Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Icp-Ms / mc-Icp-Ms.

Статті в журналах з теми "Icp-Ms / mc-Icp-Ms"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Icp-Ms / mc-Icp-Ms".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zhang, Wen, Zhaochu Hu, and Yongsheng Liu. "Iso-Compass: new freeware software for isotopic data reduction of LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 35, no. 6 (2020): 1087–96. http://dx.doi.org/10.1039/d0ja00084a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Santamaria-Fernandez, Rebeca, Ruth Hearn та Jean-Claude Wolff. "Detection of counterfeit tablets of an antiviral drug using δ34S measurements by MC-ICP-MS and confirmation by LA-MC-ICP-MS and HPLC-MC-ICP-MS". Journal of Analytical Atomic Spectrometry 23, № 9 (2008): 1294. http://dx.doi.org/10.1039/b802890g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hanousek, Ondrej, Marion Brunner, Daniel Pröfrock, Johanna Irrgeher, and Thomas Prohaska. "The performance of single and multi-collector ICP-MS instruments for fast and reliable34S/32S isotope ratio measurements." Analytical Methods 8, no. 42 (2016): 7661–72. http://dx.doi.org/10.1039/c6ay02177h.

Повний текст джерела
Анотація:
The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Fei, Yuhan Qi, Huimin Yu, Shengyu Tian, Zhenhui Hou, and Fang Huang. "Vanadium isotope measurement by MC-ICP-MS." Chemical Geology 421 (February 2016): 17–25. http://dx.doi.org/10.1016/j.chemgeo.2015.11.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Malinovsky, D., P. J. H. Dunn, and H. Goenaga-Infante. "Calibration of boron isotope ratio measurements by MC-ICP-MS using normalisation to admixed internal standards." Journal of Analytical Atomic Spectrometry 35, no. 11 (2020): 2723–31. http://dx.doi.org/10.1039/d0ja00145g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xie, Lie-Wen, Noreen J. Evans, Yue-Heng Yang, Chao Huang, and Jin-Hui Yang. "U–Th–Pb geochronology and simultaneous analysis of multiple isotope systems in geological samples by LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 33, no. 10 (2018): 1600–1615. http://dx.doi.org/10.1039/c8ja00157j.

Повний текст джерела
Анотація:
This is a critical review that: (i) provides an overview of LA-MC-ICP-MS dating techniques; (ii) highlights the benefits of using ICs and summarizes recent improvements in ultra-high spatial resolution dating; (iii) summarizes the range of minerals utilized for LA-MC-ICP-MS geochronology and LASS.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaufmann, A. B., M. Lazarov, S. Kiefer, J. Majzlan, and S. Weyer. "In situ determination of antimony isotope ratios in Sb minerals by femtosecond LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 7 (2021): 1554–67. http://dx.doi.org/10.1039/d1ja00089f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Weyrauch, Mona, Martin Oeser, Annika Brüske, and Stefan Weyer. "In situ high-precision Ni isotope analysis of metals by femtosecond-LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 32, no. 7 (2017): 1312–19. http://dx.doi.org/10.1039/c7ja00147a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pullen, Alex, Mauricio Ibáñez-Mejía, George E. Gehrels, Juan C. Ibáñez-Mejía, and Mark Pecha. "What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations." J. Anal. At. Spectrom. 29, no. 6 (2014): 971–80. http://dx.doi.org/10.1039/c4ja00024b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huang, Chao, Hao Wang, Jin-Hui Yang, Lie-Wen Xie, Yue-Heng Yang, and Shi-Tou Wu. "Further Characterization of the BB Zircon via SIMS and MC-ICP-MS for Li, O, and Hf Isotopic Compositions." Minerals 9, no. 12 (December 11, 2019): 774. http://dx.doi.org/10.3390/min9120774.

Повний текст джерела
Анотація:
In this contribution, we report the results for the characterization of the BB zircon, a newly developed zircon reference material from Sri Lanka, via secondary ion mass spectrometry (SIMS) and multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The focus of this work was to further investigate the applicability of the BB zircon as a reference material for micro-beam analysis, including Li, O, and Hf isotopes. The SIMS analyses reveal that BB zircon is characterized by significant localized variations in Li concentration and isotopic ratio, which makes it unsuitable as a lithium isotope reference material. The SIMS-determined δ18O values are 13.81‰ ± 0.39‰ (2SD, BB16) and 13.61‰ ± 0.40‰ (2SD, BB40), which, combined with previous studies, indicates that there is no evidence of conspicuous O isotope heterogeneity within individual BB zircon megacrysts. The mean 176Hf/177Hf ratio of BB16 determined by solution MC-ICP-MS is 0.281669 ± 0.000012 (2SD, n = 29) indistinguishable from results achieved by laser ablation (LA)-MC-ICP-MS. Based on the SIMS and MC-ICP-MS data, BB zircon is proposed as a reference material for the O isotope and Hf isotope determination.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Segal, Irina, and Ludwik Halicz. "Provenance studies in archaeometallurgy using lead isotope ratio determination by Q-ICP-MS and MC-ICP-MS." Israel Journal of Earth Sciences 54, no. 2 (July 1, 2005): 87–96. http://dx.doi.org/10.1560/qtnb-lxql-q7ef-5f7b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Usman, Abida, E. Louise Ander, Elizabeth H. Bailey, Simon Nelms, Vanessa Pashley, Scott D. Young, and Simon R. Chenery. "Optimisation of a current generation ICP-QMS and benchmarking against MC-ICP-MS spectrometry for the determination of lead isotope ratios in environmental samples." Journal of Analytical Atomic Spectrometry 33, no. 12 (2018): 2184–94. http://dx.doi.org/10.1039/c8ja00290h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Fu, Jiali, Zhaochu Hu, Jianwei Li, Lu Yang, Wen Zhang, Yongsheng Liu, Qiuli Li, Keqing Zong та Shenghong Hu. "Accurate determination of sulfur isotopes (δ33S and δ34S) in sulfides and elemental sulfur by femtosecond laser ablation MC-ICP-MS with non-matrix matched calibration". Journal of Analytical Atomic Spectrometry 32, № 12 (2017): 2341–51. http://dx.doi.org/10.1039/c7ja00282c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Chemale Jr, Farid, Koji Kawashita, Ivo A. Dussin, Janaína N. Ávila, Dayvisson Justino, and Anelise Bertotti. "U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration." Anais da Academia Brasileira de Ciências 84, no. 2 (May 15, 2012): 275–96. http://dx.doi.org/10.1590/s0001-37652012005000032.

Повний текст джерела
Анотація:
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hu, Xia, Xiao-Yun Nan, Hui-Min Yu, and Fang Huang. "High precision Rb isotope measurements by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 12 (2021): 2744–55. http://dx.doi.org/10.1039/d1ja00315a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Nan, Xiaoyun, Fei Wu, Zhaofeng Zhang, Zhenhui Hou, Fang Huang, and Huimin Yu. "High-precision barium isotope measurements by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 30, no. 11 (2015): 2307–15. http://dx.doi.org/10.1039/c5ja00166h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Albarède, Francis, Emmanuelle Albalat, and Philippe Télouk. "Instrumental isotope fractionation in multiple-collector icp-ms." Journal of Analytical Atomic Spectrometry 30, no. 8 (2015): 1736–42. http://dx.doi.org/10.1039/c5ja00188a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Park, Sanghee, Jong-Sik Ryu, Hyung Seon Shin, Youngwoo Kil, and Yunsoo Jo. "Copper Isotope Measurements Using a Neptune MC-ICP-MS." Journal of the mineralogical society of korea 29, no. 4 (December 30, 2016): 221–27. http://dx.doi.org/10.9727/jmsk.2016.29.4.221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Park, Sanghee, Jong-Sik Ryu, Hyung Seon Shin, and Youngwoo Kil. "Zinc isotope measurements using a Neptune MC-ICP-MS." Journal of the Geological Society of Korea 52, no. 6 (December 31, 2016): 953–60. http://dx.doi.org/10.14770/jgsk.2016.52.6.953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ohno, Takeshi, and Takafumi Hirata. "Stable isotope geochemistry of strontium using MC-ICP-MS." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A453. http://dx.doi.org/10.1016/j.gca.2006.06.913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

BoHang, XIE, WU ShiTou, YANG YueHeng, WANG Hao, ZHAO ZiFu, HUANG Chao, and XIE LieWen. "LA-MC-ICP-MS calcite U-Pb dating technique." Acta Petrologica Sinica 39, no. 1 (2023): 236–48. http://dx.doi.org/10.18654/1000-0569/2023.01.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sánchez, Carlos, Eduardo Bolea-Fernandez, Marta Costas-Rodríguez, Charles-Philippe Lienemann, Jose-Luis Todolí, and Frank Vanhaecke. "Direct lead isotopic analysis of bioethanol by means of multi-collector ICP-mass spectrometry with a total consumption sample introduction system." Journal of Analytical Atomic Spectrometry 33, no. 3 (2018): 481–90. http://dx.doi.org/10.1039/c8ja00020d.

Повний текст джерела
Анотація:
A method has been developed for the direct (no sample pretreatment and/or isolation of the target element from the sample matrix) Pb isotopic analysis of bioethanol via multi-collector ICP-mass spectrometry (MC-ICP-MS).
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Lin, Jie, Yongsheng Liu, Yueheng Yang, and Zhaochu Hu. "Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios." Solid Earth Sciences 1, no. 1 (June 2016): 5–27. http://dx.doi.org/10.1016/j.sesci.2016.04.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Li, Ming, Yv Lei, Lanping Feng, Zaicong Wang, Nick S. Belshaw, Zhaochu Hu, Yongsheng Liu, Lian Zhou, Haihong Chen, and Xinna Chai. "High-precision Ca isotopic measurement using a large geometry high resolution MC-ICP-MS with a dummy bucket." Journal of Analytical Atomic Spectrometry 33, no. 10 (2018): 1707–19. http://dx.doi.org/10.1039/c8ja00234g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Balaram, V. "Advances in Analytical Techniques and Applications in Exploration, Mining, Extraction, and Metallurgical Studies of Rare Earth Elements." Minerals 13, no. 8 (July 31, 2023): 1031. http://dx.doi.org/10.3390/min13081031.

Повний текст джерела
Анотація:
The use of analytical techniques is important and critical in all areas related to REE, such as basic fundamental research, exploration, mining, extraction, and metallurgical activities at different stages by different industries. At every stage of these activities, rock, ore, minerals, and other related materials have to be analyzed for their REE contents in terms of elemental, isotopic, and mineralogical concentrations using different analytical techniques. Spectacular developments have taken place in the area of analytical instrumentation during the last four decades, with some of them having shrunk in size and become handheld. Among laboratory-based techniques, F-AAS, GF-AAS, ICP-OES, and MP-AES have become very popular. Because of high sensitivity, fewer interference effects, and ease of use, ICP-MS techniques, such as quadrupole ICP-MS, ICP-MS/MS, ICP-TOF-MS, MH-ICP-MS, HR-ICP-MS, and MC-ICP-MS, with both solution nebulization as well as direct solid analysis using laser ablation sample introduction methods, have become more popular for REE analysis. For direct analysis of solids, INAA, XRF, and LIBS techniques, as well as LA-based ICP-MS techniques, are being extensively utilized. The LIBS technique in particular requires little to no sample preparation. TIMS, SIMS, and SHRIMP techniques are being used for isotopic as well as dating REE depots. Portable analytical techniques, such as pXRF, pLIBS, and Raman spectrometers are able to perform in situ analysis even in the field, helping to make fast decisions during exploration studies. At present, hyperspectral remote sensing techniques including handheld, drone, and satellite-based techniques have become very popular in REE exploration studies because of their ability to cover larger areas in a limited time and, thus, became very cost-effective. Deployment of microanalytical devices/sensors mounted in remotely operated vehicles (ROV) is being successfully utilized in detecting REE-rich deposits in the deep oceans. Providing updated in-depth information on all these important aspects with suitable examples, especially from the point of view of REE research studies is the focal point of this review article.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bao, Zhian, Kaiyun Chen, Chunlei Zong, and Honglin Yuan. "TC1725: a proposed chalcopyrite reference material for LA-MC-ICP-MS sulfur isotope determination." Journal of Analytical Atomic Spectrometry 36, no. 8 (2021): 1657–65. http://dx.doi.org/10.1039/d1ja00168j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, Jinke, and Guilin Han. "An optimal method for magnesium purification and magnesium isotopic composition obtained by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 9 (2021): 1986–95. http://dx.doi.org/10.1039/d1ja00119a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kimura, Jun-Ichi, Qing Chang, Keita Itano, Tsuyoshi Iizuka, Bogdan Stefanov Vaglarov, and Kenichiro Tani. "An improved U–Pb age dating method for zircon and monazite using 200/266 nm femtosecond laser ablation and enhanced sensitivity multiple-Faraday collector inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 30, no. 2 (2015): 494–505. http://dx.doi.org/10.1039/c4ja00257a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Yongyang, Su, Wang Wei, Li Zhiming, Deng Hu, Zhou Guoqing, Xu Jiang, and Ren Xiangjun. "Direct detection and isotope analysis of individual particles in suspension by single particle mode MC-ICP-MS for nuclear safety." Journal of Analytical Atomic Spectrometry 30, no. 5 (2015): 1184–90. http://dx.doi.org/10.1039/c4ja00339j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Hobin, Kasper, Marta Costas-Rodríguez, Elien Van Wonterghem, Roosmarijn E. Vandenbroucke, and Frank Vanhaecke. "Alzheimer’s Disease and Age-Related Changes in the Cu Isotopic Composition of Blood Plasma and Brain Tissues of the APPNL-G-F Murine Model Revealed by Multi-Collector ICP-Mass Spectrometry." Biology 12, no. 6 (June 14, 2023): 857. http://dx.doi.org/10.3390/biology12060857.

Повний текст джерела
Анотація:
Alzheimer’s’ disease (AD) is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles of tau protein in the brain. Aβ plaques are formed by the cleavage of the β-amyloid precursor protein (APP). In addition to protein aggregations, the metabolism of the essential mineral element Cu is also altered during the pathogenesis of AD. The concentration and the natural isotopic composition of Cu were investigated in blood plasma and multiple brain regions (brain stem, cerebellum, cortex, and hippocampus) of young (3–4 weeks) and aged (27–30 weeks) APPNL-G-F knock-in mice and wild-type controls to assess potential alterations associated with ageing and AD. Tandem inductively coupled plasma-mass spectrometry (ICP-MS/MS) was used for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for high-precision isotopic analysis. The blood plasma Cu concentration was significantly altered in response to both age- and AD-related effects, whereas the blood plasma Cu isotope ratio was only affected by the development of AD. Changes in the Cu isotopic signature of the cerebellum were significantly correlated with the changes observed in blood plasma. The brain stem showed a significant increase in Cu concentration for both young and aged AD transgenic mice compared with healthy controls, whereas the Cu isotopic signature became lighter as a result of age-related changes. In this work, ICP-MS/MS and MC-ICP-MS provided relevant and complementary information on the potential role of Cu in ageing and AD.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Metzger, Shalina C., Benjamin T. Manard, Debra A. Bostick, Brian W. Ticknor, Kayron T. Rogers, Eddy H. McBay, David C. Glasgow, N. Alex Zirakparvar, and Cole R. Hexel. "An approach to separating Pu, U, and Ti from high-purity graphite for isotopic analysis by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 6 (2021): 1150–58. http://dx.doi.org/10.1039/d1ja00079a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Gu, Hai-Ou, and He Sun. "High-precision analysis of potassium isotopes by MC-ICP-MS without collision cell using cool plasma technique in low-resolution mode." Journal of Analytical Atomic Spectrometry 36, no. 11 (2021): 2545–52. http://dx.doi.org/10.1039/d1ja00201e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Chen, Lu, Kaiyun Chen, Zhian Bao, Peng Liang, Tiantian Sun, and Honglin Yuan. "Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS." Journal of Analytical Atomic Spectrometry 32, no. 1 (2017): 107–16. http://dx.doi.org/10.1039/c6ja00270f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Chen, Xuefei, Le Zhang, Gangjian Wei, and Jinlong Ma. "Matrix effects and mass bias caused by inorganic acids on boron isotope determination by multi-collector ICP-MS." Journal of Analytical Atomic Spectrometry 31, no. 12 (2016): 2410–17. http://dx.doi.org/10.1039/c6ja00328a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Li, Xiaoqiang, Guilin Han, Qian Zhang, and Zhuang Miao. "An optimal separation method for high-precision K isotope analysis by using MC-ICP-MS with a dummy bucket." Journal of Analytical Atomic Spectrometry 35, no. 7 (2020): 1330–39. http://dx.doi.org/10.1039/d0ja00127a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Jun, Tongxiang Ren, Hai Lu, Tao Zhou, and Yuanjing Zhou. "The absolute isotopic composition and atomic weight of ytterbium using multi-collector inductively coupled plasma mass spectrometry and development of an SI-traceable ytterbium isotopic certified reference material." Journal of Analytical Atomic Spectrometry 30, no. 6 (2015): 1377–85. http://dx.doi.org/10.1039/c5ja00054h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Prohaska, T., J. Irrgeher, and A. Zitek. "Simultaneous multi-element and isotope ratio imaging of fish otoliths by laser ablation split stream ICP-MS/MC ICP-MS." Journal of Analytical Atomic Spectrometry 31, no. 8 (2016): 1612–21. http://dx.doi.org/10.1039/c6ja00087h.

Повний текст джерела
Анотація:
The simultaneous retrieval of spatially resolved information on the elemental content and isotope ratios from the same sampling spot (e.g. in incrementally grown biological material) still represents an analytical challenge.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Manard, Benjamin T., Veronica C. Bradley, Lyndsey Hendriks, Daniel R. Dunlap, N. Alex Zirakparvar, Brian W. Ticknor, Miguel Toro-Gonzalez, and Hunter B. Andrews. "Isotopic analysis of Nd nanoparticles using single particle MC-ICP-MS: A comparative study with single particle-ICP-TOF-MS." Talanta 286 (May 2025): 127516. https://doi.org/10.1016/j.talanta.2025.127516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Vysetti, Balaram, and Satyanarayanan Manavalan. "Data Quality in Geochemical Elemental and Isotopic Analysis." Minerals 12, no. 8 (August 8, 2022): 999. http://dx.doi.org/10.3390/min12080999.

Повний текст джерела
Анотація:
Appropriate sampling, sample preparation, choosing the right analytical instrument, analytical methodology, and adopting proper data generation protocols are essential for generating data of the required quality for both basic and applied geochemical research studies. During the last decade, instrumental advancements, in particular further developments in ICP-MS, such as the use of tandem ICP-MS, high-resolution mass spectrometry to resolve several interferences, and the use of the second path with a collision/reaction cell in multi-collector ICP-MS (MC-ICP-MS) to effectively resolve interferences, have brought in remarkable improvements in accuracy and precision in both elemental and isotopic analyses. The availability of a number of well-characterized geological certified reference samples having both elemental and isotopic data-enabled matrix-matching calibrations and contributed to the quality and traceability of the geochemical data in several cases. There have been some developments in the sample dissolution methods also. A range of quality issues related to sampling, packaging and transport, powdering, dissolution, the application of suitable instrumental analytical techniques, calibration methods, accuracy, and precision are addressed which are helpful in geochemical studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Craig, Grant, Matthew S. A. Horstwood, Helen J. Reid, and Barry L. Sharp. "‘Blind time’ – current limitations on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) for ultra-transient signal isotope ratio analysis and application to individual sub-micron sized uranium particles." Journal of Analytical Atomic Spectrometry 35, no. 5 (2020): 1011–21. http://dx.doi.org/10.1039/d0ja00066c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Beunon, Hugues, Stepan M. Chernonozhkin, Nadine Mattielli, Steven Goderis, Luc-Serge Doucet, Vinciane Debaille, and Frank Vanhaecke. "Innovative two-step isolation of Ni prior to stable isotope ratio measurements by MC-ICP-MS: application to igneous geological reference materials." Journal of Analytical Atomic Spectrometry 35, no. 10 (2020): 2213–23. http://dx.doi.org/10.1039/d0ja00163e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lana, Cristiano, Federico Farina, Axel Gerdes, Ana Alkmim, Guilherme O. Gonçalves, and Antonio C. Jardim. "Characterization of zircon reference materials via high precision U–Pb LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 32, no. 10 (2017): 2011–23. http://dx.doi.org/10.1039/c7ja00167c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Chang, Qing, Jun-Ichi Kimura та Bogdan Stefanov Vaglarov. "In situ Sr isotope measurement of small glass samples using multiple-Faraday collector inductively coupled plasma mass spectrometry with 1012Ω resistor high gain Faraday amplifiers". Journal of Analytical Atomic Spectrometry 30, № 2 (2015): 515–24. http://dx.doi.org/10.1039/c4ja00297k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Eppich, Gary R., Zsuzsanna Mácsik, Róbert Katona, Stefanie Konegger-Kappel, Guillaume Stadelmann, Andreas Köpf, Beata Varga, and Sergei Boulyga. "Plutonium assay and isotopic composition measurements in nuclear safeguards samples by inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 34, no. 6 (2019): 1154–65. http://dx.doi.org/10.1039/c9ja00047j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Mahan, Brandon M., Fei Wu, Anthony Dosseto, Roger Chung, Bruce Schaefer, and Simon Turner. "SpinChem™: rapid element purification from biological and geological matrices via centrifugation for MC-ICP-MS isotope analyses – a case study with Zn." Journal of Analytical Atomic Spectrometry 35, no. 5 (2020): 863–72. http://dx.doi.org/10.1039/c9ja00361d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Queipo-Abad, Silvia, Pablo Rodríguez-González, and José Ignacio García Alonso. "Measurement of compound-specific Hg isotopic composition in narrow transient signals by gas chromatography coupled to multicollector ICP-MS." Journal of Analytical Atomic Spectrometry 34, no. 4 (2019): 753–63. http://dx.doi.org/10.1039/c8ja00453f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Choi, Ah Yeong, Jong-Sik Ryu, Kiseong Hyeong, Mun Gi Kim, Kongtae Ra, Hyeryeong Jeong, and Hyoun Soo Lim. "Silicon Isotope Measurement of Giant Diatoms Using MC-ICP-MS." Journal of the Korean earth science society 42, no. 1 (February 28, 2021): 1–10. http://dx.doi.org/10.5467/jkess.2021.42.1.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Choi, Min Seok, Jong-Sik Ryu, Sin-Woo Lee, Chang-Sik Cheong, Hyung Seon Shin, and Kwang-Sik Lee. "Radiogenic and stable isotope measurement using a MC-ICP-MS." Journal of Analytical Science and Technology 2, Supplement A (December 22, 2011): A125—A128. http://dx.doi.org/10.5355/jast.2011.a125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Xu, Juan, Shouye Yang, Yueheng Yang, Yongsheng Liu, and Xiaolei Xie. "Determination of Stable Strontium Isotopic Compositions by MC-ICP-MS." Atomic Spectroscopy 41, no. 2 (April 25, 2020): 64–73. http://dx.doi.org/10.46770/as.2020.02.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

van den Boorn, Sander H. J. M., Pieter Z. Vroon, and Manfred J. van Bergen. "Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements." Journal of Analytical Atomic Spectrometry 24, no. 8 (2009): 1111. http://dx.doi.org/10.1039/b816804k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії