Добірка наукової літератури з теми "Hyperaccumulation de nickel"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hyperaccumulation de nickel".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hyperaccumulation de nickel":

1

Noell, I., and D. Morris. "Localisation of hyperaccumulated nickel in Stackhousia tryonii using Electron-probe microanalysis." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 92–93. http://dx.doi.org/10.1017/s0424820100162922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Proton microprobe and electron probe X-ray microanalysis (EPXMA) simultaneously measure and map elemental content, and hence are excellent tools for investigating the distribution and function of elevated Ni levels in hyperaccumulating plants (Ni concentration >1000 μg g−1 dry weight). Five major hypotheses have been proposed for the function of Ni hyperaccumulation. Our research focuses on the hypothesis that Ni defends against herbivore or pathogen attack and examines the movement of Ni from soil through plant to herbivore in Stackhousia tryonii, the only known hyperaccumulator in eastern Australia. Using a JEOL JXA-840-A electron probe microanalyzer with Moran Scientific Analysis software, we located features of high mean atomic number in whole leaves and cross-sections through backscattered-electron imaging (BEI), then we used EPXMA to identify the elements present and to prepare semi-quantitative x-ray maps of seven key elements.
2

Paul, Adrian L. D., Vidiro Gei, Sandrine Isnard, Bruno Fogliani, Guillaume Echevarria, Peter D. Erskine, Tanguy Jaffré, Jérôme Munzinger, and Antony van der Ent. "Nickel hyperaccumulation in New Caledonian Hybanthus (Violaceae) and occurrence of nickel-rich phloem in Hybanthus austrocaledonicus." Annals of Botany 126, no. 5 (June 24, 2020): 905–14. http://dx.doi.org/10.1093/aob/mcaa112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Background and Aims Hybanthus austrocaledonicus (Violaceae) is a nickel (Ni) hyperaccumulator endemic to New Caledonia. One of the specimens stored at the local herbarium had a strip of bark with a remarkably green phloem tissue attached to the sheet containing over 4 wt% Ni. This study aimed to collect field samples from the original H. austrocaledonicus locality to confirm the nature of the green ‘nickel-rich phloem’ in this taxon and to systematically assess the occurrence of Ni hyperaccumulation in H. austrocaledonicus and Hybanthus caledonicus populations. Methods X-ray fluorescence spectroscopy scanning of all collections of the genus Hybanthus (236 specimens) was undertaken at the Herbarium of New Caledonia to reveal incidences of Ni accumulation in populations of H. austrocaledonicus and H. caledonicus. In parallel, micro-analytical investigations were performed via synchrotron X-ray fluorescence microscopy (XFM) and scanning electron microscopy with X-ray microanalysis (SEM-EDS). Key Results The extensive scanning demonstrated that Ni hyperaccumulation is not a characteristic common to all populations in the endemic Hybanthus species. Synchrotron XFM revealed that Ni was exclusively concentrated in the epidermal cells of the leaf blade and petiole, conforming with the majority of (tropical) Ni hyperaccumulator plants studied to date. SEM-EDS of freeze-dried and frozen-hydrated samples revealed the presence of dense solid deposits in the phloem bundles that contained >8 wt% nickel. Conclusions The occurrence of extremely Ni-rich green phloem tissues appears to be a characteristic feature of tropical Ni hyperaccumulator plants.
3

Gei, Vidiro, Sandrine Isnard, Peter D. Erskine, Guillaume Echevarria, Bruno Fogliani, Tanguy Jaffré, and Antony van der Ent. "A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia." Botanical Journal of the Linnean Society 194, no. 1 (July 21, 2020): 1–22. http://dx.doi.org/10.1093/botlinnean/boaa029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract New Caledonia is a global biodiversity hotspot known for its metal hyperaccumulator plants. X-ray fluorescence technology (XRF) has enabled non-destructive and quantitative determination of elemental concentrations in herbarium specimens from the ultramafic flora of the island. Specimens belonging to six major hyperaccumulator families (Cunoniaceae, Phyllanthaceae, Salicaceae, Sapotaceae, Oncothecaceae and Violaceae) and one to four specimens per species of the remaining ultramafic taxa in the herbarium were measured. XRF scanning included a total of c. 11 200 specimens from 35 orders, 96 families, 281 genera and 1484 species (1620 taxa) and covered 88.5% of the ultramafic flora. The study revealed the existence of 99 nickel hyperaccumulator taxa (65 known previously), 74 manganese hyperaccumulator taxa (11 known previously), eight cobalt hyperaccumulator taxa (two known previously) and four zinc hyperaccumulator taxa (none known previously). These results offer new insights into the phylogenetic diversity of hyperaccumulators in New Caledonia. The greatest diversity of nickel hyperaccumulators occur in a few major clades (Malphigiales and Oxalidales) and families (Phyllanthaceae, Salicaceae, Cunoniaceae). In contrast, manganese hyperaccumulation is phylogenetically scattered in the New Caledonian flora.
4

Van der Pas, Llewelyn, and Robert A. Ingle. "Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants." Plants 8, no. 1 (January 4, 2019): 11. http://dx.doi.org/10.3390/plants8010011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal hyperaccumulation is a rare and fascinating phenomenon, whereby plants actively accumulate high concentrations of metal ions in their above-ground tissues. Enhanced uptake and root-to-shoot translocation of specific metal ions coupled with an increased capacity for detoxification and sequestration of these ions are thought to constitute the physiological basis of the hyperaccumulation phenotype. Nickel hyperaccumulators were the first to be discovered and are the most numerous, accounting for some seventy-five percent of all known hyperaccumulators. However, our understanding of the molecular basis of the physiological processes underpinning Ni hyperaccumulation has lagged behind that of Zn and Cd hyperaccumulation, in large part due to a lack of genomic resources for Ni hyperaccumulators. The advent of RNA-Seq technology, which allows both transcriptome assembly and profiling of global gene expression without the need for a reference genome, has offered a new route for the analysis of Ni hyperaccumulators, and several such studies have recently been reported. Here we review the current state of our understanding of the molecular basis of Ni hyperaccumulation in plants, with an emphasis on insights gained from recent RNA-Seq experiments, highlight commonalities and differences between Ni hyperaccumulators, and suggest potential future avenues of research in this field.
5

Burge, Dylan O., and W. R. Barker. "Evolution of nickel hyperaccumulation by Stackhousia tryonii (Celastraceae), a serpentinite-endemic plant from Queensland, Australia." Australian Systematic Botany 23, no. 6 (2010): 415. http://dx.doi.org/10.1071/sb10029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To elucidate the evolutionary origin of nickel (Ni) hyperaccumulation by the Australian serpentinite-endemic plant Stackhousia tryonii Bailey, phylogenetic analyses of chloroplast and nuclear DNA for Stackhousia and its close relatives were combined with assays of plant-tissue Ni concentrations. Thirty-five plants from 20 taxa were analysed by sequencing nuclear rDNA (ITS) and the plastid trnL–F region. Phylogenetic analysis of sequence data was conducted under maximum parsimony and Bayesian search criteria. In all, 100 plants from 39 taxa, including all 33 Stackhousia species, were analysed for Ni concentration by radial inductively coupled plasma atomic-emission spectrometry (ICP–AES). In phylogenetic analyses, S. tryonii was monophyletic, nested within a monophyletic Stackhousia. Only S. tryonii contained concentrations of Ni above the hyperaccumulation threshold (0.1%; 1000 ppm), containing between 0.25% (2500 ppm) and 4.1% (41 000 ppm) Ni by dry weight. Nickel-hyperaccumulation ability appears to have been acquired once during diversification of Stackhousia, by S. tryonii.
6

Boyd, Robert S., Joe J. Shaw, and Scott N. Martens. "Nickel hyperaccumulation defendsStreptanthus polygaloides(Brassicaceae) against pathogens." American Journal of Botany 81, no. 3 (March 1994): 294–300. http://dx.doi.org/10.1002/j.1537-2197.1994.tb15446.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dimitrakopoulos, Panayiotis G., Maria Aloupi, Georgios Tetradis, and George C. Adamidis. "Broomrape Species Parasitizing Odontarrhena lesbiaca (Brassicaceae) Individuals Act as Nickel Hyperaccumulators." Plants 10, no. 4 (April 20, 2021): 816. http://dx.doi.org/10.3390/plants10040816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The elemental defense hypothesis supports that metal hyperaccumulation in plant tissues serves as a mechanism underpinning plant resistance to herbivores and pathogens. In this study, we investigate the interaction between Odontarrhena lesbiaca and broomrape parasitic species, in the light of the defense hypothesis of metal hyperaccumulation. Plant and soil samples collected from three serpentine sites in Lesbos, Greece were analyzed for Ni concentrations. Phelipanche nowackiana and Phelipanche nana were found to infect O. lesbiaca. In both species, Ni concentration decreased gradually from tubercles to shoots and flowers. Specimens of both species with shoot nickel concentrations above 1000 mg.kg−1 were found, showing that they act as nickel hyperaccumulators. Low values of parasite to O. lesbiaca leaf or soil nickel quotients were observed. Orobanche pubescens growing on a serpentine habitat but not in association with O. lesbiaca had very low Ni concentrations in its tissues analogous to excluder plants growing on serpentine soils. Infected O. lesbiaca individuals showed lower leaf nickel concentrations relative to the non-infected ones. Elevated leaf nickel concentration of O. lesbiaca individuals did not prevent parasitic plants to attack them and to hyperaccumulate metals to their tissues, contrary to predictions of the elemental defense hypothesis.
8

Brej, Teresa, and Jerzy Fabiszewski. "Plants accumulating heavy metals in the Sudety Mts." Acta Societatis Botanicorum Poloniae 75, no. 1 (2011): 61–68. http://dx.doi.org/10.5586/asbp.2006.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Sudeten flora consists of some plants we can recognize as heavy metal accumulators. Between others there are: <em>Thlaspi caerulescens</em>, <em>Arabidopsis halleri</em>, <em>Armeria maritima</em> ssp. <em>halleri</em> s.l. and probably the endemic fern <em>Asplenium onopteris</em> var. <em>silesiaca</em>. The authors present the concentrations of some important heavy metals measured in aboveground plant dry weight. The highest concentration of zinc was 8220 ppm (<em>Thlaspi</em>), nickel - 3100 ppm (<em>Thlaspi</em>), lead - 83 ppm (<em>Armeria</em>), copper - 611 ppm (<em>Arabidopsis</em>) and cadmium - 28 ppm (<em>Thlaspi</em>). The concentrations depend rather on species or population specification than on ore deposit quality. There are no typical hyperaccumulator among plants we have examined, but some signs of hyperaccumulation of nickel, zinc and lead could be observed. There are no typical endemic taxa, only <em>Asplenium onopteris</em> var. <em>silesiaca</em> and <em>Armeria maritima</em> ssp. <em>halleri</em> may be recognized as neoendemic taxa, but still of unclear systematic position. During the study we tried to find out why some Sudeten vascular plants do not develop heavy metals hyperaccumulation and why they are rather latent hyperaccumulators. Finally, we suggest to protect some metallicolous areas in spite they are rather territories with low plant biodiversity.
9

Salt, David E. "Nickel hyperaccumulation in Thlaspi goesingense: A scientific travelogue." In Vitro Cellular & Developmental Biology - Plant 37, no. 3 (May 2001): 326–29. http://dx.doi.org/10.1007/s11627-001-0058-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

REEVES, R. "Nickel Hyperaccumulation in the Serpentine Flora of Cuba." Annals of Botany 83, no. 1 (January 1999): 29–38. http://dx.doi.org/10.1006/anbo.1998.0786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hyperaccumulation de nickel":

1

Kraemer, Ute. "Nickel hyperaccumulation in the genus Alyssum L." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Flynn, Thomas Alexander. "Evolution of nickel hyperaccumulation in Alyssum L." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:fec1aee2-897b-4da0-b756-86385a802077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Phylogenetic studies are providing powerful new insights into the evolution of complex traits. Metal hyperaccumulation is an unusual and complex physiological trait found in about 500 plant species and is associated with an exceptionally high degree of tolerance of metalliferous soils. Alyssum L. (Brassicaceae) is the largest known hyperaccumulator genus, comprising approximately 188 species distributed throughout the Mediterranean region and south-west Asia. Approximately one-quarter of these are largely restricted to areas of serpentine soils and have the ability to accumulate nickel to high concentrations in shoot tissue. This genus provides a good example in which to study the origins of a complex physiological trait, but its phylogeny is currently poorly understood. To produce a well-resolved phylogenetic tree to investigate the number and timing of origins of nickel hyperaccumulation within Alyssum, DNA sequences were generated for four chloroplast regions (matK, rps16–trnK, trnD–T and trnL–F) from 170 of 255 species in the tribe Alysseae. Additional sequencing was carried out for the chloroplast genes ndhF and rbcL and the nuclear gene PHYA. A Bayesian analysis employing a relaxed uncorrelated lognormal molecular clock and multiple fossil-age calibration points was carried out to reconstruct a time-calibrated phylogeny of this tribe using appropriate outgroups. Optimization of the nickel hyperaccumulation trait onto the resulting phylogenetic tree suggests that nickel hyperaccumulation arose twice in the Alysseae in the late Miocene/early Pliocene: 3.3–8.3 Mya in Alyssum and 6.3–8.8 Mya in Bornmuellera. The single origin in Alyssum is strongly associated with a significant acceleration in net species diversification rate, suggesting the ability to hyperaccumulate nickel could have provided a key evolutionary innovation facilitating rapid range expansion and subsequent species diversification. The scattered distribution of nickel hyperaccumulators across small island-like patches of serpentine soil suggests that allopatric speciation may have driven rapid diversification in this clade.
3

Mugford, Sam. "The molecular basis of nickel hyperaccumulation in Alyssum L." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rue, Marie. "Hyperaccumulation du nickel sur des substrats élaborés pour l’agromine." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0124/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Au regard de l’amenuisement des ressources primaires et de l’augmentation de la production mondiale de déchets, le concept d’agromine propose de phytoextraire les métaux contenus dans les matériaux délaissés. La solution proposée dans ce concept s’inspire de la Nature (SBN) et des principes de l’agronomie et s’inscrit dans une démarche d’économie circulaire. Ainsi, les plantes hyperaccumulatrices (HA) sont capables de prélever les métaux à partir de leur système racinaire pour les stocker à de hautes concentrations dans leurs parties aériennes. Les enjeux de la thèse sont de valoriser des déchets ou matériaux secondaires par l’extraction des éléments d’intérêt qu’ils contiennent et d’identifier les plantes à même de pouvoir se développer sur ces milieux. L’objectif est de formuler à partir des matériaux choisis un substrat fonctionnel, c’est-à-dire capable de rendre un service de fourniture en nickel (Ni). Dans cette optique, le substrat doit permettre l’installation et le développement des HA pour parvenir au transfert des métaux vers les parties aériennes. Les travaux s’intéressent à une boue de phosphatation acide essentiellement composée de Fe, Zn, P et Mn et contenant 0,5% de Ni. Des tests de germination et de croissance ont été effectués avec différents substrats élaborés à partir de cette boue assemblée avec un mélange terreux. Le substrat retenu est constitué de 10% de boue et 90% de terre (m/m). Sur celui-ci, l’HA Alyssum murale produit une biomasse supérieure comparée à un sol témoin (sol ultramafique au même pH et contenant la même quantité de Ni biodisponible), malgré des signes de toxicité pour les plantes. Un des verrous majeurs est la forte toxicité due à la présence de 6% de Zn dans la boue. Deux voies d’amélioration du substrat sont expérimentées : i) l’utilisation d’amendements et ii) la disposition des matériaux dans le profil. L’amendement le plus efficace est un biochar de bois ; il améliore le développement des plantes et ainsi la quantité de Ni phytoextraite. De plus, en modifiant la disposition des matériaux au sein du profil par une répartition en couches, la production de biomasse et la phytoextraction sont améliorées. Ce dispositif permet de lever la toxicité liée au Zn. Il apparait essentiel de contrôler le pH du substrat lors d’une multi-contamination car l’immobilisation du métal varie selon l’élément. L’association du génie pédologique et du génie végétal a permis de formuler un substrat fonctionnel pour la récupération d’éléments d’intérêt tel que le Ni. Ces travaux démontrent la possibilité de valoriser des sous-produits appelés classiquement « déchets » pour obtenir une plus-value, diminuant aussi leur charge métallique et faisant émerger une nouvelle source de métaux « d’origine végétale » obtenue par l’agromine
In view of the depletion of primary resources and the increase in global waste production, the concept of agromining proposes phytoextracting the metals contained in abandoned materials. The solution proposed in this concept is inspired by Nature (NbS) and the principles of agronomy and is part of a circular economy. Thus, hyperaccumulator plants (HA) are able to collect metals from their root system and to store them at high concentrations in their aerial parts. The challenges of the thesis are to give value to waste or secondary materials by extracting the elements of interest that they contain and to identify the plants able to develop on these media. The objective is to formulate, from the chosen materials, a functional substrate, that is to say, capable of rendering a Ni supply service. From this point of view, the substrate must allow the installation and the development of the HAs in order to transfer the metals to the aerial parts. The work focuses on an acid phosphating sludge essentially composed of Fe, Zn, P and Mn and containing 0.5% Ni. Germination and growth tests were carried out with different substrates prepared from this sludge assembled with a soil sample mixture. The retained substrate consists of 10% sludge and 90% soil (w/w). On the latter, HA Alyssum murale produces a higher biomass compared to a control soil (ultramafic soil at the same pH and containing the same amount of bioavailable Ni), despite signs of toxicity to plants. One of the major locks is the high toxicity due to the presence of 6% Zn in the sludge. Two ways of improving the substrate are tested: i) the use of amendments and ii) the arrangement of materials in the profile. The most efficient amendment is a wood biochar; it improves the development of plants and thus the amount of phytoextracted Ni. In addition, by modifying the layout of the materials within the profile by a layered distribution, biomass production and phytoextraction are improved. This device makes it possible to remove Zn-related toxicity. It is essential to control the pH of the substrate during multi-contamination because the immobilization of the metal varies according to the element. The association of soil engineering and plant engineering has made it possible to formulate a functional substrate for the recovery of elements of interest such as Ni. This work demonstrates the possibility of upgrading by-products conventionally called "waste" in order to obtain a surplus value, also reducing their metallic charge and bringing about a new source of "plant-derived" metals obtained by agromining
5

Navarrete, Gutiérrez Dulce Montserrat. "Plant Metal Hyperaccumulation in Mexico : Agromining Perspectives." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’agromine concerne la récupération de métaux stratégiques dans les sols métallifères par la culture de plantes hyperaccumulatrices de métaux (et metalloïdes). Le moteur de cette recherche était d'évaluer le potentiel des ressources végétales mexicaines pour le développement de l'agromine. Les principaux objectifs étaient d'identifier et d'étudier quelques espèces de plantes hyperaccumulatrices de métaux au Mexique, et d'évaluer l'agronomie d'une de ces espèces avec des caractéristiques prometteuses pour l’agromine. Nous avons d'abord effectué des explorations dans trois régions ultramafiques riches en nickel (Ni) du centre et du sud du Mexique. Malgré la disponibilité du nickel dans le sol et les conditions climatiques, aucune hyperaccumulation de Ni n'a été trouvée dans ces régions. Une deuxième stratégie basée sur la phylogénie végétale comme outil de prédiction de l'hyperaccumulation des métaux a été suivie. Au total, dix espèces hyperaccumulatrices de métaux ont été identifiées au cours de cette recherche (Rubiaceae et Violaceae) dans des sols riches en Ni influencés par l'activité volcanique, dans le sud-est du Mexique ; la majorité d’entre elles n’était pas identifiée comme hyperaccumulatrices. Nos études ont révélé deux des hypernickelophores les plus puissants détectés jusqu'à présent (>4% wt Ni) et deux nouveaux genres hyperaccumulateurs de nickel (Orthion et Mayanaea). Une attention particulière a été accordée à l'hypernickelophore Blepharidium guatemalense. Le phloème des feuilles, des racines, des tiges et des pétioles de cette plante est très riche en Ni, ce qui suggère un mécanisme de redistribution via le phloème. Différentes pratiques agronomiques ont été testées pour cette plante. La fertilisation inorganique a fortement augmenté l'absorption du Ni sans modifier la croissance ou la biomasse de la plante, tandis que la fertilisation organique a augmenté la biomasse de la plante avec un effet négligeable sur les concentrations de Ni dans les parties aériennes. Une parcelle avec une culture de 5 ans, qui a ensuite été récolté deux fois par an, produit le rendement maximal en Ni de 142 kg ha⁻¹ an⁻¹. Blepharidium guatemalense est un candidat de choix pour l'agromine du Ni en raison de ses caractéristiques appréciables : absorption extrêmement efficace du Ni, production élevée de biomasse, taux de croissance rapide, et facilité de reproduction
Agromining technology involves the recovery of strategic metals from metalliferous soils through the cultivation of metal(loid) hyperaccumulator plants. The impetus of this research was to evaluate the potential of Mexican plant resources for the future development of agromining. The main objectives were then to identify and to study some metal hyperaccumulator plant species in Mexico, and to assess the agronomy of one promising “metal crop” for agromining. We first undertook field explorations in three nickel-rich ultramafic regions of central and southern Mexico. Despite the availability of soil and climatic conditions, no nickel (Ni) hyperaccumulation was found in any of these regions. A second strategy based on plant phylogeny as a prediction tool for metal hyperaccumulation was followed. In total, ten plant metal hyperaccumulator species were identified during this research (Rubiaceae and Violaceae) in Ni-enriched soils influenced by volcanic activity in Southeastern Mexico; most of them were priorly unknown. Our studies revealed two of the strongest hypernickelophores reported so far (>4%wt Ni) and two new Ni hyperaccumulator genera (Orthion and Mayanaea). Special focus was given to the hypernickelophore tree Blepharidium guatemalense. The phloem on leaves, roots, stems and petioles of this plant are the richest in Ni suggesting an unusual re-distribution mechanism via the phloem. Different agronomic practices were tested for this plant. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar Ni concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum Ni yield tree⁻¹ yr⁻¹, with an estimated total nickel yield of 142 kg ha⁻¹ yr⁻¹. Blepharidium guatemalense is a prime candidate for Ni agromining on the account of its valuable traits: extremely efficient Ni uptake, high biomass production, fast growth rate, and easy to reproduce
6

McNear, David H. "The plant soil interface nickel bioavailability and the mechanisms of plant hyperaccumulation /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file [ ] Mb., 234 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3205442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Villegente, Matthieu. "Caractérisation biochimique et moléculaire de mécanismes de la germination d’espèces endémiques de Nouvelle-Calédonie." Thesis, Nouvelle Calédonie, 2013. http://www.theses.fr/2013NCAL0050/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La Nouvelle-Calédonie possède une flore riche, diverse et unique au monde. Sa forte endémicité (74,7%) résulte en partie de l’origine gondwanienne de la flore et de la forte pression de sélection exercée par les sols ultramafiques, riches en éléments traces métalliques, dont le nickel. Si cet élément fait la richesse du pays par son exploitation minière, cette dernière, ainsi que l’anthropisation du territoire engendrent une détérioration des écosystèmes. Dans le cadre de la dynamique mondiale de conservation, de protection et de restauration de la biodiversité, il convient de caractériser au mieux la flore néo-calédonienne foisonnante de plantes uniques. Les graines, innovation des végétaux supérieurs assurant leur dissémination, sont un des points clés du succès de la domination mondiale des plantes supérieures et un outil indispensable à la restauration écologique. Notre étude s’est attachée à caractériser par une approche biochimique la biologie des graines de deux plantes endémiques exceptionnelles, Amborella trichopoda, soeur de toutes les plantes à fleurs et Psychotria gabriellae, une des plantes contenant le plus de nickel dans ses feuilles au monde.La caractérisation protéomique de la graine d’Amborella trichopoda a permis d’obtenir le premier protéome d’un embryon rudimentaire. L’étude de ce cortège protéique a apporté des éléments de réponse aux nombreuses questions que soulèvent les graines à dormance morphologique comme celles d’A. trichopoda. Notamment, nous avons montré que l’embryon rudimentaire a acquis un stade de maturité moléculaire (présence de protéines chaperons, de réserves lipidiques). L’étude phylogénique de ces protéines a permis de conforter la place basale d’A. trichopoda. La caractérisation de l’évolution du protéome au cours de la germination a quant à elle mise en évidence une utilisation massive des protéines de réserve avant la fin de la germination ce qui questionne la définition de la germination sensu stricto pour les espèces à embryon rudimentaire.Une précèdente étude du cortège protéique de P. gabriellae avait révélé la présence de protéines DING notamment impliquées dans l’homéostasie d’éléments minéraux via leur interaction avec des transporteurs de type ABC ou encore en séquestrant elles-mêmes le phosphore. Leur identification fut corrélée avec l’observation d’un gradient de nickel dans la graine visant à protéger l’embryon du caractère toxique de ce dernier. Les données recueillies au cours du présent travail ont permis de confirmer la présence de ces protéines dont l’origine eucaryotique fait cependant débat. Face à cette controverse, nous avons cherché à identifier la présence de bactéries chez la graine mature sèche. Quatre bactéries endophytes de graine ont été identifiées mais aucune ne semble produire de protéines DING. Le rôle de ces protéines dans la physiologie de la graine de P. gabriellae et dans l’adaptation au nickel restent à explorer.Par ailleurs, cette approche protéomique a été complétée par l’obtention des transcrits exprimés au cours de la formation de la graine de Psychotria gabriellae. Cette base de données représente une source de données génomique utile pour approfondir les mécanismes impliqués dans la mise en place de l’hyperaccumulation de nickel chez les plantes, mécanismes qui pourront un jour s’avérer utiles pour répondre à des questions de phytoremédiation
New Caledonia possesses one of the world most rich, diverse and unique flora. Its high endemism (74,7%) is partly due to the gondwanian origin of its flora and to the high speciation induced by the ultramafic soils rich in heavy metals, including nickel. If this element is the source of the country richness, its mining exploitation and human colonization of the land induce ecosystems degradation. The study and comprehension of the new Caledonian flora is essential to be able to preserve, protect and restore its rich biodiversity. Preservation and restoration both depend on seeds. They are the unit of dispersal of higher plants, and responsible of their world domination on flora. We focused our study on the biochemical characterisation of seed biology of two extraordinary species, Amborella trichopoda, the sister to all extant flowering plants and Psychotria gabriellae, one of the world most nickel hyperaccumulating plant.Proteomic characterisation of A. trichopoda seeds was the first study that documented a rudimentary embryo proteome. This approach provides a better understanding of the mechanisms involved in the control of dormancy and germination of seeds with morphological dormancy such as A. trichopoda. The results obtained allow us to highlight the molecular maturity of the rudimentary embryo, as well as confirming the basal position of Amborella trichopoda trough phylogenetic analyses of selected protein families. The characterisation of the protein evolution during germination highlights massive mobilisation of storage proteins before the end of germination sensu stricto, and suggests a new definition of germination for seeds with rudimentary embryo.Previous proteomics characterisation of P. gabriellae seeds revealed a high representation of DING proteins that are known to be involved with ABC type transporters or to bind phosphorus. This observation was associated with an observed gradient of nickel inside the seed presumably to protect the embryo from its toxicity. During this work, we confirmed the presence of this protein family in the seeds, from which the belonging to the eukaryotic kingdom remains a subject of debate. To answer about the origin of these proteins in seed, we tried to determine the presence or not of bacteria in the dry mature seed. Four endophytic bacteria were identified but none of them seems to produce such proteins. However, the physiological signification of these bacteria to account for physiological features of the Psychotria gabriellae seeds and their exceptional tolerance toward nickel toxicity remains to be established.Beside this proteomics approach, we sequenced a large number of transcripts expressed during Psychotria gabriellae seed formation. This database will enrich the very limited genomic data available for this specie. It will allow a better understanding of the mechanisms involved in nickel hyperaccumulation, and may highlight novel tools for phytoremediation
8

Coinchelin, David. "Mécanismes et modélisation de l'accumulation foliaire du nickel par l'hyperaccumulateur Leptoplax emarginata." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL010N/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Des modèles prédictifs de prélèvement d’éléments traces métalliques (ETM) par des plantes hyperaccumulatrices sont à développer pour rendre la phytoextraction opérationnelle. Ce travail a pour objectif de développer, calibrer et valider un modèle biophysique combiné d’accumulation foliaire et de mise en solution du nickel lors de cultures de l’hyperaccumulateur Leptoplax emarginata sur un sol fertilisé et contaminé en Ni. Une partie de ce modèle intègre un facteur de bioconcentration lié à la transpiration (TSCF) qui caractérise le mode de transport principal du Ni à travers la racine et jusqu’aux feuilles, lors d’une cinétique couplée de production de biomasse foliaire et de transpiration. Sur des plantes intactes et transpirantes, nous avons déterminé un TSCFNi supérieur à 1 du fait : (i) d’une grande perméabilité des racines à la fois au nickel et à l’eau et (ii) d’un transport actif du Ni largement prédominant. A l’opposé, le TSCFNi du blé de Printemps, plante exclusive, était inférieur à 0,02, et le coefficient de réflection correspondant proche de 1, ce qui caractérise des racines perméables à l’eau mais quasiment pas au nickel. L’exceptionnelle capacité de L. emarginata à accumuler et à tolérer le nickel dans ses feuilles, et plus précisément dans ses épidermes, serait également attribuable à ses transpiration et production de protéines soufrées très élevées, tout particulièrement au niveau de ses feuilles les plus jeunes. Enfin, après avoir couplé notre modèle biophysique d’accumulation foliaire du nickel au modèle de mise en solution des ETM développé par Ingwersen et al. (2006), nous avons optimisé les paramètres du modèle, notamment les paramètres physico-chimiques, et avons validé notre modèle sur des données cinétiques conjointes de quantités de nickel accumulé dans les feuilles de l’hyperaccumulateur et de concentration en nickel dans la solution du sol. Les perspectives de ce travail sont (i) un approfondissement des relations entre l’accumulation foliaire du nickel (ou d’un autre ETM) par un hyperaccumulateur, la transpiration et la production de protéines soufrées permettant une complexation de l’ETM et (ii) une adaptation du modèle pour le terrain, ce qui nécessite notamment une meilleure utilisation du couplage production de biomasse foliaire/transpiration et une prise en compte des cinétiques d’humectation et de dessiccation du sol (équation de Richards de transport d’eau en conditions non saturées), ce qui conduira à la mise au point d’un modèle 1D (la profondeur du sol) d’accumulation foliaire et de mise en solution d’ETM
To make phytoextraction practically feasible, predictive models of metal uptake by hyperaccumulators need to be developed. The aim of this work was to design, calibrate and validate a biophysical combined model of nickel foliar accumulation and availability in soil solution during cultures of the hyperaccumulator Leptoplax emarginata on a fertilized and Ni-contaminated sandy topsoil. We succeed in this. Part of the model integrates a transpiration bioconcentration factor (TSCF) which characterized the main Ni transport through the root and to the leaves. We determined a TSCF value greater than 1 for L. emarginata, which was attributed to (i) a high root permeability to both Ni and water and (ii) a predominant Ni active transport. By contrast, Spring wheat was characterized by a TCSF value less than 0.02 and a reflection coefficient very near 1, indicating that its roots are permeable to water but quite unpermeable to nickel. The high capacity of L. emarginata to tolerate and accumulate Ni in their leaves should also be attributed to its large transpiration and sulfur accumulation, particularly in their youngest leaves. Perspectives of this work are (i) a detailed study on relations between Ni accumulation, transpiration and production of sulphur proteins and (ii) a field adaptation of the model taken into account water transport in unsaturated conditions, leading to design a combined 1D model of nickel foliar accumulation and availability in soil solution
9

Mackay, Angus. "The role of Iron Regulated 2 and Iron Regulated Transporter 1 in nickel hyperaccumulation traits in Senecio coronatus." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal hyperaccumulating plants accumulate exceptionally high concentrations of metal ions in their above ground tissues and are defined as containing 1000 μg/g dry mass Co, Cu, Cr, Pb, Zn or Ni. This is remarkable because plants typically only require small amounts of these metals for survival, such as 0.004 μg/g Ni and 15-20 μg/g Zn. Scientific investigation has sought to understand the mechanisms underpinning hyperaccumulation in order to apply them in the phyto-technological processes of phytoremediation (removal of metal pollutants from the environment) and phytomining. However, little is known about the molecular mechanisms underlying Ni hyperaccumulation despite the fact that Ni hyperaccumulators account for almost three quarters of all known hyperaccumulating species. A comparative RNA-Seq experiment carried out on Ni accumulating and non-accumulating populations of the South African Ni hyperaccumulator Senecio coronatus (Asteraceae) identified a number of putative transport proteins that are constitutively upregulated in the hyperaccumulator plants. This MSc project focused on two of these, iron regulated 2 (ScIREG2) and iron regulated transporter 1 (ScIRT1), and aimed to validate the RNA-Seq derived nucleotide sequences, test for Ni transport activity and determine their sub-cellular localisation. Full-length ScIREG2 and ScIRT1 protein coding sequences were obtained using RT-PCR and conformed to the predicted sequences derived from the RNA-Seq data. Heterologous expression of ScIRT1 in yeast consistently conferred an increased Ni resistance phenotype to yeast across a variety of experimental conditions, suggesting that this protein is capable of transporting Ni, and may function as a Ni export protein in yeast. In contrast, the results obtained from heterologous expression of ScIREG2 were variable and thus inconclusive. An attempt was made to determine the subcellular localization of ScIRT1 using transient expression of an ScIRT1-YFP fusion protein in onion cells. While inconclusive, a YFP signal was detected in these cells, and appeared to localise to the plasma membrane. The work conducted serves as a pilot study to optimize the experimental systems necessary to identify Ni transporters from S. coronatus. These experimental systems can now be applied to characterise the remaining transport proteins identified in the RNA-Seq analysis.
10

Bettarini, Isabella. "The nickel hyperaccumulating plants of genus Odontarrhena (Brassicaceae): novel insights from molecular, physiological and biochemical analyses." Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1128453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to the high nickel concentrations, serpentine soils provide a very restrictive and selective environment for plant life. Some plants, termed “Ni-hyperaccumulators”, are adapted to live on these heavy-metal-enriched soils without toxicity symptoms. Ni-hyperaccumulators are increasingly important for research on metal tolerance, homeostasis and biotechnological applications. This project aims to investigate nickel accumulation in taxa and populations of Odontarrhena, a genus of tribe Alysseae (Brassicaceae) that includes over 85 species many of which are Ni-hyperaccumulators. Based on a previous systematic study conducted on poorly-known populations of Odontarrhena native to Albania we performed a molecular study to characterize taxa and populations of this genus. To this purpose we used DNA sequencing and the AFLP-fingerprint technique to reconstruct the species phylogenetic relationships and the population differentiation patterns in relation to their distribution, ploidy level, intensity of anthropic site disturbance, altitude, soil type and metal concentration population (Ni, Cr, Co, Ca, Mg). We found significant population differentiation, dominance of within-population variation, no isolation by geographic distance and existence of six genetic groups variously represented across the six taxa possibly due to hybridization especially in disturbed sites. Next, we compared metal concentrations in native Odontarrhena populations from Albania in relation to their soil of origin. We determined the concentration of the most important trace metals (Ni, Co, Cr, Mg, Ca, K, Fe and Mn) in soil, plant roots and shoots of five taxa from 20 different outcrops. We found large differences in mineral element concentrations in soils and also between the plants; shoot Ni concentrations in Albanian Odontarrhena taxa depend on soil Ni concentrations but not on species identity. For O. chalcidica, the most widely distributed species, this “environmental fingerprint” was found not only for Ni, but also for Ca and Mg. After these investigations on native populations from the natural environment, we designed an experimental study in controlled conditions. Plant seedlings of seven taxa and 11 populations of Odontarrhena from serpentine and non-serpentine sites of the Balkan peninsula and Italy were cultivated in hydroponics with increasing NiSO4 concentrations to determine plant growth and Ni accumulation. These plantlets were analyzed to test inter- and intra-specific differences in nickel tolerance and accumulation, in relation to Ni levels in the soils and in wild plants. We found a metal stimulatory effect on growth that was present in the low-dose zone and significantly fitted the Brain-Cousens hormetic model. Taxa showed broad variation in tolerance, with the most tolerant plants requiring the highest Ni concentration for optimal growth. Our data suggested that tolerance is associated with hyperaccumulation ability. Among the obligate and facultative serpentinophytic species of Odontarrhena that have been investigated we found a notable exception, O. sibirica, a facultative serpentinophyte in which accumulation ability was enigmatic from previous studies. We addressed this issue using observational and experimental methods as in our previous researches. We found that Ni-concentrations in the native populations sampled on serpentine soils in Greece were always much lower than the hyperaccumulation threshold. When cultivated together with other Ni-accumulating Odontarrhena species on the same natural ultramafic soil, O. sibirica was the only one unable to accumulate the metal. When grown in hydroponics at different NiSO4 levels Ni-accumulation occurred only at higher concentrations which, however, had a toxic effect. This peculiar combination of Ni-response traits could be the result of a partial evolutionary loss of ability with respect to all other Ni-accumulating congeneric species. For its unique characteristics, O. sibirica could therefore represent a unique model system for further studies on the evolutionary dynamics, physiological mechanisms and genetic control of metal accumulation and homeostasis. In a parallel study, we investigated photosynthesis responses of the same plants using an experimental approach. In non-hyperaccumulator plants, toxicity symptoms to above 10 μg g-1 DW nickel concentrations in soils can include inhibition of photosynthesis, impaired nitrogen assimilation and disturbed enzyme activity. However, there is a complete lack of information about how Ni-hyperaccumulators reconcile that extraordinary amount of metal in their shoots with an efficient photosynthetic activity, or at least on which photosynthetic parameters the excess of Ni impacts less in these plants. We measured Ni effects on growth, root and shoot metal accumulation and several photosynthetic parameters, such as gas exchange, chlorophyll fluorescence analyses and pigments content in three Odontarrhena taxa (two hyperaccumulators, one not) grown in hydroponics and exposed to three NiSO4 treatments. We found that Ni-hyperaccumulators species are photosynthetically more efficient under Ni excess in respect to the non-accumulating species. In fact, Ni treatment in O. chalcidica increased not only the photochemical efficiency of PSII and the CO2 assimilation rate, but also the stomatal conductance. Finally, this project focused on the determination of the activity of the enzyme urease, the only Nimetalloenzyme known so far in plants, in selected Odontarrhena taxa. The hypothesis to test was whether the high basal requirement for this micronutrient in these plants could be linked to a depletion of the Ni cytosolic pool at low external metal concentration, due to hyperaccumulation mechanism and impairing urease activity. To this purpose, enzyme activity and Ni shoot concentration were determined in plants of accumulating and non-accumulating taxa of Odontarrhena cultivated on Ni-rich serpentine soil and on garden soil, as well as in samples of O. bertolonii cultivated in hydroponics at increasing Ni concentrations. Odontarrhena hyperaccumulators showed similar urease activity when grown on both kinds of soils, with no relation between the enzyme activity and the leaf Ni accumulation. Contrarily, clear indications came from the experiment in controlled conditions, where the presence of Ni determined a progressive stimulation, in respect to control samples, of the activity of the enzyme, associated with an increase in shoot metal concentration. A significant relationship was found between the levels of urease activity and the amount of Ni accumulated in the leaves. Therefore, the already known Ni-stimulated growth of O. bertolonii at increasing metal concentrations in the low-dose zone could be explained by a Ni-induced activity of urease, associable to an enhanced nitrogen metabolism, unless other still unknown physiological functions of Ni in hyperaccumulating plants.

Частини книг з теми "Hyperaccumulation de nickel":

1

Laubie, Baptiste, James Vaughan, and Marie-Odile Simonnot. "Processing of Hyperaccumulator Plants to Nickel Products." In Agromining: Farming for Metals, 47–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58904-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guilpain, Mathilde, Baptiste Laubie, and Marie-Odile Simonnot. "Nickel Recovery from Hyperaccumulator Plants Using a Chelating Resin." In The Minerals, Metals & Materials Series, 1961–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goswami, Chandrima, Kaushik Bandyopadhyay, and Arunabha Majumder. "Spirodela Polyrhiza: An Efficient Hyperaccumulator of Nickel at Low Concentration." In Lecture Notes in Civil Engineering, 207–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51350-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mengoni, Alessio, Francesco Pini, and Marco Bazzicalupo. "The Bacterial Flora of the Nickel-Hyperaccumulator Plant Alyssum bertolonii." In Environmental Pollution, 167–81. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1914-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mesjasz-Przybylowicz, J., K. Balkwill, W. J. Przybylowicz, H. J. Annegarn, and D. B. K. Rama. "Similarity of nickel distribution in leaf tissue of two distantly related hyperaccumulating species." In The Biodiversity of African Plants, 331–35. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0285-5_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mengoni, Alessio, Lorenzo Cecchi, and Cristina Gonnelli. "Nickel Hyperaccumulating Plants and Alyssum bertolonii: Model Systems for Studying Biogeochemical Interactions in Serpentine Soils." In Soil Biology, 279–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23327-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ali, Barket. "Physiological role, toxicity, hyperaccumulation, and tolerance of nickel in plants." In Appraisal of Metal ( Loids) in the Ecosystem, 105–34. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85621-8.00001-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferrero, Anthony L., Peter R. Walsh, and Nishanta Rajakaruna. "The ecophysiology, genetics, adaptive significance, and biotechnology of nickel hyperaccumulation in plants." In Physiological and Biotechnological Aspects of Extremophiles, 327–47. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818322-9.00025-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

He, Shanying, Zhenli He, Xiaoe Yang, and Virupax C. Baligar. "Mechanisms of Nickel Uptake and Hyperaccumulation by Plants and Implications for Soil Remediation." In Advances in Agronomy, 117–89. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-394278-4.00003-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salt, David E., N. Kato, U. Krämer, R. D. Smith, and I. Raskin. "The Role of Root Exudates in Nickel Hyperaccumulation and Tolerance in Accumulator and Nonaccumulator Species of Thlaspi." In Phytoremediation of Contaminated Soil and Water, 189–200. CRC Press, 2020. http://dx.doi.org/10.1201/9780367803148-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hyperaccumulation de nickel":

1

Salt, David E. MOLECULAR DISSECTION OF THE CELLULAR MECHANISMS INVOLVED IN NICKEL HYPERACCUMULATION. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/827260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

David E. Salt. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/793637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salt, David E. Molecular Dissection of the Cellular Mechanisms Involved in Nickel Hyperaccumulation in Plants. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/827258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Salt, D. E. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation. 1997 annual progress report. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/13710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Salt, D. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation in plants. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/13711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії