Добірка наукової літератури з теми "Hyperelastic anisotropic material"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hyperelastic anisotropic material".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hyperelastic anisotropic material"
Gurvich, Mark R. "On Characterization of Anisotropic Elastomeric Materials for Structural Analysis." Rubber Chemistry and Technology 77, no. 1 (March 1, 2004): 115–30. http://dx.doi.org/10.5254/1.3547805.
Повний текст джерелаChanda, Arnab, Subhodip Chatterjee, and Vivek Gupta. "Soft composite based hyperelastic model for anisotropic tissue characterization." Journal of Composite Materials 54, no. 28 (June 23, 2020): 4525–34. http://dx.doi.org/10.1177/0021998320935560.
Повний текст джерелаAnsari, Mohd Zahid, Sang Kyo Lee, and Chong Du Cho. "Hyperelastic Muscle Simulation." Key Engineering Materials 345-346 (August 2007): 1241–44. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1241.
Повний текст джерелаCudny, Marcin, and Katarzyna Staszewska. "A hyperelastic model for soils with stress-induced and inherent anisotropy." Acta Geotechnica 16, no. 7 (March 5, 2021): 1983–2001. http://dx.doi.org/10.1007/s11440-021-01159-z.
Повний текст джерелаNam, Tran Huu. "Using FEM for large deformation analysis of inflated air-spring cylindrical shell made of rubber-textile cord composite." Vietnam Journal of Mechanics 28, no. 1 (April 17, 2006): 10–20. http://dx.doi.org/10.15625/0866-7136/28/1/5474.
Повний текст джерелаChanda, Arnab, and Christian Callaway. "Tissue Anisotropy Modeling Using Soft Composite Materials." Applied Bionics and Biomechanics 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/4838157.
Повний текст джерелаSokolova, M. Yu, and D. V. Khristich. "FINITE STRAINS OF NONLINEAR ELASTIC ANISOTROPIC MATERIALS." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 70 (2021): 103–16. http://dx.doi.org/10.17223/19988621/70/9.
Повний текст джерелаVladimirov, Ivaylo N., Michael P. Pietryga, Yalin Kiliclar, Vivian Tini, and Stefanie Reese. "Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage." International Journal of Damage Mechanics 23, no. 8 (January 16, 2014): 1096–132. http://dx.doi.org/10.1177/1056789513518953.
Повний текст джерелаHashemi, Sanaz S., Masoud Asgari, and Akbar Rasoulian. "An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, no. 6 (March 5, 2020): 590–602. http://dx.doi.org/10.1177/0954411920909705.
Повний текст джерелаChatelin, Simon, Caroline Deck, and Rémy Willinger. "An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling." Journal of Biorheology 27, no. 1-2 (December 6, 2012): 26–37. http://dx.doi.org/10.1007/s12573-012-0055-6.
Повний текст джерелаДисертації з теми "Hyperelastic anisotropic material"
Hu, Lianxin. "Micromechanics of granular materials : Modeling anisotropy by a hyperelastic-plastic model." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI133.
Повний текст джерелаIn order to model the behavior of geometarials under complex loadings, several researches have done numerous experimental works and established relative constitutive models for decades. An important feature of granular materials is that the relationship between stress and strain especially in elastic domain is not linear, unlike the responses of typical metal or rubber. It has been also found that the stress-strain response of granular materials shows the characteristics of cross-anisotropy, as well as the non-linearities. Besides, the stress-induced anisotropy occurs expectedly during the process of disturbance on soils, for example, the loads or displacements. In this work, a new model which is a combination of Houlsby hyperelastic model and elastoplastic Plasol model was proposed. This new model took into account the non-linear response of stress and strain in both elastic and plastic domain, and the anisotropic elasticity was also well considered. Moreover, the overflow problem of plastic strain in plastic part was calibrated by a proper integration algorithm. Later, new model was verified by using numerical method and compared with laboratory experiments in axisymmetric triaxial conditions. The comparison results showed a good simulation effect of new model which just used one single set of parameters for a specific soil in different confining pressure situations. Then the analysis of new model internal variable, i.e., pressure exponent, illustrated that the value of pressure exponent which corresponds to the degree of anisotropy had an obvious effect on the stress-strain response. Moreover, this kind of effect is also affected by the density and drainage condition of samples. Basing on new model, a safety factor which refers to the second-order work criterion was adopted and tested in axisymmetric model and actual slope model. It showed that the negative value or dramatic decreasing of global normalized second-order work occurs accompanying with a local or global failure with a burst of kinetic energy. This feature of second-order work can also be affected by the variable pressure exponent. At last, new model was also compared with an elastoplastic model which considers both anisotropic elastic and anisotropic dilatancy, i.e., modified SANISAND model. Both advantages and disadvantages were illustrated in the comparison results
Grilo, Tiago Jordão. "Development of computational anisotropic hypoelastic- and hyperelastic-based models including nonlinear kinematic hardening." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14428.
Повний текст джерелаIn the present work, finite strain elastoplastic constitutive formulations suitable for advanced metallic materials are developed. The main goals are the correct description of the elastoplastic behaviour, including strong plastic anisotropy and cyclic hardening phenomena, in the large strain regime, as well as the development of numerically efficient algorithmic procedures for numerical implementation of the constitutive models into codes of numerical simulation by the Finite Element Method. Two different approaches are used in the derivation of the finite strain constitutive formulations, namely, hypoelasticity and hyperelasticity. On the one hand, regarding the hypoelastic-based model, particular attention is given to the development of computationally effcient forward- and backward-Euler algorithms considering distinct techniques. On the other hand, concerning the hyperelastic-based model, the focus is on the possibility of using any (quadratic or nonquadratic) yield criteria and on a new procedure that ensures that the anisotropy is correctly described in the finite strain regime. Moreover, the constitutive relations are solely expressed in the reference configuration, hence yielding symmetric tensor-valued quantities only. This symmetry, allied to an algorithm that preserves it, is crucial for the computational efficiency of the model's implementation since it reduces the storage effort and the required solver capacities when compared to the model's standard counterparts. For a better description of cyclic hardening phenomena, the developed models and corresponding algorithms, are extended to include several back stresses. This extension is carried out by considering a modified rheological model of nonlinear kinematic hardening and using additional state variables. The capabilities of the developed models for accurate reproduction of the plastic anisotropy and cyclic hardening phenomena are assessed by means of their implementation into material user subroutines of the commercial code Abaqus. The accuracy and computational efficiency of the models and numerical algorithms are compared by means of simulations of benchmarks. These benchmarks allow the models' assessment in the description of, e.g., metal forming defects such as earing and springback, as well as the comparison of the stability and precision of the numerical algorithms.
No presente trabalho, são desenvolvidas formulações constitutivas elastoplásticas para grandes deformações, adequadas a materiais metálicos avançados. Os principais objectivos deste estudo consistem na correcta descrição do comportamento elastoplástico, incluindo anisotropia plástica acentuada e fenómenos de endurecimento cíclico, no regime de grandes deformações, bem como o desenvolvimento de procedimentos algorítmicos eficientes para a implementação numérica dos modelos constitutivos em códigos de simulação numérica pelo Método dos Elementos Finitos. São usadas duas metodologias diferentes na derivação das formulações constitutivas de grandes deformações, nomeadamente, hipoelasticidade e hiperelasticidade. Por um lado, relativamente ao modelo baseado em hipoelasticidade, é dada particular atenção ao desenvolvimento de algoritmos eficientes do ponto de vista computacional, considerando técnicas particulares. Por outro lado, em relação ao modelo baseado em hiperelasticidade, a possibilidade de usar qualquer critério de cedência (quadrático ou não-quadrático) e a apresentação de um procedimento inovador, que garante a correcta descrição da anisotropia na presença de grandes deformaçães, são destacadas. Além disso, as relações constitutivas são expressas unicamente na configuração de referência, resultando no uso de apenas variáveis simétricas de segunda ordem. Esta simetria e o uso de um algoritmo que a preserva são cruciais no que diz respeito à eficiência numérica da implementação do modelo, uma vez que reduz significativamente o espaço de armazenamento e o custo computacional de cálculo, relativamente aos modelos hiperelásticos convencionais. Os modelos, e respectivos algoritmos de integração, são posteriormente alargados ao uso de múltiplos tensores das tensões inversas de modo a permitir uma melhor descrição dos fenómenos de endurecimento cíclico. Para tal, foi considerado um modelo reológico modificado de endurecimento cinemático e usadas variáveis de estado adicionais. O desempenho dos modelos desenvolvidos na reprodução precisa de anisotropia plástica e fenómenos de endurecimento cíclico é avaliado através da sua implementação no código comercial Abaqus usando subrotinas de utilizador. A precisão e eficiência computacional dos modelos e algoritmos desenvolvidos são comparados entre si através de simulações de benchmarks. Estes benchmarks permitem a avaliação dos modelos na descrição de, por exemplo, defeitos na conformação de chapas metálicas, tais como a formação de orelhas e o retorno elástico, bem como a comparação da estabilidade e precisão dos algoritmos numéricos.
Alleau, Thibaut. "Development of a numerical platform to model the mitral valve." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2649.
Повний текст джерелаMitral insufficiency is the first valvular disease worldwide, with a 2% prevalence. When open-heartsurgery is impossible for the patient, surgeons use percutaneous devices to help the mitral leaflets coapt. However, the only device currently available is based on the edge-to-edge mitral valve repair technique. This type of implant is not adapted for patients suffering from functional mitral insufficiency, where the ventricle is responsible for the lack of coaptation of the leaflets. This thesis aims to provide a numerical platform to help the development of a mitral valve implant adapted for those patients. Several mitral valve geometries were created from a parametric model using anatomical measurements. Finite element simulations of the mitral valve were performed using ADINA to determine the valve closure under constant pressure. Several material models were developed in large strain and large deformation to model the valve closure accurately. Pathological behaviour such as annulus dilatation and chordae rupture were modelled, and several methods were tested to implement medical devices. Fluid-structure interaction of a 2D mitral valve was obtained using an ALE description and a monolithic coupling approach. Both the systole and the diastole were reproduced and studied, and the hermetic seal of the valve was detailed. The numerical platform developed is suited to model mitral valve function and can be used to help the development of mitral implants. In addition, the parametric geometry model and the anisotropic material model will be useful to depict with realism the valve function. A 3D fluid-structure interaction of the mitral valve could be developed
Тези доповідей конференцій з теми "Hyperelastic anisotropic material"
Ahsanizadeh, Sahand, and LePing Li. "Strain-Rate Sensitive Constitutive Modeling of Anisotropic Visco-Hyperelastic Materials." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88608.
Повний текст джерелаLuo, Yun-Mei, Luc Chevalier, and Eric Monteiro. "An anisotropic visco-hyperelastic model for PET behavior under ISBM process conditions." In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963407.
Повний текст джерелаForsell, Caroline, and T. Christian Gasser. "Impact of Material Anisotropy on Deformation of Myocardial Tissue due to Pacemaker Electrodes." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53383.
Повний текст джерелаKao, Philip, H. Jerry Qi, Steve Lammers, and Robin Shandas. "A Comparative Study of Mechanical Properties of Fresh and Elastic-Network Only Proximal Artery Tissues." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176546.
Повний текст джерелаO’Connell, Grace D., Heather L. Guerin, and Dawn M. Elliott. "An Anisotropic Hyperelastic Model Applied to Nondegenerate and Degenerate Annulus Fibrosus." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192890.
Повний текст джерелаOkamoto, Ruth J., Yuan Feng, Guy M. Genin, and Philip V. Bayly. "Anisotropic Behavior of White Matter in Shear and Implications for Transversely Isotropic Models." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14039.
Повний текст джерелаMortier, Peter, Benedict Verhegghe, Matthieu De Beule, Pascal Verdonck, and Gerhard A. Holzapfel. "Biomechanical Analysis of Stent Placement in a Coronary Bifurcation Considering the Anisotropic Response of the Wall." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206611.
Повний текст джерелаBeblo, Richard, Michael Settle, Tyler Guin, Timothy White, and Gregory Reich. "Constitutive Modeling of Patterned Liquid Crystal Elastomer for Active Flow Control." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3891.
Повний текст джерелаNatali, Arturo N., Emanuele L. Carniel, Piero G. Pavan, Alessio Gasparetto, Franz G. Sander, Christina Dorow, and Martin Geiger. "Constitutive Formulation for Numerical Analysis of Visco-Hyperelastic Damage Phenomena in Soft Biological Tissues." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95254.
Повний текст джерелаKadlowec, Jennifer A., Spencer P. Lake, Kristin S. Miller, Louis J. Soslowsky, and Dawn M. Elliott. "A Hyperelastic Model With Distributed Fibers to Describe Human Supraspinatus Tendon Tensile Mechanics." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206509.
Повний текст джерела