Статті в журналах з теми "Hyperscaling"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Hyperscaling.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Hyperscaling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sadeghi, J., B. Pourhassan, and A. Asadi. "Application of hyperscaling violation in QCD." Canadian Journal of Physics 92, no. 4 (April 2014): 280–83. http://dx.doi.org/10.1139/cjp-2013-0257.

Повний текст джерела
Анотація:
In this paper we use a metric with hyperscaling violation and study form factor of QCD. We find the effects of hyperscaling violation on the form factor and obtain the dependence of the form factor on momentum numerically. Here by using the hyperscaling violation metric we do not need hard-wall and soft-wall models.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Campbell, Ian A., and Per H. Lundow. "Hyperscaling Violation in Ising Spin Glasses." Entropy 21, no. 10 (October 8, 2019): 978. http://dx.doi.org/10.3390/e21100978.

Повний текст джерела
Анотація:
In addition to the standard scaling rules relating critical exponents at second order transitions, hyperscaling rules involve the dimension of the model. It is well known that in canonical Ising models hyperscaling rules are modified above the upper critical dimension. It was shown by M. Schwartz in 1991 that hyperscaling can also break down in Ising systems with quenched random interactions; Random Field Ising models, which are in this class, have been intensively studied. Here, numerical Ising Spin Glass data relating the scaling of the normalized Binder cumulant to that of the reduced correlation length are presented for dimensions 3, 4, 5, and 7. Hyperscaling is clearly violated in dimensions 3 and 4, as well as above the upper critical dimension D = 6 . Estimates are obtained for the “violation of hyperscaling exponent” values in the various models.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BAI, NAN, YI-HONG GAO, BU-GUAN QI, and XIAO-BAO XU. "QUASINORMAL FREQUENCIES OF BLACK BRANES WITH HYPERSCALING VIOLATION." Modern Physics Letters A 28, no. 37 (November 20, 2013): 1350145. http://dx.doi.org/10.1142/s0217732313501459.

Повний текст джерела
Анотація:
We investigated quasinormal frequencies (QNFs) in black brane with hyperscaling violating by using the continued fractions method. We calculate QNF of massless scalar field and electromagnetic field both with zero spatial momentum, find that QNFs have negative imaginary frequency suggesting black brane with hyperscaling violation is stable under those perturbations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borvayeh, Z., M. Reza Tanhayi, and S. Rafibakhsh. "Holographic complexity of subregions in the hyperscaling violating theories." Modern Physics Letters A 35, no. 23 (June 17, 2020): 2050191. http://dx.doi.org/10.1142/s0217732320501916.

Повний текст джерела
Анотація:
In this paper, we use the complexity equals action proposal and investigate holographic complexity for hyperscaling violating theories on different subregions of space-time enclosed by the null boundaries. We are interested in computing the onshell action for certain subregions of the intersection between the Wheeler DeWitt patch and the past, as well as, the future interior of a two-sided black brane. More precisely, we extend the results of Ref. 1 in parts, to hyperscaling violating geometries and to find the finite onshell action, we define the proper counter terms. We show that in computing the rate of complexification the dynamical exponent plays a crucial rule, but, at the late time, rate of the complexity growth is independent of the hyperscaling parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Papadimitriou, Ioannis. "Hyperscaling violating Lifshitz holography." Nuclear and Particle Physics Proceedings 273-275 (April 2016): 1487–93. http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cieplak, Marek, and Andrzej Majhofer. "Spectral dimensionality and hyperscaling." Physical Review B 34, no. 7 (October 1, 1986): 4892–93. http://dx.doi.org/10.1103/physrevb.34.4892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duplantier, Bertrand. "Hyperscaling for polymer rings." Nuclear Physics B 430, no. 3 (November 1994): 489–533. http://dx.doi.org/10.1016/0550-3213(94)90157-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tasaki, Hal. "Hyperscaling inequalities for percolation." Communications in Mathematical Physics 113, no. 1 (March 1987): 49–65. http://dx.doi.org/10.1007/bf01221396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sadeghi, J., and A. Asadi. "Hydrodynamics in a black brane with hyperscaling violation metric background." Canadian Journal of Physics 92, no. 12 (December 2014): 1570–72. http://dx.doi.org/10.1139/cjp-2014-0067.

Повний текст джерела
Анотація:
In this paper we consider a metric with hyperscaling violation on a black brane background. In this background we calculate the ratio of shear viscosity to entropy density with hydrodynamics information. The calculation of this quantity leads us to a constraint on θ as 3 ≤ θ < 4, and θ ≤ 0. In that case we show that the quantity η/s is not dependent on hyperscaling violation parameter θ. Our results about ratio of shear viscosity to entropy density from the QCD point of view agree with other works in the literature as 1/4π.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Binder, K., M. Nauenberg, V. Privman, and A. P. Young. "Finite-size tests of hyperscaling." Physical Review B 31, no. 3 (February 1, 1985): 1498–502. http://dx.doi.org/10.1103/physrevb.31.1498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhang, Zi-qiang, Chong Ma, De-fu Hou, and Gang Chen. "Heavy Quark Potential with Hyperscaling Violation." Advances in High Energy Physics 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/8276534.

Повний текст джерела
Анотація:
We investigate the behavior of the heavy quark potential in the backgrounds with hyperscaling violation. The metrics are covariant under a generalized Lifshitz scaling symmetry with the dynamical Lifshitz parameter z and hyperscaling violation exponent θ. We calculate the potential for a certain range of z and θ and discuss how it changes in the presence of the two parameters. Moreover, we add a constant electric field to the backgrounds and study its effects on the potential. It is shown that the heavy quark potential depends on the nonrelativistic parameters. Also, the presence of the constant electric field tends to increase the potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Xu, Xiao-Bao, Gu-Qiang Li, and Jie-Xiong Mo. "Entanglement temperature for black branes with hyperscaling violation." Modern Physics Letters A 31, no. 12 (April 19, 2016): 1650072. http://dx.doi.org/10.1142/s0217732316500723.

Повний текст джерела
Анотація:
Entanglement temperature is an interesting quantity which relates the increased amount of entanglement entropy to that of energy for a weakly excited state in the first-law of entanglement entropy, it is proportional to the inverse of the size of entanglement subsystem and only depends on the shape of the entanglement region. We find the explicit formula of entanglement temperature for the general hyperscaling violation backgrounds with a strip-subsystem. We then investigate the entanglement temperature for a round ball-subsystem, we check that the entanglement temperature has a universal form when the hyperscaling violation exponent is near zero.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nauenberg, M. "Hyperscaling Relations for Finite Size Systems." Physica Scripta T9 (January 1, 1985): 151–52. http://dx.doi.org/10.1088/0031-8949/1985/t9/025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Berche, B., R. Kenna, and J. C. Walter. "Hyperscaling above the upper critical dimension." Nuclear Physics B 865, no. 1 (December 2012): 115–32. http://dx.doi.org/10.1016/j.nuclphysb.2012.07.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Elander, Daniel, Robert Lawrance, and Maurizio Piai. "Hyperscaling violation and electroweak symmetry breaking." Nuclear Physics B 897 (August 2015): 583–611. http://dx.doi.org/10.1016/j.nuclphysb.2015.06.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Essam, J. W. "Directed compact percolation: cluster size and hyperscaling." Journal of Physics A: Mathematical and General 22, no. 22 (November 21, 1989): 4927–37. http://dx.doi.org/10.1088/0305-4470/22/22/020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lei, Yang, and Simon F. Ross. "Extending the non-singular hyperscaling violating spacetimes." Classical and Quantum Gravity 31, no. 3 (December 23, 2013): 035007. http://dx.doi.org/10.1088/0264-9381/31/3/035007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dickman, Ronald, and Alex Yu Tretyakov. "Hyperscaling in the Domany-Kinzel cellular automaton." Physical Review E 52, no. 3 (September 1, 1995): 3218–20. http://dx.doi.org/10.1103/physreve.52.3218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Cates, M. E. "Excluded volume and hyperscaling in polymeric systems." Journal de Physique Lettres 46, no. 17 (1985): 837–43. http://dx.doi.org/10.1051/jphyslet:019850046017083700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Guttmann, A. J. "Validity of hyperscaling for thed=3Ising model." Physical Review B 33, no. 7 (April 1, 1986): 5089–92. http://dx.doi.org/10.1103/physrevb.33.5089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wu, Jian-Pin, and Xiao-Mei Kuang. "Scalar boundary conditions in hyperscaling violating geometry." Physics Letters B 753 (February 2016): 34–40. http://dx.doi.org/10.1016/j.physletb.2015.11.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kolekar, Kedar S., Debangshu Mukherjee, and K. Narayan. "Hyperscaling violation and the shear diffusion constant." Physics Letters B 760 (September 2016): 86–93. http://dx.doi.org/10.1016/j.physletb.2016.06.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Li, Li. "Hyperscaling violating solutions in generalised EMD theory." Physics Letters B 767 (April 2017): 278–84. http://dx.doi.org/10.1016/j.physletb.2017.02.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sadeghi, J., and F. Pourasadollah. "Langevin Diffusion in Holographic Backgrounds with Hyperscaling Violation." Advances in High Energy Physics 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/670598.

Повний текст джерела
Анотація:
We consider a relativistic heavy quark which moves in the quark-gluon plasmas. By using the holographic methods, we analyze the Langevin diffusion process of this relativistic heavy quark. This heavy quark is described by a trailing string attached to a flavor brane and moving at constant velocity. The fluctuations of this string are related to the thermal correlators and the correlation functions are precisely the kinds of objects that we compute in the gravity dual picture. We obtain the action of the trailing string in hyperscaling violation backgrounds and we then find the equations of motion. These equations lead us to constructing the Langevin correlator which helps us to obtain the Langevin constants. Using the Langevin correlators we derive the spectral densities and simple analytic expressions in the small- and large-frequency limits. We examine our works for planar andR-charged black holes with hyperscaling violation and find new constraints onθin the presence of velocityv.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhang, Shuhang, Zixu Zhao, Qiyuan Pan, and Jiliang Jing. "Excited states of holographic superconductors with hyperscaling violation." Nuclear Physics B 976 (March 2022): 115701. http://dx.doi.org/10.1016/j.nuclphysb.2022.115701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lebeau, C., J. Rosenblatt, A. Raboutou, and P. Peyral. "Current-Voltage Hyperscaling in Arrays of Josephson Junctions." Europhysics Letters (EPL) 1, no. 6 (March 15, 1986): 313–17. http://dx.doi.org/10.1209/0295-5075/1/6/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sadeghi, J., B. Pourhassan, and F. Pourasadollah. "Thermodynamics of Schrödinger black holes with hyperscaling violation." Physics Letters B 720, no. 1-3 (March 2013): 244–49. http://dx.doi.org/10.1016/j.physletb.2013.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Schwartz, M. "Breakdown of Hyperscaling in Random Systems—An Inequality." Europhysics Letters (EPL) 15, no. 7 (August 1, 1991): 777–81. http://dx.doi.org/10.1209/0295-5075/15/7/014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

David, François, Bertrand Duplantier, and Emmanuel Guitter. "Renormalization and hyperscaling for self-avoiding manifold models." Physical Review Letters 72, no. 3 (January 17, 1994): 311–15. http://dx.doi.org/10.1103/physrevlett.72.311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kiritsis, Elias, and Yoshinori Matsuo. "Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes." Journal of High Energy Physics 2015, no. 12 (December 2015): 1–51. http://dx.doi.org/10.1007/jhep12(2015)076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kuang, Xiao-Mei, and Jian-Pin Wu. "Analytical shear viscosity in hyperscaling violating black brane." Physics Letters B 773 (October 2017): 422–27. http://dx.doi.org/10.1016/j.physletb.2017.08.060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Borgs, C., J. T. Chayes, H. Kesten, and J. Spencer. "Uniform boundedness of critical crossing probabilities implies hyperscaling." Random Structures and Algorithms 15, no. 3-4 (October 1999): 368–413. http://dx.doi.org/10.1002/(sici)1098-2418(199910/12)15:3/4<368::aid-rsa9>3.0.co;2-b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ganjali, Mohammad Ali, and Vahid Amirkhani. "Geometries With Hyperscaling-violating Lifshitz in Cubic Gravity." Modern Research Physics 4, no. 2 (February 1, 2020): 83–91. http://dx.doi.org/10.52547/jmrph.4.2.83.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Pedraza, Juan F., Watse Sybesma, and Manus R. Visser. "Hyperscaling violating black holes with spherical and hyperbolic horizons." Classical and Quantum Gravity 36, no. 5 (February 7, 2019): 054002. http://dx.doi.org/10.1088/1361-6382/ab0094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wu, Jianda, Lijun Zhu, and Qimiao Si. "Entropy accumulation near quantum critical points: effects beyond hyperscaling." Journal of Physics: Conference Series 273 (January 1, 2011): 012019. http://dx.doi.org/10.1088/1742-6596/273/1/012019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lundow, P. H., and I. A. Campbell. "Hyperscaling breakdown and Ising spin glasses: The Binder cumulant." Physica A: Statistical Mechanics and its Applications 492 (February 2018): 1838–52. http://dx.doi.org/10.1016/j.physa.2017.11.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Mukhopadhyay, Subir, and Chandrima Paul. "Hyperscaling violating geometry with magnetic field and DC conductivity." Nuclear Physics B 938 (January 2019): 571–93. http://dx.doi.org/10.1016/j.nuclphysb.2018.11.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Berker, A. Nihat, and Susan R. McKay. "Modified hyperscaling relation for phase transitions under random fields." Physical Review B 33, no. 7 (April 1, 1986): 4712–15. http://dx.doi.org/10.1103/physrevb.33.4712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Cheung, Ho-Fai. "Hyperscaling, dimensional reduction, and the random-field Ising model." Physical Review B 33, no. 9 (May 1, 1986): 6191–95. http://dx.doi.org/10.1103/physrevb.33.6191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Bhatnagar, Neha. "Some Applications of Holography to Study Strongly Correlated Systems." EPJ Web of Conferences 177 (2018): 09002. http://dx.doi.org/10.1051/epjconf/201817709002.

Повний текст джерела
Анотація:
In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography). We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1)-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bhatnagar, Neha, and Sanjay Siwach. "DC conductivity with external magnetic field in hyperscaling violating geometry." International Journal of Modern Physics A 33, no. 04 (February 10, 2018): 1850028. http://dx.doi.org/10.1142/s0217751x18500288.

Повний текст джерела
Анотація:
We investigate the holographic DC conductivity of (2[Formula: see text]+[Formula: see text]1)-dimensional systems while considering hyperscaling violating geometry in bulk. We consider Einstein–Maxwell-dilaton system with two gauge fields and Liouville-type potential for dilaton. We also consider axionic fields in bulk to introduce momentum relaxation in the system. We apply an external magnetic field to study the response of the system and obtain analytic expressions for DC conductivity, Hall angle and (thermo)electric conductivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kioumarsipour, M., and J. Sadeghi. "Effects of the hyperscaling violation and dynamical exponents on the imaginary potential and entropic force of heavy quarkonium via holography." European Physical Journal C 81, no. 8 (August 2021). http://dx.doi.org/10.1140/epjc/s10052-021-09537-3.

Повний текст джерела
Анотація:
AbstractThe imaginary potential and entropic force are two important different mechanisms to characterize the dissociation of heavy quarkonia. In this paper, we calculate these two quantities in strongly coupled theories with anisotropic Lifshitz scaling and hyperscaling violation exponent using holographic methods. We study how the results are affected by the hyperscaling violation parameter $$ \theta $$ θ and the dynamical exponent z at finite temperature and chemical potential. Also, we investigate the effect of the chemical potential on these quantities. As a result, we find that both mechanisms show the same results: the thermal width and the dissociation length decrease as the dynamical exponent and chemical potential increase or as the hyperscaling violating parameter decreases.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Perlmutter, Eric. "Hyperscaling violation from supergravity." Journal of High Energy Physics 2012, no. 6 (June 2012). http://dx.doi.org/10.1007/jhep06(2012)165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Copsey, Keith, and Robert Mann. "Singularities in hyperscaling violating spacetimes." Journal of High Energy Physics 2013, no. 4 (April 2013). http://dx.doi.org/10.1007/jhep04(2013)079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Fan, ZhongYing. "Holographic superconductors with hyperscaling violation." Journal of High Energy Physics 2013, no. 9 (September 2013). http://dx.doi.org/10.1007/jhep09(2013)048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Alishahiha, Mohsen, and Hossein Yavartanoo. "On holography with hyperscaling violation." Journal of High Energy Physics 2012, no. 11 (November 2012). http://dx.doi.org/10.1007/jhep11(2012)034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Karch, Andreas. "Conductivities for hyperscaling violating geometries." Journal of High Energy Physics 2014, no. 6 (June 2014). http://dx.doi.org/10.1007/jhep06(2014)140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Sadeghi, J., and S. Heshmatian. "Jet quenching parameter with hyperscaling violation." European Physical Journal C 74, no. 9 (September 2014). http://dx.doi.org/10.1140/epjc/s10052-014-3032-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pan, Qiyuan, and Shao-Jun Zhang. "Revisiting holographic superconductors with hyperscaling violation." European Physical Journal C 76, no. 3 (March 2016). http://dx.doi.org/10.1140/epjc/s10052-016-3980-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ghanbarian, N., and M. Reza Tanhayi. "‘Mutual complexity’ in hyperscaling violating background." International Journal of Modern Physics D, December 29, 2020, 2150013. http://dx.doi.org/10.1142/s0218271821500139.

Повний текст джерела
Анотація:
In this paper, we use complexity equals action proposal and investigate the recently introduced ‘mutual complexity’ [M. Alishahiha, K. Babaei Velni and M. R. Mohammadi Mozaffar, Phys. Rev. D 99 (2019) 126016, https://doi.org/10.1103/PhysRevD.99.126016 , arXiv:1809.06031 [hep-th]], in the hyperscaling violating backgrounds. For two subregions in order to define holographic complexity, we find the finite bulk action inside the subregions which is followed by introducing the proper counter terms. We show that for two subregions, the mutual complexity is subadditive. Moreover, for three subregions, we define holographic ‘tripartite complexity’ and show that this new quantity is superadditive.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії