Добірка наукової літератури з теми "Hypersensitive disease resistance"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hypersensitive disease resistance".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hypersensitive disease resistance"
Park, Jeong-Mee. "The Hypersensitive Response. A Cell Death during Disease Resistance." Plant Pathology Journal 21, no. 2 (January 1, 2005): 99–101. http://dx.doi.org/10.5423/ppj.2005.21.2.099.
Повний текст джерелаTenhaken, R., A. Levine, L. F. Brisson, R. A. Dixon, and C. Lamb. "Function of the oxidative burst in hypersensitive disease resistance." Proceedings of the National Academy of Sciences 92, no. 10 (May 9, 1995): 4158–63. http://dx.doi.org/10.1073/pnas.92.10.4158.
Повний текст джерелаYu, Gong-Xin, Ed Braun, and Roger P. Wise. "Rds and Rih Mediate Hypersensitive Cell Death Independent of Gene-for-Gene Resistance to the Oat Crown Rust Pathogen Puccinia coronata f. sp. avenae." Molecular Plant-Microbe Interactions® 14, no. 12 (December 2001): 1376–83. http://dx.doi.org/10.1094/mpmi.2001.14.12.1376.
Повний текст джерелаFontoura, Darci Da, Antonio Carlos Torres Costa, José Renato Stangarlin, and Claudio Yuji Tsutsumi. "Disease resistance induction in second-season corn using acibenzolar-S-methyl and phosphorylated mannanoligosaccharide." Semina: Ciências Agrárias 36, no. 6 (December 9, 2015): 3657. http://dx.doi.org/10.5433/1679-0359.2015v36n6p3657.
Повний текст джерелаDe Stefano, Matteo, Alberto Ferrarini, and Massimo Delledonne. "Nitric oxide functions in the plant hypersensitive disease resistance response." BMC Plant Biology 5, Suppl 1 (2005): S10. http://dx.doi.org/10.1186/1471-2229-5-s1-s10.
Повний текст джерелаLevine, Alex, Roger I. Pennell, Maria E. Alvarez, Robert Palmer, and Chris Lamb. "Calcium-mediated apoptosis in a plant hypersensitive disease resistance response." Current Biology 6, no. 4 (April 1996): 427–37. http://dx.doi.org/10.1016/s0960-9822(02)00510-9.
Повний текст джерелаVALE, FRANCISCO XAVIER RIBEIRO DO, J. E. PARLEVLIET, and LAÉRCIO ZAMBOLIM. "Concepts in plant disease resistance." Fitopatologia Brasileira 26, no. 3 (September 2001): 577–89. http://dx.doi.org/10.1590/s0100-41582001000300001.
Повний текст джерелаKhan, M. A., and R. G. Saini. "Non-hypersensitive leaf rust resistance of bread wheat cultivar PBW65 conditioned by genes different fromLr34." Czech Journal of Genetics and Plant Breeding 45, No. 1 (February 11, 2009): 26–30. http://dx.doi.org/10.17221/51/2008-cjgpb.
Повний текст джерелаGilroy, Eleanor M., Ingo Hein, Renier Van Der Hoorn, Petra C. Boevink, Eduard Venter, Hazel McLellan, Florian Kaffarnik, et al. "Involvement of cathepsin B in the plant disease resistance hypersensitive response." Plant Journal 52, no. 1 (July 26, 2007): 1–13. http://dx.doi.org/10.1111/j.1365-313x.2007.03226.x.
Повний текст джерелаCooper, Bret, Kimberly B. Campbell, Hunter S. Beard, Wesley M. Garrett, and Marcio E. Ferreira. "The Proteomics of Resistance to Halo Blight in Common Bean." Molecular Plant-Microbe Interactions® 33, no. 9 (September 2020): 1161–75. http://dx.doi.org/10.1094/mpmi-05-20-0112-r.
Повний текст джерелаДисертації з теми "Hypersensitive disease resistance"
Mahmood, Hamida. "Computational mining for terminator-like genes in soybean." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32724.
Повний текст джерелаGenetics Interdepartmental Program - Plant Pathology
Frank F. White
Sanzhen Liu
Plants and bacterial pathogens are in constant co-evolution to survive and sustain the next generation. Plants have two well-characterized levels of active defense -pathogens-associated molecular patterns (PAMPs)-triggered immunity (PTI) and effectors-triggered immunity (ETI). Some plants that are hosts for bacterial pathogens employing type three secretion system transcription activator-like (TAL) effectors have evolved a unique form of ETI, namely TAL effector-mediated ETI. TAL effectors induce expression of specific disease susceptibility (S) genes. Rice and pepper have evolved resistance genes termed terminator (T) genes, which have promoters that bind TAL effectors and, upon expression of the T gene, elicit a hypersensitive reaction (HR) and cell death. Only five T genes have been cloned, and the origin of most T genes is unknown. To determine the presence of candidate T genes in other plants species, a bioinformatics-based mining was designed. The basic approach utilized three structural features common to four terminator genes: a short trans-membrane domain, a secretion signal domain, and a length of <200 amino acid residues. Soybean was chosen as the test plant species, and 161 genes were retrieved that fulfilled the three parameters using R and Perl software programs. Further, functional annotation of candidate genes was conducted by comparisons to genes in public databases. Major classes of proteins found included unique and hypothetical, defense/stress/oxidative stress associated, DNA-binding, kinases, transferases, hydrolases, effector-related tRNA splicing, and F- box domain proteins. The potential T genes will serve as candidates for experimental validation and new resources for durable resistance strategies in crop species.
Christopher, Stephen James. "Plant-pathogen interactions: turnip crinkle virus suppression of the hypersensitive response in arabidopsis thaliana." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0429103-084755.
Повний текст джерелаKeywords: Turnip crinkle virus; arabidopsis; thaliana; TCV; avrRpt2; avrRpm1; avrRps4; systemic acquired resistance; virulence; Avr gene; R gene; pseudomonas syringae. Includes bibliographical references (p. 60-66).
Unver, Turgay. "Detection And Characterization Of Plant Genes Involved In Various Biotic And Abiotic Stress Conditions Using Ddrt-pcr And Isolation Of Interacting Proteins." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609805/index.pdf.
Повний текст джерелаCHEN, Jian. "Assessment of nitric oxide signaling functions during the plant hypersensitive disease resistance response." Doctoral thesis, 2014. http://hdl.handle.net/11562/720970.
Повний текст джерелаIn plants, nitric oxide (NO) plays a crucial role in mediating defense signal in response to infection by bacterial pathogens. NO signal can be mediated by its direct interaction with target molecules, via post-translational modifications for instance, but it is believed that, like in animal cells, NO signal can also be relay by the second messenger cGMP (cyclic guanosine 3',5'-monophosphate) in particular to regulate defense gene expression. Despite the demonstration of its role during the HR, the detection of NO is still highly debated, mainly because its measurement methods are not fully specific. In the same way, cGMP detection in plants until now has been based on methods that often display a low sensitivity and a low throughput. In addition, due to the lack of identification of the enzymes responsible for cGMP metabolism, until now, the role of cGMP has been investigated only with the use of pharmacological compounds that sometimes raise the question about response specificity. In this study, we thus confirmed that NO is produced specifically during the incompatible interaction thanks to a chemiluminescence-based method and that NO production involves mainly nitrite as substrate and requires NR as well as other source(s) still unidentified. Moreover, a highly sensitive and with high throughput method based on AlphaScreen technology was successfully applied in plants to demonstrate the NO-dependent local and distal increase of cGMP level in response to avirulent pathogens. The characterization of transgenic Arabidopsis thaliana plants expressing the mammalian soluble guanylate cyclase (GC) showed that these plants accumulate high constitutive levels of cGMP compared with WT plants and display an altered expression of salicylic acid-dependent defence genes correlated with the loss of systemic acquired resistance establishment, while they show a normal resistance and hypersensitive cell death at local level. Moreover, in GC lines, SA-dependent pathway seems to be compromised in favour of jasmonate-dependent responses, suggesting a role for cGMP in regulating the hormonal switch.
"A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive induced reaction protein 1 (OsHIR1)." Thesis, 2009. http://library.cuhk.edu.hk/record=b6074981.
Повний текст джерелаZhou, Liang.
Adviser: Hon Ming Lam.
Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 90-107).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Книги з теми "Hypersensitive disease resistance"
J, Novacky A., ed. The hypersensitive reaction in plants to pathogens: A resistance phenomenon /R.N. Goodman and A.J. Novacky. St. Paul, Minn: APS Press, 1994.
Знайти повний текст джерелаЧастини книг з теми "Hypersensitive disease resistance"
Delledonne, M., Y. Xia, R. A. Dixon, C. Lorenzoni, and C. Lamb. "Nitric oxide signalling in the plant hypersensitive disease resistance response." In Developments in Plant Breeding, 127–33. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4475-9_15.
Повний текст джерелаChen, Jian, Diana Bellin, and Elodie Vandelle. "Measurement of Cyclic GMP During Plant Hypersensitive Disease Resistance Response." In Methods in Molecular Biology, 143–51. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7668-3_13.
Повний текст джерелаAlvarez, María Elena. "Salicylic acid in the machinery of hypersensitive cell death and disease resistance." In Programmed Cell Death in Higher Plants, 185–98. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0934-8_14.
Повний текст джерелаJabs, Thorsten, and Alan J. Slusarenko. "The Hypersensitive Response." In Mechanisms of Resistance to Plant Diseases, 279–323. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3937-3_9.
Повний текст джерелаVandelle, Elodie, Tengfang Ling, Zahra Imanifard, Ruitao Liu, Massimo Delledonne, and Diana Bellin. "Nitric Oxide Signaling during the Hypersensitive Disease Resistance Response." In Advances in Botanical Research, 219–43. Elsevier, 2016. http://dx.doi.org/10.1016/bs.abr.2015.10.013.
Повний текст джерелаЗвіти організацій з теми "Hypersensitive disease resistance"
Sessa, Guido, and Gregory Martin. A functional genomics approach to dissect resistance of tomato to bacterial spot disease. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695876.bard.
Повний текст джерелаSessa, Guido, та Gregory Martin. MAP kinase cascades activated by SlMAPKKKε and their involvement in tomato resistance to bacterial pathogens. United States Department of Agriculture, січень 2012. http://dx.doi.org/10.32747/2012.7699834.bard.
Повний текст джерелаCoplin, David L., Shulamit Manulis, and Isaac Barash. roles Hrp-dependent effector proteins and hrp gene regulation as determinants of virulence and host-specificity in Erwinia stewartii and E. herbicola pvs. gypsophilae and betae. United States Department of Agriculture, June 2005. http://dx.doi.org/10.32747/2005.7587216.bard.
Повний текст джерелаDickman, Martin B., and Oded Yarden. Genetic and chemical intervention in ROS signaling pathways affecting development and pathogenicity of Sclerotinia sclerotiorum. United States Department of Agriculture, July 2015. http://dx.doi.org/10.32747/2015.7699866.bard.
Повний текст джерела