16
Chapter 2.1 --- Face Recognition for Desktop Computers --- p.16
Chapter 2.1.1 --- Global Feature Based Systems --- p.16
Chapter 2.1.2 --- Local Feature Based Systems --- p.18
Chapter 2.1.3 --- Commercial Systems --- p.20
Chapter 2.2 --- Biometrics on Mobile Devices --- p.22
Chapter 3. --- Optimization Framework --- p.24
Chapter 3.1 --- Introduction --- p.24
Chapter 3.2 --- Levels of Optimization --- p.25
Chapter 3.2.1 --- Algorithm Level --- p.25
Chapter 3.2.2 --- Code Level --- p.26
Chapter 3.2.3 --- Instruction Level --- p.27
Chapter 3.2.4 --- Architecture Level --- p.28
Chapter 3.3 --- General Optimization Workflow --- p.29
Chapter 3.4 --- Summary --- p.31
Chapter 4. --- Real Time Principal Component Analysis --- p.32
Chapter 4.1 --- Introduction --- p.32
Chapter 4.2 --- System Overview --- p.33
Chapter 4.2.1 --- Image Preprocessing --- p.33
Chapter 4.2.2 --- PCA Subspace Training --- p.34
Chapter 4.2.3 --- PCA Subspace Projection --- p.36
Chapter 4.2.4 --- Template Matching --- p.36
Chapter 4.3 --- Optimization using Fixed-point Arithmetic --- p.37
Chapter 4.3.1 --- Profiling Analysis --- p.37
Chapter 4.3.2 --- Fixed-point Representation --- p.38
Chapter 4.3.3 --- Range Estimation --- p.39
Chapter 4.3.4 --- Code Conversion --- p.42
Chapter 4.4 --- Experiments and Discussions --- p.43
Chapter 4.4.1 --- Experiment Setup --- p.43
Chapter 4.4.2 --- Execution Time --- p.44
Chapter 4.4.3 --- Space Requirement --- p.45
Chapter 4.4.4 --- Verification Accuracy --- p.45
Chapter 5. --- Real Time Elastic Bunch Graph Matching --- p.49
Chapter 5.1 --- Introduction --- p.49
Chapter 5.2 --- System Overview --- p.50
Chapter 5.2.1 --- Image Preprocessing --- p.50
Chapter 5.2.2 --- Landmark Localization --- p.51
Chapter 5.2.3 --- Feature Extraction --- p.52
Chapter 5.2.4 --- Template Matching --- p.53
Chapter 5.3 --- Optimization Overview --- p.54
Chapter 5.3.1 --- Computation Optimization --- p.55
Chapter 5.3.2 --- Memory Optimization --- p.56
Chapter 5.4 --- Optimization Strategies --- p.58
Chapter 5.4.1 --- Fixed-point Arithmetic --- p.60
Chapter 5.4.2 --- Gabor Masks and Bunch Graphs Precomputation --- p.66
Chapter 5.4.3 --- Improving Array Access Efficiency using ID array --- p.68
Chapter 5.4.4 --- Efficient Gabor Filter Selection --- p.75
Chapter 5.4.5 --- Fine Tuning System Cache Policy --- p.79
Chapter 5.4.6 --- Reducing Redundant Memory Access by Loop Merging --- p.80
Chapter 5.4.7 --- Maximizing Cache Reuse by Array Merging --- p.90
Chapter 5.4.8 --- Optimization of Trigonometric Functions using Table Lookup. --- p.97
Chapter 5.5 --- Summary --- p.99
Chapter 6. --- Conclusions --- p.103
Chapter 7. --- Bibliography --- p.106