Статті в журналах з теми "Hyper-Crosslinked polymers"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Hyper-Crosslinked polymers.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Hyper-Crosslinked polymers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Rubin Pedrazzo, Alberto, Fabrizio Caldera, Marco Zanetti, Silvia Lucia Appleton, Nilesh Kumar Dahkar, and Francesco Trotta. "Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers." Beilstein Journal of Organic Chemistry 16 (June 29, 2020): 1554–63. http://dx.doi.org/10.3762/bjoc.16.127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cyclodextrin nanosponges (CD-NS) are nanostructured crosslinked polymers made up of cyclodextrins. The reactive hydroxy groups of CDs allow them to act as multifunctional monomers capable of crosslinking to bi- or multifunctional chemicals. The most common NS synthetic pathway consists in dissolving the chosen CD and an appropriate crosslinker in organic polar aprotic liquids (e.g., N,N-dimethylformamide or dimethyl sulfoxide), which affect the final result, especially for potential biomedical applications. This article describes a new, green synthetic pathway through mechanochemistry, in particular via ball milling and using 1,1-carbonyldiimidazole as the crosslinker. The polymer obtained exhibited the same characteristics as a CD-based carbonate NS synthesized in a solvent. Moreover, after the synthesis, the polymer was easily functionalized through the reaction of the nucleophilic carboxylic group with three different organic dyes (fluorescein, methyl red, and rhodamine B) and the still reactive imidazoyl carbonyl group of the NS.
2

Jeon, Hyo Jin, Dong Ok Kim, Jea Sung Park, Jong Sik Kim, Dong Wook Kim, Mi Sun Jung, Seong Whan Shin, and Sang Wook Lee. "Synthesis of Hyper Crosslinked Polymer Particle Having Hydroxyl Group." Polymer Korea 35, no. 1 (January 31, 2011): 66–71. http://dx.doi.org/10.7317/pk.2011.35.1.66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guo, Ziyang, Xiaodong Tian, Yan Song, Tao Yang, Zihui Ma, Xiangjie Gong, and Chao Wang. "Hard Carbons Derived from Phenyl Hyper-Crosslinked Polymers for Lithium-Ion Batteries." Coatings 13, no. 2 (February 13, 2023): 421. http://dx.doi.org/10.3390/coatings13020421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hyper-crosslinked polymers are attracting extensive attention owing to their ease of design and synthesis. Based on the flexibility of its molecular design, a hyper-crosslinked polymer with a π-conjugated structure and its derived carbon were synthesized by the Friedel–Crafts reaction. The polymer and its derived hard carbon material were characterized by FTIR, 13C NMR, Raman, BET, and other characterization tools. The electrochemical properties of both materials as anode electrodes of lithium-ion batteries were investigated. Benefiting from the highly cross-linked skeleton and conjugated structure, the as-prepared carbon materials still had high specific surface area (583 m2 g−1) and porosity (0.378 cm3 g−1) values. The hard carbon (CHCPB) anode possessed the powerful reversible capacity of 699 mAh g−1 at 0.1A g−1, and it had an excellent rate of performance of 165 mAh g−1 at the large current density of 5.0 A g−1. Long-cycle performance for 2000 charge/discharge cycles displayed that the capacity was kept at 148 mAh g−1 under 2 A g−1. This work contributes to a better understanding of the properties of hard carbon materials derived from hyper-crosslinked polymers and how this class of materials can be further exploited in various applications.
4

Nikoshvili, L., A. Bertova, E. Sulman, and L. Kiwi-Minsker. "Hyper-crosslinked Polystyrene as a Support for Development of Hydrogenation Catalysts: Influence of Porosity." Bulletin of Science and Practice 5, no. 12 (December 15, 2019): 47–53. http://dx.doi.org/10.33619/2414-2948/49/05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper is devoted to the prospects for the use of hyper-crosslinked polystyrene as a support for the development of catalysts for selective hydrogenation of alkynols for synthesis of fragrant substances and fat-soluble vitamins E and K. Various types of hyper-crosslinked polystyrene, characterized by different porosity, were used for the synthesis of palladium catalysts by wet-impregnation of polymers with palladium acetate. It was shown that in the case of C5 alkynol, the pore structure of the polymers does not significantly affect the observed catalytic activity, whereas for C10 and C20 alkynols, mesoporous polymers are preferable for use as supports.
5

Jia, Ziyan, Jiannan Pan, Chen Tian, and Daqiang Yuan. "Twisted molecule-based hyper-crosslinked porous polymers for rapid and efficient removal of organic micropollutants from water." RSC Advances 8, no. 64 (2018): 36812–18. http://dx.doi.org/10.1039/c8ra04792h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Быков, Алексей Владимирович, and Галина Николаевна Демиденко. "THERMAL STABILITY AND POROSITY OF HYPER-CROSSLINKED AROMATIC POLYMERS." Вестник Тверского государственного университета. Серия: Химия, no. 2(40) (June 6, 2020): 62–72. http://dx.doi.org/10.26456/vtchem2020.2.8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
В работе методами сопряженной с масс-спектрометрией термогравиметрии, физической адсорбции азота, инфракрасной спектроскопии диффузного отражения и рентгенофотоэлектронной спектроскопии проведено исследование изменений пористости и состава функциональных групп полимера MN270 в температурном диапазоне от 30 до 600С. В ходе исследования показано, что при разогреве ненаполненного металлами полимера его микропористая структура рушится при температурах ниже 300С, в то время как разрушение, связанное с деструкцией и деполимеризацией самой полимерной матрицы, происходит при температурах выше 350С. Thermogravimetry coupled with mass spectrometry, nitrogen physisorption, diffuse reflection infrared spectroscopy, and x-ray photoelectron spectroscopy were used to study changes in the porosity and composition of functional groups of the MN270 polymer in the temperature range from 30 to 600C. The study shows that when an unfilled with metals polymer is heated, its microporous structure collapses at temperatures below 300C, while the destruction associated with the destruction and depolymerization of the polymer matrix occurs at temperatures above 350C.
7

Ramirez-Vidal, Pamela, Fabián Suárez-García, Rafael L. S. Canevesi, Alberto Castro-Muñiz, Philippe Gadonneix, Juan Ignacio Paredes, Alain Celzard, and Vanessa Fierro. "Irreversible deformation of hyper-crosslinked polymers after hydrogen adsorption." Journal of Colloid and Interface Science 605 (January 2022): 513–27. http://dx.doi.org/10.1016/j.jcis.2021.07.104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meng, Bo, Haiying Li, Shannon M. Mahurin, Honglai Liu, and Sheng Dai. "Hyper-crosslinked cyclodextrin porous polymer: an efficient CO2 capturing material with tunable porosity." RSC Advances 6, no. 111 (2016): 110307–11. http://dx.doi.org/10.1039/c6ra18307g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Several cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) were designed and synthesized for selective CO2 adsorption and storage. A feasible way to tailor the porosity of the materials was also established.
9

Li, Haiying, Bo Meng, Shannon M. Mahurin, Song-Hai Chai, Kimberly M. Nelson, David C. Baker, Honglai Liu, and Sheng Dai. "Carbohydrate based hyper-crosslinked organic polymers with –OH functional groups for CO2 separation." Journal of Materials Chemistry A 3, no. 42 (2015): 20913–18. http://dx.doi.org/10.1039/c5ta03213j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A class of novel hyper-crosslinked microporous polymers, based on green and renewable carbohydrates, was synthesized for carbon capture and storage with high CO2/N2 selectivity by hydrogen bonding and dipole–quadrupole interactions.
10

Fayemiwo, Kehinde A., Goran T. Vladisavljević, Seyed Ali Nabavi, Brahim Benyahia, Dawid P. Hanak, Konstantin N. Loponov, and Vasilije Manović. "Nitrogen-rich hyper-crosslinked polymers for low-pressure CO2 capture." Chemical Engineering Journal 334 (February 2018): 2004–13. http://dx.doi.org/10.1016/j.cej.2017.11.106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Setnickova, Katerina, Karel Jerabek, Tomas Strasak, Monika Mullerova, Vera Jandova, Karel Soukup, Roman Petrickovic, Hui-Hsin Tseng, and Petr Uchytil. "Synthesis, Characterization, and Gas Adsorption Performance of Amine-Functionalized Styrene-Based Porous Polymers." Polymers 15, no. 1 (December 20, 2022): 13. http://dx.doi.org/10.3390/polym15010013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, porous materials have been extensively studied by the scientific community owing to their excellent properties and potential use in many different areas, such as gas separation and adsorption. Hyper-crosslinked porous polymers (HCLPs) have gained attention because of their high surface area and porosity, low density, high chemical and thermal stability, and excellent adsorption capabilities in comparison to other porous materials. Herein, we report the synthesis, characterization, and gas (particularly CO2) adsorption performance of a series of novel styrene-based HCLPs. The materials were prepared in two steps. The first step involved radical copolymerization of divinylbenzene (DVB) and 4-vinylbenzyl chloride (VBC), a non-porous gel-type polymer, which was then modified by hyper-crosslinking, generating micropores with a high surface area of more than 700 m2 g−1. In the following step, the polymer was impregnated with various polyamines that reacted with residual alkyl chloride groups on the pore walls. This impregnation substantially improved the CO2/N2 and CO2/CH4 adsorption selectivity.
12

Luo, Yiqian, Yixuan Mei, Yang Xu, and Kun Huang. "Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications." Nanomaterials 13, no. 18 (September 8, 2023): 2514. http://dx.doi.org/10.3390/nano13182514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hyper-crosslinked porous organic nanomaterials, especially the hyper-crosslinked polymers (HCPs), are a unique class of materials that combine the benefits of high surface area, porous structure, and good chemical and thermal stability all rolled into one. A wide range of synthetic methods offer an enormous variety of HCPs with different pore structures and morphologies, which has allowed HCPs to be developed for gas adsorption and separations, chemical adsorption and encapsulation, and heterogeneous catalysis. Here, we present a systematic review of recent approaches to pore size modulation and morphological tailoring of HCPs and their applications to catalysis. We mainly compare the effects of pore size modulation and morphological tailoring on catalytic applications, aiming to pave the way for researchers to develop HCPs with an optimal performance for modern applications.
13

Lang, Mathias, Alexandra Schade, and Stefan Bräse. "Synthesis of three-dimensional porous hyper-crosslinked polymers via thiol–yne reaction." Beilstein Journal of Organic Chemistry 12 (November 29, 2016): 2570–76. http://dx.doi.org/10.3762/bjoc.12.252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Herein we report the syntheses of two porous hyper-crosslinked polymers (HCPs) via thiol–yne reaction with rigid tetrahedral and pseudo-octahedral core structures. Sorption measurements with nitrogen gas at 77 K revealed BET-surface areas up to 650 m²/g. Those networks also showed a high thermal stability as well as insolubility in common organic solvents.
14

Kim, Soobin, and Myungeun Seo. "Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors." Journal of Polymer Science Part A: Polymer Chemistry 56, no. 8 (February 5, 2018): 900–913. http://dx.doi.org/10.1002/pola.28966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wang, Kewei, Liang Huang, Shumaila Razzaque, Shangbin Jin, and Bien Tan. "Fabrication of Hollow Microporous Carbon Spheres from Hyper-Crosslinked Microporous Polymers." Small 12, no. 23 (May 4, 2016): 3134–42. http://dx.doi.org/10.1002/smll.201600256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Gatti, Giorgio, Mina Errahali, Lorenzo Tei, Maurizio Cossi, and Leonardo Marchese. "On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers." Polymers 11, no. 4 (April 1, 2019): 588. http://dx.doi.org/10.3390/polym11040588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume—the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.
17

Pei, Baoyou, Xiaoyan Xiang, Ting Liu, Dongliang Li, Chaoyang Zhao, Rongxing Qiu, Xiaoyan Chen, Jinqing Lin, and Xiaoyan Luo. "Preparation of Chloromethylated Pitch–Based Hyper–Crosslinked Polymers and An Immobilized Acidic Ionic Liquid as A Catalyst for the Synthesis of Biodiesel." Catalysts 9, no. 11 (November 15, 2019): 963. http://dx.doi.org/10.3390/catal9110963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hyper-crosslinking polymers and its immobilized acid ionic liquid catalyst were prepared using cheap pitch, as a monomer, through hyper-crosslinking reactions and allyl chloride, as a chlorine source, for chloromethylation and further grafting with imidazole and functionalizing with sulfonic acid. The polymers were characterized by FE-SEM, FTIR, TG, and nitrogen sorption. The grafting ratios of the chloromethylated pitch-based hyper-crosslinked polymer (HCPpitch–CH2–Cl) and immobilized acid ionic liquid [HCPpitch–Im–Pros][Tos] were 3.5 mmol/g and 3.0 mmol/g, and the BET specific surface areas were 520 m2/g and 380 m2/g, respectively. This strategy provides an easy approach to preparing highly stable and acid functionalized mesoporous catalysts. The immobilized acidic ionic liquid was used as a catalyst for the esterification of oleic acid and methanol to synthesize biodiesel. The results demonstrated that under the optimal conditions of an alcohol to acid molar ratio of 7:1, ionic liquid to oleic acid molar ratio of 0.12, and a reaction time of 3 h at atmospheric pressure, the yield of methyl oleate can reach up to 93%. Moreover, the catalyst was reused five times without the yield decreasing significantly. This study shows that [HCPpitch–Im–Pros][Tos] is a robust catalyst for the synthesis of biodiesel.
18

Tang, Cheng, Wenwen Yang, Zhijuan Zou, Fang Liao, Chunmei Zeng, and Kunpeng Song. "Facile Synthesis Hyper-Crosslinked PdFe Bimetallic Polymer as Highly Active Catalyst for Ullmann Coupling Reaction of Chlorobenzene." Polymers 15, no. 12 (June 20, 2023): 2748. http://dx.doi.org/10.3390/polym15122748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The synthesis of efficient and sustainable heterogeneous Pd-based catalysts has been an active field of research due to their crucial role in carbon–carbon coupling reactions. In this study, we developed a facile and eco-friendly in situ assembly technique to produce a PdFe bimetallic hyper-crosslinked polymer (HCP@Pd/Fe) to use as a highly active and durable catalyst in the Ullmann reaction. The HCP@Pd/Fe catalyst exhibits a hierarchical pore structure, high specific surface area, and uniform distribution of active sites, which promote catalytic activity and stability. Under mild conditions, the HCP@Pd/Fe catalyst is capable of efficiently catalyzing the Ullmann reaction of aryl chlorides in aqueous media. The exceptional catalytic performance of HCP@Pd/Fe is attributed to its robust absorption capability, high dispersion, and strong interaction between Fe and Pd, as confirmed by various material characterizations and control experiments. Furthermore, the coated structure of a hyper-crosslinked polymer enables easy recycling and reuse of the catalyst for at least 10 cycles without any significant loss of activity.
19

An, Wan-Kai, Shi-Jia Zheng, Hui-Xing Zhang, Tian-Tian Shang, He-Rui Wang, Xiao-Jing Xu, Qiu Jin, et al. "s-Tetrazine-functionalized hyper-crosslinked polymers for efficient photocatalytic synthesis of benzimidazoles." Green Chemistry 23, no. 3 (2021): 1292–99. http://dx.doi.org/10.1039/d0gc03719b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Luo, Xiaona, Jialin Shi, Hongyu Zhao, Chuang Ma, Deng Hu, Haijiao Zhang, Qun Shen, Nannan Sun, and Wei Wei. "Biased adsorption of ethane over ethylene on low-cost hyper-crosslinked polymers." Journal of Solid State Chemistry 271 (March 2019): 199–205. http://dx.doi.org/10.1016/j.jssc.2018.12.061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Sadak, Ali Enis. "A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers." Microporous and Mesoporous Materials 311 (February 2021): 110727. http://dx.doi.org/10.1016/j.micromeso.2020.110727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Grätz, Sven, Sebastian Zink, Hanna Kraffczyk, Marcus Rose, and Lars Borchardt. "Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors." Beilstein Journal of Organic Chemistry 15 (May 24, 2019): 1154–61. http://dx.doi.org/10.3762/bjoc.15.112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study elucidates a mechanochemical polymerization reaction towards a hyper-crosslinked polymer as an alternative to conventional solvent-based procedures. The swift and solvent-free Friedel–Crafts alkylation reaction yields a porous polymer with surface areas of up to 1720 m2g−1 and pore volumes of up to 1.55 cm3g−1. The application of LAG (liquid-assisted grinding) revealed a profound impact of the liquid´s boiling point on the textural properties of the obtained polymer materials. Finally, the materials are characterized by vapour sorption experiments with benzene and cyclohexane.
23

Wang, You, Yiwen Cao, Junjiang Zong, Zhe Shu, Qin Xiao, Xiaomei Wang, Fa Zhou, and Jianhan Huang. "Acetamido-functionalized hyper-crosslinked polymers for efficient removal of phenol in aqueous solution." Separation and Purification Technology 287 (April 2022): 120566. http://dx.doi.org/10.1016/j.seppur.2022.120566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Xiong, Gang, Shan Gao, Qian Zhang, Baoyi Ren, Lixin You, Fu Ding, Yongke He, and Yaguang Sun. "High porosity cyclotriphosphazene-based hyper-crosslinked polymers as efficient cationic dye MB adsorbents." Polymer 247 (April 2022): 124787. http://dx.doi.org/10.1016/j.polymer.2022.124787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tian, Ke, Ting-Ting Zhu, Ping Lan, Zheng-Chen Wu, Wei Hu, Fei-Fei Xie, and Lei Li. "Massive Preparation of Coumarone-indene Resin-based Hyper-crosslinked Polymers for Gas Adsorption." Chinese Journal of Polymer Science 36, no. 10 (March 28, 2018): 1168–74. http://dx.doi.org/10.1007/s10118-018-2127-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Chen, Xiaoyi, Xinguo Chen, Yuanjie Fu, Jianqiang Zhang, Shenglong Hu, and Heming Luo. "Preparation and electrochemical characteristics of porous carbon composites originating from hyper-crosslinked polymers." Journal of Energy Storage 73 (December 2023): 108998. http://dx.doi.org/10.1016/j.est.2023.108998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhang, Xuewei, Jean-Christophe Daigle, and Karim Zaghib. "Comprehensive Review of Polymer Architecture for All-Solid-State Lithium Rechargeable Batteries." Materials 13, no. 11 (May 29, 2020): 2488. http://dx.doi.org/10.3390/ma13112488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solid-state batteries are an emerging option for next-generation traction batteries because they are safe and have a high energy density. Accordingly, in polymer research, one of the main goals is to achieve solid polymer electrolytes (SPEs) that could be facilely fabricated into any preferred size of thin films with high ionic conductivity as well as favorable mechanical properties. In particular, in the past two decades, many polymer materials of various structures have been applied to improve the performance of SPEs. In this review, the influences of polymer architecture on the physical and electrochemical properties of an SPE in lithium solid polymer batteries are systematically summarized. The discussion mainly focuses on four principal categories: linear, comb-like, hyper-branched, and crosslinked polymers, which have been widely reported in recent investigations as capable of optimizing the balance between mechanical resistance, ionic conductivity, and electrochemical stability. This paper presents new insights into the design and exploration of novel high-performance SPEs for lithium solid polymer batteries.
28

Chen, Dongyang, Shuai Gu, Yu Fu, Xianbiao Fu, Yindong Zhang, Guipeng Yu, and Chunyue Pan. "Hyper-crosslinked aromatic polymers with improved microporosity for enhanced CO2/N2 and CO2/CH4 selectivity." New Journal of Chemistry 41, no. 14 (2017): 6834–39. http://dx.doi.org/10.1039/c7nj00919d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Shang, Qigao, Yuhao Cheng, Zhenpeng Gong, Ying Yan, Bo Han, Guiying Liao, and Dongsheng Wang. "Constructing novel hyper-crosslinked conjugated polymers through molecular expansion for enhanced gas adsorption performance." Journal of Hazardous Materials 426 (March 2022): 127850. http://dx.doi.org/10.1016/j.jhazmat.2021.127850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Huang, Pu, Guozong Yue, Jiazhou Chen, Jinfan Chen, Xiaojiao Yang, Deshun Huang, and Pengxiang Zhao. "Polyvinyl Alcohol (PVA)-based Hyper-crosslinked Polymers (HCPs) and Their Ultrahigh Iodine Adsorption Capacity." Chemistry Letters 49, no. 10 (October 5, 2020): 1163–66. http://dx.doi.org/10.1246/cl.200245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Tang, Cheng, Zhijuan Zou, Yufang Fu, and Kunpeng Song. "Highly Dispersed DPPF Locked in Knitting Hyper‐Crosslinked Polymers as Efficient and Recyclable Catalyst." ChemistrySelect 3, no. 21 (June 4, 2018): 5987–92. http://dx.doi.org/10.1002/slct.201800610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Liang, Yawei, and Yibing Lu. "Synthesis, Catalysing and Application of Functional Carbon Dioxide-based Polymers." Highlights in Science, Engineering and Technology 6 (July 27, 2022): 202–10. http://dx.doi.org/10.54097/hset.v6i.962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
CO2 has the characteristics of low chemical activity and dynamic stability, and it is difficult to activate. Despite of these difficulties, it has attracted increasing attention to make the most of CO2, which is a potentially renewable resource. CO2-based polymers have superior functions and a wide range of uses. the rational utilization of CO2 can not only alleviate the environmental problems caused by emissions, but also be a vital measure of human energy utilization. Meanwhile, in view of the low chemical activity of carbon dioxide, to achieve the synthesis of CO2-based polymer, the study of catalyst is essential. This paper mainly summarizes the research progress of CO2-based biodegradable plastics and application of different catalysts in the process of synthesis, including using porous hyper crosslinked polymer supported Ionic liquids to catalysis the synthesis of CO2-based biodegradable plastic, which has the most promising development prospect. But realizing the industrialization of the synthesis of biodegradable plastics from carbon dioxide is still in dilemma. In addition, the article also introduces a kind of CO2-based hyperbranched poly prodrug molecule, while the future development prospects of other CO2-based polymers may apply in the biomedical field are also prospected. If CO2-based polymers applied in biomedicine area can be realized, it will be a major milestone in the history of human health study.
33

Wang, You, Yiwen Cao, Xu Zeng, Jianhan Huang, and You-Nian Liu. "Furan- and Thiophene-Modified Hyper-Crosslinked Polymers and Their Adsorption of Phenol from Aqueous Solution." Industrial & Engineering Chemistry Research 60, no. 2 (January 7, 2021): 931–38. http://dx.doi.org/10.1021/acs.iecr.0c04784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Xia, Xiaochen, Peijian Sun, Xuehui Sun, Yipeng Wang, Song Yang, Yunzhen Jia, Bin Peng, and Cong Nie. "Hyper-crosslinked polymers with controlled multiscale porosity for effective removal of benzene from cigarette smoke." e-Polymers 22, no. 1 (December 1, 2021): 19–29. http://dx.doi.org/10.1515/epoly-2022-0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A series of hyper-crosslinked polymers (HCPs) with connected hierarchical porous structures were synthesized from phenyl-based precursors of benzene (BEN), benzyl alcohol, aniline, biphenyl, and 1,3,5-triphenylbenzene (TPB) via the knitting method. The porous structures of the HCPs were greatly influenced by substituent groups and BEN ring number in the precursors. HCPs prepared from TPB had the largest surface area and pore volume with multiscale porosity. The porous structure of the HCPs could also be adjusted by the crosslinker amount. Insufficient crosslinking led to incomplete pore architecture, while excessive crosslinking resulted in a considerable decrease in the pore volume. With these HCPs as adsorbents, the BEN yield in the cigarette smoke could be largely reduced due to the connected multiscale porosity and π–π aromatic stacking interaction that facilitated the smoke aerosol passing and the small aromatic molecules absorbing, showing great potential of these HCPs as adsorbents for effective removal of BEN from cigarette smoke.
35

Fu, Zhenyu, Jizhen Jia, Jing Li, and Changkun Liu. "Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation." Chemical Engineering Journal 323 (September 2017): 557–64. http://dx.doi.org/10.1016/j.cej.2017.04.090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Gao, Hui, Lei Ding, Hua Bai, and Lei Li. "Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption." ChemSusChem 10, no. 3 (January 9, 2017): 618–23. http://dx.doi.org/10.1002/cssc.201601475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhang, Ruina, Guokai Cui, Xiuqin Wang, Yinfeng Chen, Xinjie Qiu, Quanli Ke, Dongshun Deng, Chunliang Ge, Hanfeng Lu, and Sheng Dai. "Ionic liquid-based advanced porous organic hyper-crosslinked polymers (ILHCPs) for CO2 capture and conversion." Chemical Engineering Journal 489 (June 2024): 151102. http://dx.doi.org/10.1016/j.cej.2024.151102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liu, Fenglei, Wenhao Fu, and Shuixia Chen. "Adsorption behavior and kinetics of CO 2 on amine‐functionalized hyper‐crosslinked polymer." Journal of Applied Polymer Science 137, no. 12 (September 11, 2019): 48479. http://dx.doi.org/10.1002/app.48479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yu-feng, Sun, Liu Zong-tang, Fei Zheng-hao, Li Zhen-xing, and Xing Rong. "Adsorption of Phenolic Compounds onto Tannic Acid Modified Hyper-crosslinked Adsorption Resin." Acta Polymerica Sinica 014, no. 1 (April 16, 2014): 107–14. http://dx.doi.org/10.3724/sp.j.1105.2014.13165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Cai, Yang, Xiangyu Wen, Yuwei Wang, Haoran Song, Zhuo Li, Yingna Cui, and Changping Li. "Preparation of hyper-crosslinked polymers with hierarchical porous structure from hyperbranched polymers for adsorption of naphthalene and 1-naphthylamine." Separation and Purification Technology 266 (July 2021): 118542. http://dx.doi.org/10.1016/j.seppur.2021.118542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Cai, Kaixing, Ping Liu, Tianxiang Zhao, Kai Su, Yi Yang, and Duan-Jian Tao. "Construction of hyper-crosslinked ionic polymers with high surface areas for effective CO2 capture and conversion." Microporous and Mesoporous Materials 343 (September 2022): 112135. http://dx.doi.org/10.1016/j.micromeso.2022.112135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gu, Jiarui, Pingping Shao, Lan Luo, Yizhou Wang, Tianxiang Zhao, Chunliang Yang, Peng Chen, and Fei Liu. "Microporous triazine-based ionic hyper-crosslinked polymers for efficient and selective separation of H2S/CH4/N2." Separation and Purification Technology 285 (March 2022): 120377. http://dx.doi.org/10.1016/j.seppur.2021.120377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Jia, Ziyan, Jiannan Pan, and Daqiang Yuan. "High Gas Uptake and Selectivity in Hyper-Crosslinked Porous Polymers Knitted by Various Nitrogen-Containing Linkers." ChemistryOpen 6, no. 4 (June 20, 2017): 554–61. http://dx.doi.org/10.1002/open.201700073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

WANG, Jinnan, Yang ZHOU, Aimin LI, Li XU, and Ling XU. "ADSORPTION OF TANNIC ACID BY HYPER-CROSSLINKED RESIN MODIFIED BY AMINO FUNCTION GROUPS." Acta Polymerica Sinica 010, no. 1 (January 20, 2010): 96–101. http://dx.doi.org/10.3724/sp.j.1105.2010.00096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Salzano de Luna, Martina, Rachele Castaldo, Rosaria Altobelli, Lucia Gioiella, Giovanni Filippone, Gennaro Gentile, and Veronica Ambrogi. "Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal." Carbohydrate Polymers 177 (December 2017): 347–54. http://dx.doi.org/10.1016/j.carbpol.2017.09.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Croce, A., G. Re, C. Bisio, G. Gatti, S. Coluccia, and L. Marchese. "On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers." Research on Chemical Intermediates 47, no. 1 (January 2021): 419–31. http://dx.doi.org/10.1007/s11164-020-04338-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Varyambath, Anuraj, Wen Liang Song, and Il Kim. "CaO-Nanoparticle-Enriched Polydopamine-Coated Hyper-Crosslinked Polymers as Heterogeneous Catalysts for the Transesterification of Vegetable Oils." Journal of Nanoscience and Nanotechnology 19, no. 10 (October 1, 2019): 6341–46. http://dx.doi.org/10.1166/jnn.2019.17037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Qi, Yan, Jing Zhang, Wenchong Shan, Weichunbai Zhang, Jing Sun, Li Zhang, Yushen Jin, and Bing Shao. "Magnetic amino-rich hyper-crosslinked polymers for fat-rich foodstuffs pretreatment in nontargeted analysis of chemical hazards." Food Chemistry 425 (November 2023): 136467. http://dx.doi.org/10.1016/j.foodchem.2023.136467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Liu, Ping, Quanlan Liao, Tianxiang Zhao, Wenjie Xiong, Fei Liu, and Xingbang Hu. "Implantation of guanidine chemical adsorption sites in hyper-crosslinked polymers for effective adsorption and conversion of H2S." Chemical Engineering Journal 487 (May 2024): 150481. http://dx.doi.org/10.1016/j.cej.2024.150481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Mohamed, Mohamed Gamal, Mahmoud M. M. Ahmed, Wei-Ting Du, and Shiao-Wei Kuo. "Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO2 Capture and Supercapacitor." Molecules 26, no. 3 (January 31, 2021): 738. http://dx.doi.org/10.3390/molecules26030738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.

До бібліографії