Добірка наукової літератури з теми "IA digne de confiance"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "IA digne de confiance".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "IA digne de confiance"
Bertholet, Jean-François, and Marie-Claude Gaudet. "Êtes-vous un gestionnaire digne de confiance ?" Gestion 41, no. 3 (2016): 112. http://dx.doi.org/10.3917/riges.413.0112.
Повний текст джерелаKammerer, Mariette. "Développer l’accueil par un « tiers digne de confiance »." Lien Social N° 1331, no. 2 (January 12, 2023): 12–13. http://dx.doi.org/10.3917/liso.1331.0012.
Повний текст джерелаMaroy, Christian. "Les politiques d’accountability au service de la confiance dans l’institution scolaire et les enseignants?" Swiss Journal of Educational Research 34, no. 1 (October 3, 2018): 59–72. http://dx.doi.org/10.24452/sjer.34.1.4875.
Повний текст джерелаGroulx1, Patrice. "Genèse de l’Histoire du Canada (1845-1852)*." Dossier : L’oeuvre de François-Xavier Garneau 27, no. 1 (November 23, 2018): 14–37. http://dx.doi.org/10.7202/1054070ar.
Повний текст джерелаGronlier, Pierre, and Anne-Sophie Taillandier. "Les apports de Gaia-X." Annales des Mines - Enjeux numériques 27, no. 3 (September 27, 2024): 85–94. http://dx.doi.org/10.3917/ennu.027.0085.
Повний текст джерелаStingle, Ann, and Bud Good. "4. Communication et grand public Communication optimale et grand public." Revue Internationale de la Croix-Rouge 72, no. 783 (June 1990): 251–59. http://dx.doi.org/10.1017/s0035336100059529.
Повний текст джерелаPreteux, Jérôme. "La confiance en l’IA pour une IA d’emploi." Revue Défense Nationale N° 855, no. 10 (December 1, 2022): 91–99. http://dx.doi.org/10.3917/rdna.855.0091.
Повний текст джерелаLahaie, Christiane. "Du fantastique littéraire au fantastique filmique : une question de point de vue?" Cinémas 5, no. 3 (February 28, 2011): 45–63. http://dx.doi.org/10.7202/1001146ar.
Повний текст джерелаDevillers, Laurence. "Le langage non responsable des systèmes d’intelligence artificielle (IA) générative." Champ lacanien N° 28, no. 1 (October 2, 2024): 133–38. http://dx.doi.org/10.3917/chla.028.0133.
Повний текст джерелаChraibi, Ghizlaine. "L’art projectif en Psychosomatique Relationnelle dans l’accompagnement d’une pathologie fonctionnelle (un tic)." Psychosomatique relationnelle N° 11, no. 1 (July 11, 2023): 96–106. http://dx.doi.org/10.3917/psyr.011.0096.
Повний текст джерелаДисертації з теми "IA digne de confiance"
Taheri, Sojasi Yousef. "Modeling automated legal and ethical compliance for trustworthy AI." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS225.
Повний текст джерелаThe advancements in artificial intelligence have led to significant legal and ethical issues related to privacy, bias, accountability, etc. In recent years, many regulations have been put in place to limit or mitigate the risks associated with AI. Compliance with these regulations are necessary for the reliability of AI systems and to ensure that they are being used responsibly. In addition, reliable AI systems should also be ethical, ensuring alignment with ethical norms. Compliance with applicable laws and adherence to ethical principles are essential for most AI applications. We investigate this problem from the point of view of AI agents. In other words, how an agent can ensure the compliance of its actions with legal and ethical norms. We are interested in approaches based on logical reasoning to integrate legal and ethical compliance in the agent's planning process. The specific domain in which we pursue our objective is the processing of personal data. i.e., the agent's actions involve the use and processing of personal data. A regulation that applies in such a domain is the General Data Protection Regulations (GDPR). In addition, processing of personal data may entail certain ethical risks with respect to privacy or bias.We address this issue through a series of contributions presented in this thesis. We start with the issue of GDPR compliance. We adopt Event Calculus with Answer Set Programming(ASP) to model agents' actions and use it for planning and checking the compliance with GDPR. A policy language is used to represent the GDPR obligations and requirements. Then we investigate the issue of ethical compliance. A pluralistic ordinal utility model is proposed that allows one to evaluate actions based on moral values. This model is based on multiple criteria and uses voting systems to aggregate evaluations on an ordinal scale. We then integrate this utility model and the legal compliance framework in a Hierarchical Task Network(HTN) planner. In this contribution, legal norms are considered hard constraints and ethical norm as soft constraint. Finally, as a last step, we further explore the possible combinations of legal and ethical compliance with the planning agent and propose a unified framework. This framework captures the interaction and conflicts between legal and ethical norms and is tested in a use case with AI systems managing the delivery of health care items
Mosca, Sarah. "Regards croisés sur le placement de l’enfant chez un proche." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1A017.
Повний текст джерелаIn the French child protection system, formal kinship care is rarely pronounced (7% of Out-of-home care). They represent a special figure of delegation to relatives or friends. In this perspective, we consider the kinship care as a family reconfiguration since the protection of childhood displaces and transfers to others adults than the parents, the child custody. These situations allow us to think differently about family transformations. Thus, our research crosses different fields, the parenthood and the protection of childhood. In the specific context of placement, we interogate parenting sharing between different actors. To do this, we cross the differents views of the institution and of the families concerned. A total of 65 interviews were conducted: 31 with social workers in charge of the educational follow-up of children in care and 34 with parents and carers concerned. Our thesis highlights a reconfiguration of family roles with the daily of the kinship care. The carers take on a substitute family role, upsetting places around the child: grandparents, aunts, etc. assume the role of mother and/or father. This transformation of family roles is not accepted in the same way by social workers: some parental substitutions are acceptable and others are not. The different treatment depending on the parents’ status: if it is considered by the social worker as vacancy or not. In this perspective, the relationships between the various actors of the kinship care(family and professional) are analyzed in terms of triad and no longer in a duality between parents and professionals. Therefore, kinship care reconfigures relations between parents and relatives, but also between them and social workers. These situations then question the consideration of placement in terms of multi-parenthood by child protection
Bresson, Roman. "Neural learning and validation of hierarchical multi-criteria decision aiding models with interacting criteria." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG008.
Повний текст джерелаMulticriteria Decision Aiding (MCDA) is a field that aims at assisting expert decision mak ers (DM) in problems such as selecting, ranking, or classifying alternatives defined on several inter acting attributes. Such models do not make the decision, but assist the DM, who takes the final decision. It is thus crucial for the model to offer ways for the DM to maintain operational awareness, in particular in safety-critical contexts where errors can have dire consequences. It is thus a prerequisite of MCDA models to be intelligible, in terpretable, and to have a behaviour that is highly constrained by information stemming from in do main knowledge. Such models are usually built hand in hand with a field expert, obtaining infor mation through a Q&A procedure, and eliciting the model through methods rooted in operations research. On the other hand, Machine Learning (ML), and more precisely Preference Learning (PL), bases its approach on learning the optimal model from fitting data. This field usually focuses on model performances, tuning complex black-boxes to ob tain a statistically low error on new examples cases. While this is adapted to many settings, it is out of the question for decision aiding settings, as neither constrainedness nor intelligibility are available. This thesis bridges both fields. We focus on a certain class of MCDA models, called utilitaris tic hierarchical Choquet integrals (UHCI). Our first contribution, which is theoretical, is to show the identifiability (or unicity of the parameterization) of UHCIs This result motivates our second con tribution: the Neur-HCI framework, an archi tecture of neural network modules which can learn the parameters of a UHCI. In particular, all Neur HCI models are guaranteed to be formally valid, fitting the constraints that befit such a model, and remain interpretable. We show empirically that Neur-HCI models perform well on both artificial and real dataset, and that they exhibit remarkable stability, making it a relevant tool for alleviating the model elicitation effort when data is readily available, along with making it a suitable analysis tool for indentifying patterns in the data
Книги з теми "IA digne de confiance"
Alliot, Jacqueline. Que Signifie ...Etre Digne de Confiance. Grolier Limitee, 1989.
Знайти повний текст джерелаProtéger les élections démocratiques par la sauvegarde de l’intégrité de l’information. International IDEA; Forum sur l’information et la démocratie; Democracy Reporting International, 2024. http://dx.doi.org/10.31752/idea.2024.9.
Повний текст джерелаЧастини книг з теми "IA digne de confiance"
Salvi del Pero, Angelica, and Annelore Verhagen. "Assurer une intelligence artificielle digne de confiance en entreprise : les mesures mises en œuvre par les pays." In Perspectives de l’emploi de l’OCDE 2023. OECD, 2023. http://dx.doi.org/10.1787/f41b2285-fr.
Повний текст джерелаЗвіти організацій з теми "IA digne de confiance"
Yousefi, Farzaneh, and Marie-Pierre Gagnon. L’intelligence artificielle (IA) pour la promotion de la santé et la réduction de la maladie : synthèse des connaissances. Observatoire international sur les impacts sociétaux de l'intelligence artificielle et du numérique, July 2024. http://dx.doi.org/10.61737/pjld3032.
Повний текст джерелаCorbett, Jaqueline, and Chris Emmanuel Tchatchouang Wanko. Les enjeux transversaux au déploiement et à l'utilisation de l'IA au sein du système professionnel québécois. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, March 2022. http://dx.doi.org/10.61737/zfuw6688.
Повний текст джерела