Добірка наукової літератури з теми "IA responsable"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "IA responsable".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "IA responsable"
Vuarin, Louis, Pedro Gomes Lopes, and David Massé. "L’intelligence artificielle peut-elle être une innovation responsable ?" Innovations N° 72, no. 3 (August 29, 2023): 103–47. http://dx.doi.org/10.3917/inno.pr2.0153.
Повний текст джерелаDaniel, Anne-Solène, and Hugo Velluet. "Numérisation et IA : vers un numérique responsable." Archimag N° 374, no. 4 (June 10, 2024): 18. http://dx.doi.org/10.3917/arma.374.0018.
Повний текст джерелаNavarro Mendizábal, Íñigo. "¿Quién paga los daños que causa la IA? De la ética a la responsabilidad por productos defectuosos." Revista Iberoamericana de Bioética, no. 25 (July 15, 2024): 01–15. http://dx.doi.org/10.14422/rib.i25.y2024.002.
Повний текст джерелаDevillers, Laurence. "Le langage non responsable des systèmes d’intelligence artificielle (IA) générative." Champ lacanien N° 28, no. 1 (October 2, 2024): 133–38. http://dx.doi.org/10.3917/chla.028.0133.
Повний текст джерелаGallardo Daste, Jimmy. "El uso no responsable de la inteligencia artificial en medicina." Metro Ciencia 32, no. 4 (November 30, 2024): 85–86. https://doi.org/10.47464/metrociencia/vol32/4/2024/85-86.
Повний текст джерелаHerrera Duarte, Leidy Esmeralda. "Los desafíos Éticos y Legales de la Inteligencia Artificial y la Robótica." Estudios y Perspectivas Revista Científica y Académica 2, no. 2 (July 24, 2022): 115–30. http://dx.doi.org/10.61384/r.c.a..v2i2.26.
Повний текст джерелаRentería García, Christian Daniel. "El impacto de la Inteligencia Artificial en la Educación Superior: representaciones sociales y transformación institucional." TIES, Revista de Tecnología e Innovación en Educación Superior, no. 11 (December 5, 2024): 53–71. https://doi.org/10.22201/dgtic.26832968e.2024.11.47.
Повний текст джерелаHernández-Isidro, Yuriany Gabriela, Angelly Zharick Pacheco-Niño, Karen Dayan Rico-Berrio, and Erick Janer Téllez Duarte. "Guía para la disminución de opacidad en la toma de decisiones de la IA en los negocios." Reflexiones contables (Cúcuta) 7, no. 1 (January 1, 2024): 08–16. http://dx.doi.org/10.22463/26655543.4392.
Повний текст джерелаBeneite-Martí, Joshua. "¿Inteligencia Artificial en Proyectos de Aprendizaje-Servicio?" EDU REVIEW. International Education and Learning Review / Revista Internacional de Educación y Aprendizaje 12, no. 2 (December 14, 2024): 99–109. https://doi.org/10.62701/revedu.v12.5414.
Повний текст джерелаMartínez Devia, Andrea. "La inteligencia artificial, el big data y la era digital: ¿una amenaza para los datos personales?" Revista La Propiedad Inmaterial, no. 27 (June 25, 2019): 5–23. http://dx.doi.org/10.18601/16571959.n27.01.
Повний текст джерелаДисертації з теми "IA responsable"
Reis, Fernanda de Castro. "Construção de minigenes para avaliação de mutações que açlteram o sitio de splicing do gene responsavel pela glicogenose tipo Ia (Doença de Von Gierke)." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/308886.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-07-27T18:22:36Z (GMT). No. of bitstreams: 1 Reis_FernandadeCastro_M.pdf: 23985784 bytes, checksum: e92f2903bb320c3ac779c96e20940b1a (MD5) Previous issue date: 2001
Resumo: A doença de depósito de glicogênio do tipo Ia (GSDIa), é a forma mais comum entre as glicogenose do tipo I (GSDI), com uma freqüência de 1:100.000 nascimentos. É uma doença de herança autossômica recessiva, clinicamente caracterizada por hipoglicemia, hepatomegalia, retardo no crescimento, hiperlipidemia, hiperuricemia e acidose láctica. Esses sintomas são provocados pela deficiência da enzima glicose 6- fosfatase (G6Pase), que cataliza as etapas finais da gliconeogênese e glicogenólise através da conversão da glicose 6-fosfato (G6P) em glicose e fosfato. No passado, muitos pacientes com GSDI morriam pela doença. Atualmente, com o diagnóstico precoce e início de um tratamento contínuo e adequado, complicações como adenomas hepáticos e renais podem ser prevenidas. O isolamento do cDNA humano da G6Pase demonstrou que o gene G6PC é composto de cinco exons, possui um tamanho de 12,5Kb e se localiza no cromossomo 17. Desde sua clonagem, mais de 50 diferentes mutações foram descritas no gene. Em pacientes caucasianos provenientes dos EUA e do Noroeste europeu, as mutações R83C e Q347X são responsáveis por 22,5% e 22,4% de todos os alelos mutantes respectivamente. O diagnóstico de GSDIa pode ser feito através de testes enzimáticos e confirmado pela análise de mutação no gene G6PC. A caracterização do gene da G6Pase possibilitou a identificação de mutações que causam GSDIa. Este fato nos dá a opção de aplicar um diagnóstico baseado em análise de DNA para detecção de portadores e diagnóstico prénatal. A caracterização do gene também possibilita um insight em tomo da relação estrutura-função da catálise da G6Pase, revelando a função estrutural de aminoácidos específicos. No presente estudo, vinte e sete pacientes de GSDIa provenientes de 26 famílias não relacionadas foram investigados. O diagnóstico pela análise da atividade da enzima G6Pase em biópsia de fígado foi confirmado em apenas quatro pacientes. A estratégia dos minigenes foi utilizada para verificar o efeito das mutações intrônicas sob o mecanismo de splicing, não sendo identificados transcritos aberrantes. A perda de exons ou incorporação de fragmentos intrônicos nos exons são mecanismos mutacionais comuns, freqüentemente causados por mudanças nas seqüências conservadas de regiões de sítios de splicing. Da mesma forma seqüências fora dessas regiões também podem afetar a inclusão ou exclusão de exons. Essas alterações que atuam nos mecanismos de splicing podem estar localizadas em introns ou em exons, e padrões de splicing alternativos podem ser determinados pela visualização do tamanho do produto de transcrição. Foram identificadas oito alterações no gene G6PC, incluindo uma nova mutação de ponto encontrada até o momento somente na população brasileira, publicada por nosso grupo, duas mutações intrônicas, uma mutação silenciosa e quatro mutações de ponto previamente descritas. Foi analisado também o polimorfismo T1176C que está em associação com a mutação R83C. Esse polimorfismo pode ser utilizado como marcador para o diagnóstico de portadores e pré-natal de famílias com GSDIa que têm mutações não identificadas e que são informativas para esse marcador. Esse estudo enfatiza que a análise molecular genética é uma alternativa confiável e conveniente ao ensaio enzimático feito em biópsia de figado para o diagnóstico de GSDIa
Abstract: Glycogen storage disease type (GSD) is the most prevalent form among the glycogen storage disease type I (GSDI), with an overall frequency of 1:100.000 live births. It' s an autosomal recessive disorder clinically characterized by hypoglycemia, hepatomegaly, growth retardation, hyperlipidemia, hyperuricemia, and lactic acidemia. These symptoms are caused by a deficiency in glucose 6-phosphatase (G6Pase), which catalyzes the terminal steps in gluconeogenesis and glycogenolysis by converting glucose 6-phosphate (G6P) into glucose and phosphate. In the past, many patients with type I glycogen storage disease used to die. At present, with early diagnosis and initiation of continuous proper treatment such as hepatic and renal adenomas can be prevented. Isolation of human G6Pase cDNA showed that G6PC gene is composed of five exons, spanning approximately 12,5Kb on chromosome 17.From its cloning, more than 50 different mutations have been reported in this gene. In Caucasian patients trom the USA and from North-West Europe, R83C and Q347X account for 25.2% and 22.4% of all mutant alleles respectively. Diagnosis of GSDla can be done by enzymological tests and confirmed by mutation analysis of the G6PC gene. The characterization of the G6Pase gene enabled the identification of the mutations causing GSDla. This fact provides an option on applying DNA-analysis based diagnosis for carrier detection and prenatal diagnosis. The characterization of the gene also provides an insight into the structure-function relation of the G6Pase catalysis, by revealing the structural roles of specific amino acid residues. In the present study, twenty seven GSDla patients trom twenty six unrelated families were investigated. The diagnosis by the G6Pase enzyme activity analysis in the liver biopsy was confirmed only in four patients. The minigenes strategy was used in order to verify the effect of the intronic mutations in the splicing mechanism. No aberrant transcripts were identified. Exon skipping or exon intronic fragment incorporation is an usual mutational mechanism, often caused by changes in the consensus sequences at splicing site region. Likewise, sequences outside these regions can also affect the inclusion or exclusion of exons. Such splicing enhancers may be located in introns or exons, and alternative splicing pattems could be determined by visualization of a sized transcription product. Eight alterations in the G6PC gene were identified, including a new point mutation found so far only in Brazilian population and published by our group, two intronic mutations, a silent mutation, and four point mutations previously described. It was also analyzed the T1176C polymorphism that is in association with the R83C mutation. This polymorphism can be used as a marker in carrier and prenatal diagnosis of GSDla families which have unidentified mutations and are informative for this marker. This study emphasizes that molecular genetic analysis is a reliable and convenient altemative to the enzyme assay in a tresh liver biopsy specimen to diagnose GSDla
Mestrado
Ciencias Biomedicas
Mestre em Ciências Médicas
Kaplan, Caelin. "Compromis inhérents à l'apprentissage automatique préservant la confidentialité." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4045.
Повний текст джерелаAs machine learning (ML) models are increasingly integrated into a wide range of applications, ensuring the privacy of individuals' data is becoming more important than ever. However, privacy-preserving ML techniques often result in reduced task-specific utility and may negatively impact other essential factors like fairness, robustness, and interpretability. These challenges have limited the widespread adoption of privacy-preserving methods. This thesis aims to address these challenges through two primary goals: (1) to deepen the understanding of key trade-offs in three privacy-preserving ML techniques—differential privacy, empirical privacy defenses, and federated learning; (2) to propose novel methods and algorithms that improve utility and effectiveness while maintaining privacy protections. The first study in this thesis investigates how differential privacy impacts fairness across groups defined by sensitive attributes. While previous assumptions suggested that differential privacy could exacerbate unfairness in ML models, our experiments demonstrate that selecting an optimal model architecture and tuning hyperparameters for DP-SGD (Differentially Private Stochastic Gradient Descent) can mitigate fairness disparities. Using standard ML fairness datasets, we show that group disparities in metrics like demographic parity, equalized odds, and predictive parity are often reduced or remain negligible when compared to non-private baselines, challenging the prevailing notion that differential privacy worsens fairness for underrepresented groups. The second study focuses on empirical privacy defenses, which aim to protect training data privacy while minimizing utility loss. Most existing defenses assume access to reference data---an additional dataset from the same or a similar distribution as the training data. However, previous works have largely neglected to evaluate the privacy risks associated with reference data. To address this, we conducted the first comprehensive analysis of reference data privacy in empirical defenses. We proposed a baseline defense method, Weighted Empirical Risk Minimization (WERM), which allows for a clearer understanding of the trade-offs between model utility, training data privacy, and reference data privacy. In addition to offering theoretical guarantees on model utility and the relative privacy of training and reference data, WERM consistently outperforms state-of-the-art empirical privacy defenses in nearly all relative privacy regimes.The third study addresses the convergence-related trade-offs in Collaborative Inference Systems (CISs), which are increasingly used in the Internet of Things (IoT) to enable smaller nodes in a network to offload part of their inference tasks to more powerful nodes. While Federated Learning (FL) is often used to jointly train models within CISs, traditional methods have overlooked the operational dynamics of these systems, such as heterogeneity in serving rates across nodes. We propose a novel FL approach explicitly designed for CISs, which accounts for varying serving rates and uneven data availability. Our framework provides theoretical guarantees and consistently outperforms state-of-the-art algorithms, particularly in scenarios where end devices handle high inference request rates.In conclusion, this thesis advances the field of privacy-preserving ML by addressing key trade-offs in differential privacy, empirical privacy defenses, and federated learning. The proposed methods provide new insights into balancing privacy with utility and other critical factors, offering practical solutions for integrating privacy-preserving techniques into real-world applications. These contributions aim to support the responsible and ethical deployment of AI technologies that prioritize data privacy and protection
Книги з теми "IA responsable"
IA en el Aula: Guía para el Uso Responsable. EDITORIAL ARJE, 2023.
Знайти повний текст джерелаGonzález, Felipe, Teresa Ortiz, and Roberto Sánchez Ávalos. IA Responsable: Manual técnico: Ciclo de vida de la inteligencia artificial. Inter-American Development Bank, 2020. http://dx.doi.org/10.18235/0002876.
Повний текст джерелаRosales Torres, César Said, César Buenadicha Sánchez, and Tetsuro Narita. Autoevaluación ética de IA para actores del ecosistema emprendedor: Guía de aplicación. Inter-American Development Bank, 2021. http://dx.doi.org/10.18235/0003269.
Повний текст джерелаЧастини книг з теми "IA responsable"
Humerez Alvez, Ariz. "LA INTELIGENCIA ARTIFICIAL Y EL DERECHO." In Visiones Contemporáneas: derecho, educación e investigación, 86–97. Editora Científica Digital, 2024. http://dx.doi.org/10.37885/240516608.
Повний текст джерелаEsteban, Santiago, Rosa Angelina Pace, Velén Pennini, Adrián Santoro, Adolfo Rubinstein, and Cintia Cejas. "Inteligencia Artificial (IA) Responsable: Claves para aplicar principios éticos en soluciones de IA en el ámbito sanitario." In AI for Global Health Research hub. The Global Health Network, 2024. http://dx.doi.org/10.48060/tghn.134.
Повний текст джерелаVelasco-García, Rodolfo Rodrigo. "Perspectiva de la IA en Educación Normal." In Reflexión docente en educación, una tarea ardua del formador en educación contemporánea, 82–92. ECORFAN, 2024. http://dx.doi.org/10.35429/h.2024.4.82.92.
Повний текст джерелаTorres Cruz, Edward, Fred Torres Cruz, Julio W. Torres Segura, Teobaldo Raul Basurco Chambilla, Ofelia Marleny Mamani Luque, Milton Antonio López Cueva, José Pánfilo Tito Lipa, Jose Antonio Supo Gutierrez, and Leonel Coyla Idme. "IMPACTO DE LA INTELIGENCIA ARTIFICIAL EN LA EDUCACIÓN UNIVERSITARIA." In Abordagens sobre ensino-aprendizagem e formação de professores, 80–91. Editora Científica Digital, 2023. http://dx.doi.org/10.37885/230513147.
Повний текст джерелаVillasante Saravia, Fredy Heric, Rocio Cahuana Lipa, Julio César Machaca Mamani, and Percy Huata Panca. "USO ESTRATÉGICO DE LA INTELIGENCIA ARTIFICIAL PARA POTENCIAR EL RENDIMIENTO ACADÉMICO Y DESARROLLO INTEGRAL DEL ESTUDIANTE." In Educação e Inteligência Artificial: desafios e diálogos na contemporaneidade, 176–85. Editora Científica Digital, 2024. http://dx.doi.org/10.37885/240115458.
Повний текст джерелаHeredia García, Gerardo. "Uso racional de medicamentos; responsabilidad universitaria." In Propuestas hacia una universidad inclusiva y responsable, 183–202. 2024th ed. Editorial Torres Asociados, 2024. http://dx.doi.org/10.53436/y75zu19h.
Повний текст джерелаBOUCAUD, Pascale. "Protection de la liberté et de la fragilité de la personne face au robot." In Intelligence(s) artificielle(s) et Vulnérabilité(s) : kaléidoscope, 137–48. Editions des archives contemporaines, 2020. http://dx.doi.org/10.17184/eac.3642.
Повний текст джерелаKohan, Paula Eugenia, Adolfo Rubinstein, and Cintia Cejas. "¿POR QUÉ ES IMPORTANTE REGULAR LA INTELIGENCIA ARTIFICIAL EN EL SECTOR DE LA SALUD?" In AI for Global Health Research hub. The Global Health Network, 2024. http://dx.doi.org/10.48060/tghn.136.
Повний текст джерелаSabán, Martín, Denise Zavala, Analía López, Santiago Esteban, Adolfo Rubinstein, and Cintia Cejas. "Inteligencia Artificial y Salud Sexual, Reproductiva y Materna (SRMH): Un estudio de experiencias en América Latina y el Caribe Inteligencia Artificial (IA) responsable." In AI for Global Health Research hub. The Global Health Network, 2024. http://dx.doi.org/10.48060/tghn.135.
Повний текст джерелаda Silva Reis, Gabriella. "Inteligência artificial na análise diagnóstica: potencial, desafios e reflexos jurídicos." In Direito, Tecnologia e Inovação - vol. 6: Ciência de Dados e Direito, 225–50. Centro DTIBR, 2024. http://dx.doi.org/10.59224/dti6.ch7.
Повний текст джерелаТези доповідей конференцій з теми "IA responsable"
Expósito-Álvarez, Cristina, Manuel Roldán-Pardo, Sara Arrojo, Faraj A. Santirso, Miriam Marco, and Marisol Lila. "Promoviendo un uso ético de la inteligencia artificial en la docencia universitaria." In IN-RED 2024: X Congreso de Innovación Educativa y Docencia en Red. València: Editorial Universitat Politècnica de València, 2024. https://doi.org/10.4995/inred2024.2024.18218.
Повний текст джерелаVillajos Girona, Esther, Lucía Mollá Lliso, Aida Soriano Ripoll, Laura Lorente Prieto, and Núria Tordera Santamatilde. "Intervención en estudiantes de educación superior para el uso responsable y ético del ChatGPT." In IN-RED 2024: X Congreso de Innovación Educativa y Docencia en Red, 1–12. València: Editorial Universitat Politècnica de València, 2024. https://doi.org/10.4995/inred2024.2024.18401.
Повний текст джерелаVillajos Girona, Esther, Óscar Medina Martí, Aida Soriano Ripoll, Inmaculada Silla Guerola, and Amparo Ramos López. "Credibilidad de los resultados generados por ChatGPT: Un estudio piloto entre estudiantes universitarios." In IN-RED 2024: X Congreso de Innovación Educativa y Docencia en Red. València: Editorial Universitat Politècnica de València, 2024. https://doi.org/10.4995/inred2024.2024.18399.
Повний текст джерелаBueno de Santiago, Alejandra, Laura Martinez Martin, and Aiskoa Perez. "Sesgos en la creación de imágenes por sistemas TTI de IA: hibridando arte, ciencia y tecnología." In VI Congreso Internacional de Investigación en Artes Visuales ANIAV 2024. València: Editorial Universitat Politècnica de València, 2024. http://dx.doi.org/10.4995/aniav2024.2024.18187.
Повний текст джерелаSendrea, Mariana. "Artificial intelligence from an ethical perspective." In The 8th International Conference "Management Strategies and Policies in the Contemporary Economy". Academy of Economic Studies of Moldova, 2023. http://dx.doi.org/10.53486/icspm2023.34.
Повний текст джерелаAlvarado Mariño, Constanza, Philippe Aniorte, Maria Catalina Ramírez Cajiao, and Ricardo González. "Observación de la brecha digital: un reto para la transición digital y la apropiación de los sistemas 4.0." In Ingeniería: una transición hacia el futuro, 1–13. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2024. http://dx.doi.org/10.26507/paper.3635.
Повний текст джерелаЗвіти організацій з теми "IA responsable"
Denis, Gabriela, María Hermosilla, Claudio Aracena, Roberto Sanchez, Natalia Gonzales, and Cristina Pombo. Uso responsable de IA para política pública: manual de formulación de proyectos. Banco interamericano de Desarrollo, September 2021. http://dx.doi.org/10.18235/0003631.
Повний текст джерелаDilhac, Marc-Antoine, Vincent Mai, Carl-Maria Mörch, Pauline Noiseau, and Nathalie Voarino. Penser l’intelligence artificielle responsable : un guide de délibération. Observatoire international sur les impacts sociétaux de l'IA et du numérique, March 2020. http://dx.doi.org/10.61737/nicj7555.
Повний текст джерелаGarcía de Viedma, Darío, Laura Kirchner, and Alicia León. Análisis de las percepciones sobre desigualdad en el contexto del Covid-19. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002981.
Повний текст джерелаUlate Brenes, Eliana, Edgar Mora, Cristina Pombo, Carlos Rebellón, Nancy Vega, Gloriana Lang, and Chaves Martínez Priscila. La importancia de establecer un marco orientador de política pública para el uso responsable y ético de la inteligencia artificial y su aplicación en Costa Rica. Banco Interamericano de Desarrollo, November 2021. http://dx.doi.org/10.18235/0003773.
Повний текст джерелаGautrais, Vincent, Anne Tchiniaev, and Émilie Guiraud. Formulaire du Guide des bonnes pratiques en IA: Disposition de la Loi 25 et bonnes pratiques. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, July 2023. http://dx.doi.org/10.61737/pupd4808.
Повний текст джерелаHulin, Anne-Sophie. Enjeux sociétaux de l'IA 101 : un guide pour démystifier les enjeux éthiques et juridiques des systèmes d’IA. Observatoire international sur les impacts sociétaux de l'intelligence artificielle et du numérique, August 2024. http://dx.doi.org/10.61737/nneu6499.
Повний текст джерелаRoveri, Camilla. Inteligencia Artificial para el bienestar y una vida sana en Latinoamérica: Hacia un ecosistema de innovación responsable para la salud digital. Fundación Carolina, December 2022. http://dx.doi.org/10.33960/ac_21.2022.
Повний текст джерелаMörch, Carl-Maria, Pascale Lehoux, Marc-Antoine Dilhac, Catherine Régis, and Xavier Dionne. Recommandations pratiques pour une utilisation responsable de l’intelligence artificielle en santé mentale en contexte de pandémie. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, December 2020. http://dx.doi.org/10.61737/mqaf7428.
Повний текст джерелаde Marcellis-Warin, Nathalie. Analyse comparative d’écosystèmes en IA dans le but de repérer les pratiques innovantes en matière de formation et de transfert de connaissances. CIRANO, November 2022. http://dx.doi.org/10.54932/sxoh3928.
Повний текст джерелаTaherizadeh, Amir, and Cathrine Beaudry. Vers une meilleure compréhension de la transformation numérique optimisée par l’IA et de ses implications pour les PME manufacturières au Canada - Une recherche qualitative exploratoire. CIRANO, June 2021. http://dx.doi.org/10.54932/jdxb2231.
Повний текст джерела