Добірка наукової літератури з теми "Hypersonic inlet design"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hypersonic inlet design".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hypersonic inlet design"

1

Zhai, Jian, Chen-An Zhang, Fa-Min Wang, and Wei-Wei Zhang. "Alleviation of lateral spillage of two-dimensional hypersonic inlet using waverider-configuration chines." International Journal of Modern Physics B 34, no. 14n16 (June 4, 2020): 2040074. http://dx.doi.org/10.1142/s0217979220400743.

Повний текст джерела
Анотація:
Hypersonic inlet is an important part of the propulsion system of hypersonic air-breathing vehicles. However, the performance of the two-dimensional hypersonic inlet, a major type of hypersonic inlets, is considerably deteriorated for lateral spillage. In this study, waverider-configuration chines mounted on the lateral sides of a two-dimensional three-staged external-compression hypersonic inlet for a Mach number of 6.0 are investigated to determine their ability to alleviate the lateral spillage. The chines are built by using a waverider design method. The numerical results suggest that a severe flow spillage induced by three-dimensional effect shows up near the lateral edge of the inlet without chines, which degrades the mass-flow ratio and flow uniformity. In contrast, the waverider-configuration chines effectively alleviate the lateral spillage. Consequently, the mass-flow ratio and the flow uniformity are both improved significantly.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saheby, Eiman B., Huang Guoping, and Anthony Hays. "Design of hypersonic forebody with submerged bump." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 9 (August 16, 2018): 3153–69. http://dx.doi.org/10.1177/0954410018793288.

Повний текст джерела
Анотація:
A double shock waverider forebody configuration, with curved surfaces and known pressure fields and shock arrays, is constructed by a stream-tracing approach. The compression surface consists of a wedge and conical shocks. The conical shock results from a modified wave-derived bump surface that diverts the boundary layer before the inlet entrance. The design is fully computational fluid dynamics based and emphasis is placed on the compact design with boundary layer diverting ability. Controlling or diverting the thick boundary layer safely is a difficult challenge in hypersonic flight vehicle design especially when the inlets are highly integrated with the fuselage. Numerical simulations show that the new combination can divert a significant fraction of boundary layer before the inlet and maintains a good compression ratio for propulsion efficiency at Mach 5.0. Effects of forebody aerodynamics on the integrated inlet and comparisons with other systems are described in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cao, Yu Ji, Shi Ying Zhang, and Peng Gao. "Investigation of Attack Angle Character for Hypersonic Inlet." Advanced Materials Research 468-471 (February 2012): 1978–81. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.1978.

Повний текст джерела
Анотація:
The comparison analysis of performance with design point has been done in view of two different inlets, which were built by uniform shock intensity and shock angle method respectively. Base on this, the attack angle performance was emphatic developed on off-design point. The numerical calculation and analysis was conducted in eight different attack angle for air inlet conditions on two kinds of inlet respectively. The result indicated that, the inlet with uniform shock intensity method has 5% much more flow coefficient than inlet with uniform shock angle, in the condition of design point. In the condition of off-design point, the influence of the inlet performance is relatively small to the later kind of inlet with the increase of positive attack angel.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reddy, P. Nithish. "Hypersonic Scram-Jet Engine Inlet Design." International Journal for Research in Applied Science and Engineering Technology 7, no. 6 (June 30, 2019): 1619–35. http://dx.doi.org/10.22214/ijraset.2019.6273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Teng, Jian, and Hua Cheng Yuan. "Design Methodology and Unsteady Aerodynamic Characteristics of a Rectangular Variable Geometry Hypersonic Inlet." Applied Mechanics and Materials 275-277 (January 2013): 433–41. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.433.

Повний текст джерела
Анотація:
Design methodology of a rectangular variable geometry hypersonic inlet whose cowl lip is translatable along flow direction is clarified in current study and recommendation of key design parameters are given. Unsteady Reynolds-averaged Navier-Stokes (uRANS) calculation were carried out to investigate the feasibility and unsteady aerodynamic characteristics of this inlet. Results indicate that by stretching the movable lip of a model inlet upstream, mass flow rate will increases apparently due to the increases of inlet internal duct entrance area. Stretching the movable lip upstream will decrease CR of the model inlet which is favorable for the start or restart of the inlet from an unstarted status. The lip translating process is smooth and will not induce large amplitude flow disturbance within inlet duct. The movable lip is conducive to improve the aeropropulsive performance of the hypersonic inlet in wide flight range
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Yuling, Lianjie Yue, Chengming He, Wannan Wu, and Hao Chen. "Lagrange Optimization of Shock Waves for Two-Dimensional Hypersonic Inlet with Geometric Constraints." Aerospace 9, no. 10 (October 20, 2022): 625. http://dx.doi.org/10.3390/aerospace9100625.

Повний текст джерела
Анотація:
The present paper focuses on the Lagrange optimization of shock waves for a two-dimensional hypersonic inlet by limiting the cowl internal angle and inlet length. The results indicate the significant influences of geometric constraints on the configuration of shock waves and performances of an inlet. Specifically, the cowl internal angle mainly affects the internal compression section; the inlet length affects both the internal and external compression sections where the intensity of internal and external compression shock waves shows a deviation of equal. In addition, the performances of optimized inlets at off-design points are further numerically simulated. A prominent discovery is that a longer inlet favors a higher total pressure recovery at the positive AOA; conversely, a shorter inlet can increase the total pressure recovery at the negative AOA.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

He, Xuzhao, Jialing Le, and Si Qin. "Design and analysis osculating general curved cone waverider." Aircraft Engineering and Aerospace Technology 89, no. 6 (October 2, 2017): 797–803. http://dx.doi.org/10.1108/aeat-12-2014-0214.

Повний текст джерела
Анотація:
Purpose Waverider has high lift to drag ratio and will be an idea aerodynamic configuration for hypersonic vehicles. But a structure permitting aerodynamic like waverider is still difficult to generate under airframe’s geometric constrains using traditional waverider design methods. And furthermore, traditional waverider’s aerodynamic compression ability cannot be easily adjusted to satisfy the inlet entrance requirements for hypersonic air-breathing vehicles. The purpose of this paper is to present a new method named osculating general curved cone (OCC) method aimed to improve the shortcomings of traditional waveriders. Design/methodology/approach A basic curved cone is, first, designed by the method of characteristics. Then the waverider’s inlet captured curve and front captured tube are defined in the waverider’s exit plane. Osculating planes are generated along the inlet captured curve and the designed curved cone is transformed to the osculating planes. Streamlines are traced in the transformed curved cone flow field. Combining all streamlines which have been obtained, OCC waverider’s compression surface is generated. Waverider’s upper surface uses the free stream surface. Findings It is found that OCC waverider has good volumetric characteristics and good flow compression abilities compared with the traditional osculating cone (OC) waverider. The volume of OCC waverider is 25 per cent larger than OC waverider at the same design condition. Furthermore, OCC waverider can compress incoming flow to required flow conditions with high total pressure recovery in the waverider’s exit plane. The flow uniformity in the waverider exit plane is quite well. Practical implications The analyzed results show that the OCC waverider can be a practical high performance airframe/forebody for hypersonic vehicles. Furthermore, this novel waverider design method can be used to design a structure permitting aerodynamic like waverider for a practical hypersonic vehicle. Originality/value The paper puts forward a novel waverider design method which can improve the waverider’s volumetric characteristics and compression abilities compared with the traditional waverider design methods. This novel design approach can extend the waverider’s applications for designing hypersonic vehicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chang, Juntao, Lei Wang, and Wen Bao. "Mathematical modeling and characteristic analysis of scramjet buzz." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 228, no. 13 (January 29, 2014): 2542–52. http://dx.doi.org/10.1177/0954410014521055.

Повний текст джерела
Анотація:
Buzz is an important issue for a scramjet engine. A mathematical model of buzz oscillations is necessary for control system design. Control-oriented models of hypersonic vehicle propulsion systems require a reduced-order model that is accurate to some extent but requires less than a few seconds of computational time. To achieve this goal, a reduced-order model of buzz oscillations for a scramjet engine is built by introducing the modeling idea of Moore–Greitzed model for compressors. The introduction of characteristic lines avoids the complex interactions in hypersonic inlet, such as shock–shock interactions and shock–boundary layer interaction. And the inlet characteristics are obtained from the pressure signal of combustor. Based on the established buzz model, we can predict the inlet performance, characterize the stability margin of inlet, reflect the oscillatory characteristics of inlet buzz including the dominant amplitude and frequency and describe the transition process of inlet buzz.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yan, Yilun, and Jiangfeng Wang. "Numerical Research on the NS-SDBD Control of a Hypersonic Inlet in Off-Design Mode." Aerospace 9, no. 12 (November 30, 2022): 773. http://dx.doi.org/10.3390/aerospace9120773.

Повний текст джерела
Анотація:
The overall performance of a scramjet inlet will decline while entering off-design mode. Active flow control using nanosecond surface dielectric barrier discharge (NS-SDBD) can be a novel solution to such inlet–unstart problems. NS-SDBD actuators are deployed on the surface of the internal compression section, controlling the shock waves and the separation area. Numerical simulations of hypersonic flows are carried out using the compressible Reynolds average Navier–Stokes equation (RANS), along with the plasma phenomenological model which is added in as the energy source term. Flow structures and the evolution of performance parameters are analyzed. Results show that NS-SDBD actuators are able to increase the static pressure behind the cowl shock, boosting the downstream total pressure. The compression effect becomes stronger while raising the frequency or shortening the spacing between the actuators. Under the inlet–unstart conditions, the compression wave generated by the actuator pushes the reattachment point forward, making the separation bubble longer in length and shorter in height, which reduces the strength of the separation shock. The results provide a numerical basis for the state control of a hypersonic inlet.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xiong, Bing, Xiao-qiang Fan, and Yi Wang. "Parameterization and optimization design of a hypersonic inward turning inlet." Acta Astronautica 164 (November 2019): 130–41. http://dx.doi.org/10.1016/j.actaastro.2019.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hypersonic inlet design"

1

Harrland, Alan. "Hypersonic inlet for a laser powered propulsion system." Thesis, 2012. http://hdl.handle.net/2440/79072.

Повний текст джерела
Анотація:
The idea of laser powered lightcraft was first conceptualised in the early 1970's as a means of launching small scale satellite payloads into orbit at a much lower cost in comparison to conventional techniques. Propulsion in the lightcraft is produced via laser induced detonation of the incoming air stream, which results in the energy source for propulsion being decoupled from the vehicle. In air breathing mode the lightcraft carries no onboard fuel or oxidiser, allowing theoretically infinite specific impulses to be achieved. Recently interest has been renewed in this innovative technology through cross-continent and industry research programs aimed at making laser propulsion a reality. In a ground launched satellite, the vehicle must travel through the atmosphere at speeds greatly in excess of the speed of sound in order to achieve the required orbital velocities. Supersonic, and in particular hypersonic, flight regimes exhibit complicated physics that render traditional subsonic inlet design techniques inadequate. The laser induced detonation propulsion system requires a suitable engine configuration that offers good performance over all flight speeds and angles of attack to ensure the required thrust is maintained throughout the mission. Currently a hypersonic inlet has not been developed for the laser powered lightcraft vehicle. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines. This design technique is applied to the laser powered lightcraft vehicle, with its performance evaluated against the traditional lightcraft inlet design. Four different hypersonic lightcraft inlets have been produced employing both the stream traced inlet design methodology, and traditional axi-symmetric inlet techniques. This thesis outlines the inlet design methodologies employed, with a detailed analysis of the performance of the lightcraft inlet at angles of attack and off-design conditions. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealised laser detonation simulation has also been performed to verify that the lightcraft inlet does not unstart during the laser powered propulsion cycle.
Thesis (M.Phil.) -- University of Adelaide, School of Mathematical Sciences, 2012
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hypersonic inlet design"

1

Zhang, Kunyuan. Hypersonic Curved Compression Inlet and Its Inverse Design. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0727-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Kunyuan. Hypersonic Curved Compression Inlet and Its Inverse Design. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Kunyuan. Hypersonic Curved Compression Inlet and Its Inverse Design. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Kunyuan. Hypersonic Curved Compression Inlet and Its Inverse Design. Springer Singapore Pte. Limited, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

National Aeronautics and Space Administration (NASA) Staff. Advanced Technology Inlet Design, Nra 8-21 Cycle II: Draco Flowpath Hypersonic Inlet Design. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Center, Langley Research, ed. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rocket-based combined cycle engine technology development: Inlet CFD validation and application. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, Ohio Aerospace Institute, Institute for Computational Mechanics in Propulsion, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

S, Yungster, and Lewis Research Center. Institute for Computational Mechanics in Propulsion., eds. Rocket-based combined cycle engine technology development: Inlet CFD validation and application. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, Ohio Aerospace Institute, Institute for Computational Mechanics in Propulsion, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

S, Yungster, and Lewis Research Center. Institute for Computational Mechanics in Propulsion., eds. Rocket-based combined cycle engine technology development: Inlet CFD validation and application. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, Ohio Aerospace Institute, Institute for Computational Mechanics in Propulsion, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. National Aeronautics and Space Administration., ed. Application of CFD to the analysis and design of high-speed inlets: Final report. [Washington, DC: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hypersonic inlet design"

1

Reinartz, Birgit U., and Josef Ballmann. "Numerical Simulation of Turbulent Flows Inside a Hypersonic Inlet." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 252–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39604-8_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Kunyuan. "Inverse Design and Experiment of Hypersonic Curved Shock Wave Compression Inlet." In Advanced Topics in Science and Technology in China, 213–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0727-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gao, Wenzhi, Zhufei Li, and Jiming Yang. "A Combined CFD/Characteristic Method for Prediction and Design of Hypersonic Inlet with Nose Bluntness." In 29th International Symposium on Shock Waves 1, 635–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16835-7_101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hypersonic inlet design"

1

VAN WIE, D., and S. MOLDER. "Applications of Busemann inlet designs for flight at hypersonic speeds." In Aerospace Design Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-1210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bachchan, N., and R. Hillier. "Hypersonic Inlet Flow Analysis at Off-Design Conditions." In 22nd Applied Aerodynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Medina, Jose A., Harinkumar Patel, and Bernd Chudoba. "Inlet Sizing of Hypersonic Vehicles for Conceptual Design." In ASCEND 2021. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-4096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yue, Lianjie, Yabin Xiao, Lihong Chen, and Xinyu Chang. "Design of Base Flow for Streamline-Traced Hypersonic Inlet." In 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-7422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shizhen Li, Shuo Tang, and Du Gao. "An integrated optimization for hypersonic inlet design based on PYTHON." In 2010 International Conference on Computer Design and Applications (ICCDA 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccda.2010.5541491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lin, Sheam-Shyun, Yung-Wha Liu, Ming-Chiou Shen, and Bor-Jang Tsai. "Design of hypersonic waveriders with wing-body-tail-inlet-engine." In 32nd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, JiFei, and Jinsheng Cai. "Multistage Optimization Applied to the Hypersonic Inward Turning Inlet Design." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Street, Oliver, Will O. Landsberg, Tristan Vanyai, Sarah A. Razzaqi, and Anand Veeraragavan. "Experimental Design for Investigating Hydrocarbon Injection in a Hypersonic Inlet." In ASCEND 2021. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-4120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

You, Yancheng, and Dewang Liang. "Numerical Research of Internal Waverider Hypersonic Inlet in Non-Design Statuses." In 39th AIAA Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-4215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rosli, Mohd Rizal, Masahiro Takahashi, Tetsuya Sato, Takayuki Kojima, Hideyuki Taguchi, and Yusuke Maru. "Streamline Tracing Technique Based Design of Elliptical-to-Rectangular Transitioning Hypersonic Inlet." In 31st AIAA Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії