Статті в журналах з теми "Hydrure de titane"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Hydrure de titane.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-48 статей у журналах для дослідження на тему "Hydrure de titane".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Liu, Dage, Hongxi Zhang, Zhong Wang, and Liancheng Zhao. "Preparation and Characterization of Pb(Zr0.52Ti0.48)O3 Powders and Thin Films by a Sol-gel Route." Journal of Materials Research 15, no. 6 (June 2000): 1336–41. http://dx.doi.org/10.1557/jmr.2000.0194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lead zirconate titanate [Pb(ZrxTi1−x)O3 (PZT)] powders and ferroelectric thin films with a composition near the morphotropic phase boundary [Pb(Zr0.52Ti0.48)O3] were prepared by a modified sol-gel process using zirconium oxynitrate-2-hydrate as the zirconium source and ethylene glycol as solvent. The precursor solution was prepared from lead acetate-3-hydrate, tetrabutyl titanate, and zirconium oxynitrate-2-hydrate. Perovskite PZT powders were obtained after sintering at 450 °C for 2 h. Films rapid-thermally annealed at 650 °C for 1 min formed well-crystallized perovskite.Microstructures of these films indicated the presence of nano-sized grains (∼50 nm). The remnant polarization was 28.5 μC/cm2, and the coercive field was 39.8 kV/cm. Ferroelectric polarization fatigue test of In/PZT/Pt/Ti/SiO2/Si showed a high fatigue resistance up to 3 × 1010 cycles before Pr decreased by 50%.
2

Granhed, Erik Jedvik, Anders Lindman, Carin Eklöf-Österberg, Maths Karlsson, Stewart F. Parker, and Göran Wahnström. "Band vs. polaron: vibrational motion and chemical expansion of hydride ions as signatures for the electronic character in oxyhydride barium titanate." Journal of Materials Chemistry A 7, no. 27 (2019): 16211–21. http://dx.doi.org/10.1039/c9ta00086k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Osegovic, John P., and Michael D. Max. "Compound clathrate hydrate on Titan's surface." Journal of Geophysical Research: Planets 110, E8 (August 2005): n/a. http://dx.doi.org/10.1029/2005je002435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Štengl, Václav, Jiří Henych, Martin Šťastný, and Martin Kormunda. "Fast and Straightforward Synthesis of Luminescent Titanium(IV) Dioxide Quantum Dots." Journal of Nanomaterials 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/3089091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The nucleus of titania was prepared by reaction of solution titanium oxosulphate with hydrazine hydrate. These titania nuclei were used for titania quantum dots synthesis by a simple and fast method. The prepared titanium(IV) dioxide quantum dots were characterized by measurement of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), high-resolution electron microscopy (HRTEM), and selected area electron diffraction (SAED). The optical properties were determined by photoluminescence (PL) spectra. The prepared titanium(IV) dioxide quantum dots have the narrow range of UV excitation (365–400 nm) and also a close range of emission maxima (450–500 nm).
5

Conforto, Egle, Frank A. Müller, Lenka Müller, and Daniel Caillard. "Chemically Pre-Treated and Biomimetically Coated Titanium for Medical Applications: The True Structure Revealed by Transmission Electron Microscopy." Key Engineering Materials 361-363 (November 2007): 637–40. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Scanning (SEM) and cross-sectional transmission (TEM) electron microscopy analyses have been performed to study the transformations induced on the surface of titanium implants by a sequence of chemical treatments having as goal to induce the nucleation and growth of hydroxycarbonated apatite (HCA). In the first step, an acid etching forms a rough titanium hydride layer, which remains unchanged after subsequent treatments. In a second step, soaking in a NaOH solution induces the growth of nanobelt tangles of nanocrystallized, monoclinic sodium titanate. In a third step, soaking in a simulated body fluid transforms sodium titanate into calcium and phosphorus titanate, by ion exchange in the monoclinic structure. Then, HCA grows and embodies the tangled structure. The interfaces between the different layers are shown to be strong enough to prevent from interfacial decohesion. The role of the titanate structure in the nucleation of HCA is finally discussed.
6

Conforto, Egle, Daniel Caillard, Lenka Müller, and Frank Müller. "The Structure and the Evolution of Titanate Nanobelts, Used as Seeds for the Nucleation of Hydroxyapatite at the Surface of Titanium Implants." Solid State Phenomena 172-174 (June 2011): 905–10. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The phase transformations due to a sequence of chemical treatments leading to the nucleation and biomimetic growth of hydroxyl carbonated apatite (HCA) at the surface of titanium implants were studied by scanning and transmission electron microscopy in cross-section. In the first step, an acid etching forms a rough titanium hydride layer which remains unchanged after subsequent treatments. In the second step, soaking in a NaOH solution induces the growth of nanobelt tangles of nanocrystallized, monoclinic sodium titanate. In the third step, soaking in a simulated body fluid transforms sodium titanate into calcium and phosphorus titanate, by ion exchange in the same monoclinic structure. Then HCA, of a hexagonal structure, grows and embodies the tangled structure showing a preferential direction growth along its “c”-axis, perpendicular to the substrate surface. The interfaces between the different layers seem to be strong enough to prevent interfacial decohesion. The role of the titanate phase in the nucleation of HCA is finally discussed.
7

Davies, Ashley Gerard, Christophe Sotin, Mathieu Choukroun, Dennis L. Matson, and Torrence V. Johnson. "Cryolava flow destabilization of crustal methane clathrate hydrate on Titan." Icarus 274 (August 2016): 23–32. http://dx.doi.org/10.1016/j.icarus.2016.02.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Révész, Ádám, Dániel G. Fodor, György Krállics, Tony Spassov, and Marcell Gajdics. "Structural and hydrogen storage characterization of nanocrystalline magnesium synthesized by ECAP and catalyzed by different nanotube additives." REVIEWS ON ADVANCED MATERIALS SCIENCE 60, no. 1 (January 1, 2021): 884–93. http://dx.doi.org/10.1515/rams-2021-0056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Ball-milled nanocrystalline Mg powders catalyzed by TiO2 powder, titanate nanotubes and carbon nanotubes were subjected to intense plastic deformation by equal-channel angular pressing. Microstructural characteristics of these nanocomposites have been investigated by X-ray diffraction. Microstructural parameters, such as the average crystallite size, the average dislocation density and the average dislocation distance have been determined by the modified Williamson–Hall analysis. Complementary hydrogen desorption and absorption experiments were carried out in a Sieverts’ type apparatus. It was found that the Mg-based composite catalyzed by titanate nanotubes exhibits the best overall H-storage performance, reaching 7.1 wt% capacity. The hydrogenation kinetic curves can be fitted by the contracting volume function for all the investigated materials. From the fitted parameters, it is confirmed that the titanate nanotube additive results in far the best kinetic behavior, including the highest hydride front velocity.
9

Mädler, L., W. J. Stark, and S. E. Pratsinis. "Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2." Journal of Materials Research 18, no. 1 (January 2003): 115–20. http://dx.doi.org/10.1557/jmr.2003.0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanostructured gold/titania and gold/silica particles with up to 4 wt% Au were made by a single-step process in a spray flame reactor. Gold(III)-chloride hydrate and titania- or silica-based metalorganic precursors were mixed in a liquid fuel solution, keeping concentrations in the flame and overall combustion enthalpy constant. The powders were characterized by x-ray diffraction, transmission electron microscopy, Brunauer–Emmett–Teller, and ultraviolet–visible analysis. The titania or silica specific surface area and the crystalline structure of titania were not affected by the presence of gold in the flame. Furthermore the size of the gold deposits was independent of the metal oxide support (TiO2 or SiO2) and its specific surface area (100 and 320 m2/g, respectively). The gold nanoparticles were nonagglomerated, spherical, mostly single crystalline, and well dispersed on the metal oxide support. Depending on the Au weight fraction (1, 2, and 4 wt%) the Au nanoparticles' mass mean diameter was 3, 7, and 15 nm, respectively, on both titania and silica. The particles showed surface plasmon absorption bands in the ultraviolet–visible region, which is typical for nano-sized gold. This absorption band was red shifted in the case of the titania support, while no shift occurred with the silica support.
10

Sasaki, T., Y. Komatsu, and Y. Fujiki. "Formation and characterization of layered lithium titanate hydrate." Materials Research Bulletin 22, no. 10 (October 1987): 1321–28. http://dx.doi.org/10.1016/0025-5408(87)90295-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yastrebinsky, R. N., V. I. Pavlenko, A. I. Gorodov, A. A. Karnauhov, N. I. Cherkashina, and A. V. Yastrebinskay. "Effect of electrochemical modification of titanium hydride fraction on oxygen content in surface and deep layers." Materials Research Express 9, no. 1 (January 1, 2022): 016401. http://dx.doi.org/10.1088/2053-1591/ac45bd.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The paper presents a study of the microstructure and oxygen concentration in the surface and deep layers of fractions of unmodified titanium hydride and titanium hydride modified by electrodeposited layers of Ti and Cu at temperatures of 300 °C–900 °C. The composition of the oxide layer and the concentration of titanium and oxygen atoms are estimated. It is shown that an increase in the thickness and compaction of the oxide layer with increasing temperature prevents the penetration of oxygen into the deep layers of the unmodified fraction of titanium hydride. Modification of titanium hydride by electrochemical deposition of metallic titanium at a temperature of 700 °C reduces the oxygen concentration in titanium hydride at a layer depth of 50 μm from 35 wt% to 12.5 wt%. Electrodeposition of coatings based on titanium and copper at 700 °C reduces the oxygen concentration to 9.2 wt%, which may be due to the protective mechanism of the formed copper titanate layer. At 900 °C, in the modification layer based on titanium and copper, due to the eutectoid transformation of the β-phase of titanium, the process of contact melting occurs and a multiphase zone is formed. The oxygen concentration at a layer depth of 50 μm is no more than 12.4 wt%.
12

Basry, Nur Adila Amira, Zuhailawati Hussain, Khairul Anuar Shariff, Ahmad Lutfi Anis, and Widyani Darham. "Surface Modification of Ti-Nb Alloy in Alkaline Solution to Enhance Bioactivity." Key Engineering Materials 965 (November 28, 2023): 51–58. http://dx.doi.org/10.4028/p-qk8stz.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Titanium alloys, especially titanium-niobium alloy have been reported as a potential biomaterial with good biocompatibility and non-toxicity. However, there is a lack of studies in alkaline surface treatment of new beta titanium alloy fabricated by vacuum arc melting (VAM) and powder metallurgy (PM) technique with high addition of niobium percentage. The purpose of this research was to examine the feasibility of surface modification on new beta Ti-40wt% Nb alloy in sodium hydroxide solution in order to form bioactive alkaline titanate layer. The characterization involved in this study is X-ray diffraction analysis (XRD), scanning electron microscope (SEM), microhardness, density measurement and optical microscope (OM). Development of amorphous alkaline titanate layer consisted of titanium hydrate, sodium titanate and oxide mixture of titanium oxide, niobium, niobium oxide were revealed by XRD. SEM shows titanate hydrogel layer form on Ti alloy PM thicker than on Ti alloy VAM. Microhardness and density measurement for Ti alloy VAM is greater than Ti alloy PM. OM shows porous surface on Ti alloy PM compare to VAM. This research suggests that the formation of sodium titanate layer on the surface of Ti-Nb alloy enhance bioactivity with better osteointegration and present higher formation of apatite which is crucial for the desired biomedical implant.
13

Lee, Ju Dong, Hyoung Chan Kim, Young Seok Kim, Yang Do Kim, and Man Sig Lee. "Synthesis of Nanosized TiO2-Ag-SiO2 Sols by Modified Sol-Gel Method and their Application for Methane Hydrate Formation." Solid State Phenomena 124-126 (June 2007): 1059–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanosized TiO2-Ag-SiO2 sols were prepared with modified sol-gel method using reduction agent. The physical properties of the prepared particles were investigated by TEM, XRD and FT-IR. The titanium tetraisopropoxide (TTIP, 98% Aldrich), teraethylorthosilicate (TEOS, 98% Aldrich) and silver nitrate were used as precursors of titania, silica and silver, respectively. Sodium citrate tribasic dihydrate (C6H5Na3.2H2O, Aldrich) was used as a reduction agent. This paper presents the effect of nanosized TiO2-Ag-SiO2 sols on the formation of methane hydrate in a semi-batch vessel. The micrographs of TEM showed that the TiO2-Ag-SiO2 particles possessed a spherical morphology with a narrow size distribution. The crystallite size of particles decreased with an increasing the SiO2 content. In addition, the water solution with 1.0 wt% of TiO2-Ag-SiO2 particles acted as promoter for methane hydrate formation.
14

Rianyoi, Rattiyakorn, R. Potong, Nittaya Jaitanong, and Arnon Chaipanich. "Influence of Curing Age on Microstructure in Barium Titanate – Portland Cement Composites." Key Engineering Materials 484 (July 2011): 222–25. http://dx.doi.org/10.4028/www.scientific.net/kem.484.222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of this study was to find out the influence of curing age on microstructure in barium titanate – Portland cement composites. Barium titanate, BaTiO3 (BT) particles was mixed with Portland Cement (PC) and BT content of 50% by volume to produce the composites. All composites were cured in chamber of 60oC and 98% relative humidity for 1, 2, 3, and 7 days. Thereafter, scanning electron microscope (SEM) was used to examine the interfacial zone between cement and BT ceramics. SEM observation indicated that the BT-PC composite cured for 7 days clearly showed calcium silicate hydrate gel (an essential hydration product of Portland cement) surrounding the BT particles and has lower porosity. In BT-PC composite cured for 1 day, the gel can be seen but of less quantity and has higher porosity which clearly affected the interfacial zone.
15

Chainarong, Siriphan, Sutham Niyomwas, Lek Sikong, and Sorapong Pavasupree. "The Effect of Molar Ratio of TiO2/WO3 Nanocomposites on Visible Light Prepared by Hydrothermal Method." Advanced Materials Research 488-489 (March 2012): 572–77. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The coupled TiO2/WO3 nanocomposites were synthesized by hydrothermal method by using hydrogen titanate and ammonium metatungstate hydrate as the precursors of TiO2 and WO3, respectively. The effects of hydrothermal conditions to prepare hydrogen titanate powders were studied. It was found that the hydrothermal condition at 130 °C for 24h shown the best result. The TiO2/WO3 nanocomposites were carried out as a function of varied molar ratio of TiO2/WO3 for 1:1, 3:1 and 1:3. The coupled TiO2/WO3 nanocomposites are characterized by transmission electron microscopy, UV-vis absorption spectra by UV–VIS spectrometer and photocatalytic activity by degradation of MB solution under visible light. The results show that the absorption spectra of the coupled TiO2/WO3 nanocomposites can be seen in visible light region which higher than pure TiO2 (from hydrothermal method) and P25-Degussa.
16

Fester, A., W. Bensch, and M. Trömel. "Crystal structure of cesium-bis(oxalato)oxo-titanate(IV) hydrate." Inorganica Chimica Acta 193, no. 1 (March 1992): 99–103. http://dx.doi.org/10.1016/s0020-1693(00)83801-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mao, Hui, and Bing Li. "Sol–Gel Synthesis of Porous Li2TiO3 for High-Performance Electrochemical Supercapacitors." Nano 13, no. 03 (March 2018): 1850027. http://dx.doi.org/10.1142/s1793292018500273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal titanates have been considered as one of the most promising materials for supercapacitors because of their excellent properties. In this work, porous lithium titanate (Li2TiO3) nanomaterials were prepared by sol–gel method using lithiumhydroxide hydrate and tetrabutyl titanate as precursors and polystyrene spheres as a template. The Brunauer-Emmett-Teller (BET) result revealed a large specific surface area of the Li2TiO3 nanomaterials. More importantly, the porous Li2TiO3 nanomaterials were examined as the electrode materials of supercapacitors. Such porous Li2TiO3 nanomaterials’ electrode exhibited a specific capacitance of 195[Formula: see text]F[Formula: see text]g[Formula: see text] at a current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text] with a capacity retention of 96.3% after 5000 cycles in 3[Formula: see text]M KOH aqueous electrolyte. These superior results indicate that the porous Li2TiO3 nanomaterials are excellent materials for high-performance energy storage devices.
18

Eklöf-Österberg, Carin, Laura Mazzei, Erik Jedvik Granhed, Göran Wahnström, Reji Nedumkandathil, Ulrich Häussermann, Aleksander Jaworski, et al. "The role of oxygen vacancies on the vibrational motions of hydride ions in the oxyhydride of barium titanate." Journal of Materials Chemistry A 8, no. 13 (2020): 6360–71. http://dx.doi.org/10.1039/c9ta11912d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gao, X. P., Y. Lan, H. Y. Zhu, J. W. Liu, Y. P. Ge, F. Wu, and D. Y. Song. "Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes." Electrochemical and Solid-State Letters 8, no. 1 (2005): A26. http://dx.doi.org/10.1149/1.1833632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Liu, Wei, Yu Wang, Xiaolin Jia, and Baojia Xia. "The Characterization of Lithium Titanate Microspheres Synthesized by a Hydrothermal Method." Journal of Chemistry 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/497654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium titanate microspheres were synthesized by a hydrothermal method. The structure and morphology of samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, respectively. The specific surface area and average pore diameter of samples were studied by N2adsorption-desorption isotherms. The results indicated that amorphous phase changed to lithium titanium oxide hydrate, accompanying mesopores formed between agglomerated primary particles in hydrothermal reaction. After sintering, mesoporous Li4Ti5O12microspheres assembled by nanosized particle were obtained and had a diameter of about 400–700 nm. Then, a possible formation process analogous to the Kirkendall effect was proposed. Moreover, the effect of sintering temperature on the electrochemical properties of Li4Ti5O12microspheres was investigated.
21

Pan, Guo-Hui, Tomokatsu Hayakawa, Masayuki Nogami, Zhendong Hao, Xia Zhang, Xuesong Qu, and Jiahua Zhang. "Zinc titanium glycolate acetate hydrate and its transformation to zinc titanate microrods: synthesis, characterization and photocatalytic properties." RSC Advances 5, no. 108 (2015): 88590–601. http://dx.doi.org/10.1039/c5ra18292a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Heterobimetallic complex microrods of zinc titanium glycolate acetate hydrate tentatively formulated as Zn2Ti3(OCH2CH2O)4(OCH2CH2OH)5(CH3COO)3·2HOCH2CH2OH·H2O were synthesize by homogeneous precipitation.
22

Ciobanu, Vladimir, Veaceslav V. Ursaki, Sebastian Lehmann, Tudor Braniste, Simion Raevschi, Victor V. Zalamai, Eduard V. Monaico, Pascal Colpo, Kornelius Nielsch, and Ion M. Tiginyanu. "Aero-TiO2 Prepared on the Basis of Networks of ZnO Tetrapods." Crystals 12, no. 12 (December 3, 2022): 1753. http://dx.doi.org/10.3390/cryst12121753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, new aeromaterials are proposed on the basis of titania thin films deposited using atomic layer deposition (ALD) on a sacrificial network of ZnO microtetrapods. The technology consists of two technological steps applied after ALD, namely, thermal treatment at different temperatures and etching of the sacrificial template. Two procedures are applied for etching, one of which is wet etching in a citric acid aqua solution, while the other one is etching in a hydride vapor phase epitaxy (HVPE) system with HCl and hydrogen chemicals. The morphology, composition, and crystal structure of the produced aeromaterials are investigated depending on the temperature of annealing and the sequence of the technological steps. The performed photoluminescence analysis suggests that the developed aeromaterials are potential candidates for photocatalytic applications.
23

Kondo, Akira, Takahiro Kozawa, Toshihiro Ishii, Junya Kano, and Makio Naito. "Mechanical Synthesis of Lithium Titanate Hydrate in Liquid Phase Using a Bead Mill." Journal of the Society of Powder Technology, Japan 59, no. 7 (July 10, 2022): 324–30. http://dx.doi.org/10.4164/sptj.59.324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Loveday, J. S., R. J. Nelmes, M. Guthrie, S. A. Belmonte, D. R. Allan, D. D. Klug, J. S. Tse, and Y. P. Handa. "Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane." Nature 410, no. 6829 (April 2001): 661–63. http://dx.doi.org/10.1038/35070513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Xu, Rui, Junrong Li, Ao Tan, Zilong Tang, and Zhongtai Zhang. "Novel lithium titanate hydrate nanotubes with outstanding rate capabilities and long cycle life." Journal of Power Sources 196, no. 4 (February 2011): 2283–88. http://dx.doi.org/10.1016/j.jpowsour.2010.09.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhang, Dong, and Yan Li Zhang. "Solid-Phase Extraction of Hg (II) by a Porous Nano-Barium-Strontium Titanate Microspheres from Blood and Urine Samples." Advanced Materials Research 230-232 (May 2011): 896–99. http://dx.doi.org/10.4028/www.scientific.net/amr.230-232.896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new system for determination of trace mercury based on separation and preconcentration with porous nano-barium-strontium titanate microspheres (PBSTM) prior to its determination by a hydride generation-atomic absorption spectrometry (HG-AAS) was propounded. The optimum experimental parameters for preconcentration of mercury, such as pH of the sample, contact time, sample volume, eluent and interfering ions, have been studied. The result showed that mercury could be quantitatively retained by PBSTM in the pH range of 4-8, the shaking time was 10 min, and the amount adsorbed was 12.2 mg·g-1. The mercury adsorbed on the sorbent could be eluated completely with 2 mol·L-1 HNO3. The detection limit of this method for mercury was 6.3 ng·L-1 with an enrichment factor of 60. The method has been applied for the determination of trace amounts of mercury in whole blood and urine with satisfactory results.
27

Lin, Chi Min, and Shiow Kang Yen. "Promotion of Bioactive and Corrosion Resistance by Electrolytic Piezoelectric Ceramic." Key Engineering Materials 330-332 (February 2007): 95–98. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.95.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biocompatibility of metallic implants and bone in orthopaedic surgery plays an important role in long-term survivor of the prosthetic implant fixation. However, titanium and its alloys do not bond to bone in the early stage of implantation (<6 months). On the other hand, titanium alloy undergoes electrochemical exchange and releases metallic ions in the physiological environment, which is believed to be the cause of implant failure. Cathodic electrolytic deposition is an important method in ceramic processing. In this paper, the nanocrystalline BaTiO3 coating were prepared by electrolytic deposition process. According to the XRD results, we can clearly identified that electrolytic deposition Barium titanate hydrate gel annealed at 350°C for 1 hr will form to BaTiO3, and its grain size about 4.85 nm. From dynamic cyclic polarization tests, we can found that dense BaTiO3 coated effective improved corrosion resistance of Ti substrate than untreated. From immersion tests, we can found that BaTiO3 exhibited excellent bioactive.
28

León-Ríos, Sergio, Rodrigo Espinoza González, Sandra Fuentes, Emigdio Chávez Ángel, Alex Echeverría, Antonio E. Serrano, Cecilia S. Demergasso, and R. Antonio Zárate. "One-Dimensional TiO2-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour onEscherichia coli." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/7213672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have successfully synthesised one-dimensional single crystals of monoclinic phase titanium dioxide nanostructures (TiO2-B), prepared by a hydrothermal process. Morphological characterization was carried out by atomic force and scanning and transmission electron microscopy techniques. In order to study the crystalline structure, samples were calcined at 500°C in an air-filled chamber. X-ray diffraction results indicated that as-prepared samples presented diffraction patterns of hydrate hydrogen titanate and those calcined at 500°C exhibited the TiO2-B and anatase phases, confirmed by Raman spectroscopy. Scanning electron microscopy results showed that the one-dimensional nanostructures had high contrast and uniform widths for those synthesised and calcined, indicating the formation of a phase of monocrystals. Besides, a proof of the antibacterial effect was carried out of the monoclinic phase of TiO2-B onEscherichia colipure cultures, where the viability of the bacterium decreases in presence of TiO2-B nanostructures plus UV illumination. Monocrystals did not change after photocatalytic tests, suggesting a possible application as long-term antibacterial protection.
29

Kimura, Yuki, Takashi Kojima, Mizuki Murofushi, Mana Kato, Kazuya Ujiie, and Naofumi Uekawa. "Preparation of flower-like titania particles from lithium titanate hydrate via acid treatment and hydrothermal crystallization." Journal of the Ceramic Society of Japan 130, no. 3 (March 1, 2022): 294–98. http://dx.doi.org/10.2109/jcersj2.21157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Keilbart, Nathan Daniel, Youngil Song, Yakun Zhu, Kyoung E. Kweon, Jennifer Rodriguez, Roger Qiu, Tae Wook Heo, and Brandon C. Wood. "(Digital Presentation) Multiscale Understanding of Local Structure-Dependent Hydrogen Incorporation in TiO2." ECS Meeting Abstracts MA2022-01, no. 16 (July 7, 2022): 1008. http://dx.doi.org/10.1149/ma2022-01161008mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hydrogen interaction with metal oxides is an important phenomenon that affects all vital areas of industry such as aerospace, transportation, and commercial applications. The metal oxide provides a naturally forming protective layer against dissolution of the underlying metal. It has been reported that hydrogen is still able to percolate through this protective layer traveling all the way to the metal to form a corrosive brittle metal hydride. There have been many studies looking to understand the interaction of hydrogen at the surface but an in depth look at the surface to bulk transition of hydrogen through a metal oxide for all representative phases of an oxide is minimally represented in the literature. For the focus of our study, we employed a multi-scale approach combined with experimental studies to explore the different phases of titania (TiO2) which includes rutile, anatase, and an amorphous phase. A thermodynamic analysis of the stability for hydrogen was considered using density functional theory (DFT) starting at the low energy surface facets to the bulk. For the amorphous phase, the binding energy was analyzed as a function of the hydrogen content and oxygen coordination environment. Temperature programmed desorption (TPD) experiments provided a direct comparison with theory. Additionally, NMR simulations validified the generated amorphous phase which agreed well with experimental data. The material properties computed using DFT were used in combination with experimental results to parameterize a mesoscale model. Several environmental conditions were analyzed consisting of grain size, temperature, and grain boundary properties. Further work investigated crystalline titanium (Ti) in the bulk and at several grain boundaries to elucidate possible initiation stages of hydride formation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
31

Zhang, Dong. "Adsorption and Preconcentration Capabilities of Nano-Barium-Strontium Titanate Powder Coated by Dithizone for Trace Bismuth." Applied Mechanics and Materials 71-78 (July 2011): 3504–7. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.3504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new method for the adsorption and preconcentration of bismuth in urine was described. The methodology combines determined using a hydride generation-atomic absorption spectrometry (HG-AAS) with pre-concentration and separation of the bismuth on the nano-barium-strontium titanate powder coated by dithizone (BST-dithizone). The experimental conditions for the pre-concentration and separation of the bismuth, including pH value of the medium, shaking time, eluent condition and co-existing ions have been investigated. The result showed that the bismuth in urine could be adsorbed on the BST-dithizone. The adsorption percentage was affected by the pH value of medium and shaking time. In the medium of pH 6.0, the adsorption capacity of BST-dithizone to bismuth (III) was 13.4 mg·g-1 when the shaking time was 10 min. The bismuth adsorbed on the BST-dithizone could be completely eluated by 2 mol·L-1 HNO3. The enrichment factor was 100. The detection limit of bismuth (III) was 5.1 ng·L−1.The method has been applied to the pre-concentration and separation of bismuth in the human urine and tap water with satisfied results.
32

Chiu, Hsien-Chieh, Xia Lu, Samir Elouatik, Karim Zaghib, and George P. Demopoulos. "Formation of Lithium Titanate Hydrate Nanosheets: Insight into a Two-Dimension Growth Mechanism by in Situ Raman." Crystal Growth & Design 16, no. 7 (June 24, 2016): 3898–904. http://dx.doi.org/10.1021/acs.cgd.6b00470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wang, Yi-lin, Xiao-bin Li, Qiu-sheng Zhou, Biao Wang, Tian-gui Qi, Gui-hua Liu, Zhi-hong Peng, and Ke-chao Zhou. "Observation of sodium titanate and sodium aluminate silicate hydrate layers on diaspore particles in high-temperature Bayer digestion." Hydrometallurgy 192 (March 2020): 105255. http://dx.doi.org/10.1016/j.hydromet.2020.105255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Makhno, S. M., O. M. Lisova, G. M. Gunya, P. P. Gorbyk та M. T. Kartel. "Synthesis and electrophysical properties of nanostructured composites NіCо/BaTiO3 and NiCo/TiO2". Himia, Fizika ta Tehnologia Poverhni 14, № 2 (30 червня 2023): 173–81. http://dx.doi.org/10.15407/hftp14.02.173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanocomposites containing components with semiconductor, ferroelectric, and ferromagnetic properties have attracted considerable attention of specialists due to the range of possible applications, including catalysis and electrocatalysis, electrode materials for solar and fuel cells, capacitors, electrical and biosensors, anti-corrosion coatings and much more. In recent years, both fundamental and applied interest in this direction of research is due to the possibility of creating a new type of controlled microwave devices and tools. The aim of the work is to develop methods for the synthesis of nanostructured NiCo composites based on BaTiO3 and TiO2, as well as to find the differences and regularities of their physicochemical properties. Two series of samples with different content of NiCo nanoparticles based on titanium oxide (TiO2) and barium titanate (BaTiO3) were obtained. NiCo particles were obtained by the method of chemical precipitation of nickel and cobalt carbonates in equal parts from a hydrazine hydrate solution at the temperature of 350 K. The results of X-ray phase analysis indicate the chemical purity of the obtained samples. The values of ε′, ε″ at a frequency of 9 GHz for the NiCo/BaTiO3 system are twice as high compared to NiCo/TiO2 for the corresponding values of the NiCo content, which is due to the higher values of ε′, ε″ of the initial barium titanate. Electrical conductivity of NiCo/BaTiO3 system changes by six orders of magnitude, which indicates the formation of a continuous percolation cluster of metal particles on the surface of dielectric BaTiO3 particles. The composites are heat-resistant up to 630K, as shown by the method of thermogravimetry and pronounced magnetic properties. The program for calculating frequency dependences of reflection and absorption coefficients in a complex form has been developed. EMF absorption for composites from the radiation frequency and the position of the minima of these characteristics, which agree satisfactorily with the experiment. The obtained composites can be promising components for obtaining composite systems and paints for protection against electromagnetic radiation.
35

Shchipunov, Yury. "Bionanocomposites: Green sustainable materials for the near future." Pure and Applied Chemistry 84, no. 12 (October 22, 2012): 2579–607. http://dx.doi.org/10.1351/pac-con-12-05-04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bionanocomposites are a novel class of nanosized materials. They contain the constituent of biological origin and particles with at least one dimension in the range of 1–100 nm. There are similarities with nanocomposites but also fundamental differences in the methods of preparation, properties, functionalities, biodegradability, biocompatibility, and applications. The article includes two parts. Bionanocomposite definition and classification along with nanoparticles, biomaterials, and methods of their preparation are initially reviewed. Then, novel approaches developed by our team are presented. The first approach concerns the preparation of bionanocomposites from chitosan and nanoparticles. It is based on the regulated charging of polysaccharide by the gradual shift of solution pH. When charges appear, the biomacromolecules come into the electrostatic interactions with negatively charged nanoparticles that cause the jellification of solutions. It is also applied to form films. They have a nacre-like structure from stacked planar nanoparticles separated by aligned biomacromolecules. The second approach deals with the biomimicking mineralization of biopolymers by using a novel silica precursor. Its advantage over the current sol-gel processing is in the compatibility and regulation of processes and structure of generated silica. Another example of the mineralization is presented by titania. Syntheses are performed in anhydrous ethylene glycol. Processes and structure of bionanocomposites are regulated by water that is added in an amount to only hydrate functional groups in the carbohydrate macromolecule.
36

Doan, Huong, Ricardo Sgarbi, Mimoun Aouine, Christophe Geantet, and Marian Chatenet. "The Behavior of Carbon-Coated Nanoparticles in Oxidizing and Reducing Gas Environment in Environment TEM (E-TEM) Mode." ECS Meeting Abstracts MA2022-01, no. 49 (July 7, 2022): 2081. http://dx.doi.org/10.1149/ma2022-01492081mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The idea of a carbon-coated nanoparticles for electrochemical catalysis is not new and was widely used in direct methanol fuel cell (DMFC) [1], since the carbon coating acts as a barrier to prevent severe oxidation, thus protecting the nanoparticles from detrimental and irreversible degradation/corrosion. Recently, this type of catalyst was demonstrated to show excellent durability towards hydrogen oxidation and evolution reactions (HOR and HER), but also oxygen evolution and reduction reactions (OER and ORR), both in acid and (especially) in alkaline environment. For example, in alkaline media, Gao et. al and Doan et. al did show the excellent performance of carbon-coated Ni nanoparticles in both HOR and HER, vs. non-coated Ni; the latter degraded quickly because of severe oxidation/passivation or severe hydride poisoning. [2,3] In this work, we synthesize carbon-coated Pd or Pd-Ni nanoparticles that are supported Vulcan carbon and study their electrochemical response in RDE. Their behavior is compared to non-carbon-coated Pd or Pd-Ni. The two kinds of catalysts materials are also thoroughly evaluated in environmental transmission electron microscopy (E-TEM) mode, using various temperature, either in high vacuum, oxygen, or hydrogen gas; these conditions were applied to mimic the inert or oxidizing/reducing environments witnessed in operating fuel cells and observe the behavior of the nanoparticles in such conditions. The experiments were conducted using a FEI TITAN E-TEM at IRCELYON, and the fast camera in the system provided the video of described experiments. It is shown that the carbon-coated Pd or Pd-Ni nanoparticles have enhanced robustness than their non-coated counterparts. References [1] Lo Vecchio, C.; Aricò, A.S.; Baglio, V. Materials 2018, 11(7), 1193. [2] Gao, Y. et al. ACS Appl. Mater. Interfaces 2020, 12 (28), 31575–31581. [3] Doan, H. et al. J. Electrochem. Soc. 2021 168 084501
37

Suzuki, Shinji, Takahiro Kozawa, Takeshi Murakami, and Makio Naito. "Mechanochemical-hydrothermal synthesis of layered lithium titanate hydrate nanotubes at room temperature and their conversion to Li 4 Ti 5 O 12." Materials Research Bulletin 90 (June 2017): 218–23. http://dx.doi.org/10.1016/j.materresbull.2017.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ali, Nurul Amirah, Muhammad Syarifuddin Yahya, Noratiqah Sazelee, Muhamad Faiz Md Din, and Mohammad Ismail. "Influence of Nanosized CoTiO3 Synthesized via a Solid-State Method on the Hydrogen Storage Behavior of MgH2." Nanomaterials 12, no. 17 (September 1, 2022): 3043. http://dx.doi.org/10.3390/nano12173043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Magnesium hydride (MgH2) has received outstanding attention as a safe and efficient material to store hydrogen because of its 7.6 wt.% hydrogen content and excellent reversibility. Nevertheless, the application of MgH2 is obstructed by its unfavorable thermodynamic stability and sluggish sorption kinetic. To overcome these drawbacks, ball milling MgH2 is vital in reducing the particle size that contribute to the reduction of the decomposition temperature. However, the milling process would become inefficient in reducing particle sizes when equilibrium between cold-welding and fracturing is achieved. Therefore, to further ameliorate the performance of MgH2, nanosized cobalt titanate (CoTiO3) has been synthesized using a solid-state method and was introduced to the MgH2 system. The different weight percentages of CoTiO3 were doped to the MgH2 system, and their catalytic function on the performance of MgH2 was scrutinized in this study. The MgH2 + 10 wt.% CoTiO3 composite presents the most outstanding performance, where the initial decomposition temperature of MgH2 can be downshifted to 275 °C. Moreover, the MgH2 + 10 wt.% CoTiO3 absorbed 6.4 wt.% H2 at low temperature (200 °C) in only 10 min and rapidly releases 2.3 wt.% H2 in the first 10 min, demonstrating a 23-times-faster desorption rate than as-milled MgH2 at 300 °C. The desorption activation energy of the 10 wt.% CoTiO3-doped MgH2 sample was dramatically lowered by 30.4 kJ/mol compared to undoped MgH2. The enhanced performance of the MgH2–CoTiO3 system is believed to be due to the in situ formation of MgTiO3, CoMg2, CoTi2, and MgO during the heating process, which offer a notable impact on the behavior of MgH2.
39

Ali, Nurul Amirah, Muhammad Amirul Nawi Ahmad, Muhammad Syarifuddin Yahya, Noratiqah Sazelee, and Mohammad Ismail. "Improved Dehydrogenation Properties of LiAlH4 by Addition of Nanosized CoTiO3." Nanomaterials 12, no. 21 (November 7, 2022): 3921. http://dx.doi.org/10.3390/nano12213921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Despite the application of lithium aluminium hydride (LiAlH4) being hindered by its sluggish desorption kinetics and unfavourable reversibility, LiAlH4 has received special attention as a promising solid-state hydrogen storage material due to its hydrogen storage capacity (10.5 wt.%). In this work, investigated for the first time was the effect of the nanosized cobalt titanate (CoTiO3) which was synthesised via a solid-state method on the desorption behaviour of LiAlH4. Superior desorption behaviour of LiAlH4 was attained with the presence of a CoTiO3 additive. By means of the addition of 5, 10, 15 and 20 wt.% of CoTiO3, the initial desorption temperature of LiAlH4 for the first stage was reduced to around 115–120 °C and the second desorption stage was reduced to around 144–150 °C, much lower than for undoped LiAlH4. The LiAlH4-CoTiO3 sample also presents outstanding desorption kinetics behaviour, desorbing hydrogen 30–35 times faster than undoped LiAlH4. The LiAlH4-CoTiO3 sample could desorb 3.0–3.5 wt.% H2 in 30 min, while the commercial and milled LiAlH4 desorbs <0.1 wt.% H2. The apparent activation energy of the LiAlH4-CoTiO3 sample based on the Kissinger analysis was decreased to 75.2 and 91.8 kJ/mol for the first and second desorption stage, respectively, lower by 28.0 and 24.9 kJ/mol than undoped LiAlH4. The LiAlH4-CoTiO3 sample presents uniform and smaller particle size distribution compared to undoped LiAlH4, which is irregular in shape with some agglomerations. The experimental results suggest that the CoTiO3 additive promoted notable advancements in the desorption performance of LiAlH4 through the in situ-formed AlTi and amorphous Co or Co-containing active species that were generated during the desorption process.
40

Azeem, Syed Munir, Muahammad Talha Saleem, Muhammad Faizan, Sharjeel Ahmed, and Isna Masood. "Hybrid Effect of TiO2/Reduced Graphene Oxide Based Composite for Photo-Catalytic Water Splitting and Strain Sensing." Key Engineering Materials 778 (September 2018): 144–50. http://dx.doi.org/10.4028/www.scientific.net/kem.778.144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solar Energy is an everlasting source of energy with minimal carbon footprint. However, due to lack of reliability and consistency it needs to be converted into more reliable and effective means that can be used to provide energy on demand. Hydrogen is a promising carrier and is thus an efficient mean of energy to be converted in, stored and transported. A more direct approach towards harnessing Solar Energy is by photo-aided generation of hydrogen via splitting of water using photolysis. Photocatalytic water splitting is therefore a promising method for future energy security. On the other hand strain sensing is a useful technique to measure medium range loads in trusses or tension rods & can easily replace the existing fragile & expensive semiconductor based sensors. This was done by using a composite of TiO2 /Reduced Graphene Oxide (RGO); TiO2 (anatase) was synthesized via sol-gel process and the main precursor was titanium tetrapropoxide (Ttip). Titania (anatase) characterized by XRD and photo spectrometry while Graphene oxide was synthesized via modified Hummer’s Method. The obtained Reduce Graphene Oxide was dispersed using Sodium Dodecyl Benzene (SDB) and Hydrazine Hydrate. A drastic synergetic effect was found by simply mixing RGO with TiO2 Solution. This not only broadened the photoactivity spectrum of TiO2 from UV region to the more available visible light radiation but also exhibit strain sensing properties and considerable tunable gauge factor. The photocatalytic effect of our composite was tested by coating it over Polycarbonate & then analyzing emitted gas bubbles in a UV radiation chamber while strain sensing was done by coating it on an elastic substrate & applying loads against values of resistance which were measured. This study will also include the reduction of recombination and band gap of TiO2 in order to synchronize it with the available Solar Spectrum thus maximizing solar-to-hydrogen efficiency.
41

Goudarzi, Maasume, and Mehran Gholipour Shahraki. "The influence of hydrogen and oxygen vacancy concentrations on diffusion coefficients of oxide and hydride ions in reduced barium titanate oxyhydride using molecular dynamics simulation." Physica B: Condensed Matter 678 (April 2024): 415784. http://dx.doi.org/10.1016/j.physb.2024.415784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lukyanova, Victoria O., and Irina Yu Gots. "Estimation of Diffusion-Kinetic and Thermodynamic Properties of Al‑Sm-H Alloys." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 4 (December 15, 2020): 481–88. http://dx.doi.org/10.17308/kcmf.2020.22/3118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal hydride systems for hydrogen storage are now commercially manufactured and the demand for them is constantly growing. Metal hydrides have the following features: a unique combination of properties of metal-hydrogen systems; extremely high volumetric densities of hydrogen atoms in the metal matrix; a wide range of operating pressures and temperatures; the selectivity of the hydrogen absorption process; significant changes in the physical properties of the metal when it is saturated with hydrogen; their catalytic activity, etc. The purpose of our research was to study the effect of the temperature of cathodic polarisation on the diffusion-kinetic, thermodynamic, and physical properties of Al-Sm-H alloys.In our study we used electrodes of Al-Sm-H alloys obtained electrochemically using cathodic intercalation from a 0.5 M dimethylformamide solution of samarium salicylate at Еcp = –2.9 V (relative to the non-aqueous silver chloride electrode) and the temperature of 25 °С for 1 hour. We used the electromotive force method to determine the thermodynamic properties: Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH). The potentiostatic method was used to calculate the diffusionkinetic properties: intercalation constants, adsorption, switching current density, and the diffusion coefficient. The microstructural analysis allowed us to determine the effect of the temperature on the changes in the surface morphology.The study showed that an increase in the temperature results in an increase in ΔG, ΔS, and ΔH, which means that at higher temperatures the degree of the system disorder increases. Nevertheless, the calculated characteristics comply with the existing literature. References 1. Fateev V. N., Alexeeva O. K., Korobtsev S. V.,Seregina E. A., Fateeva T. V., Grigorev A. S., Aliyev A. Sh.Problems of accumulation and storage of hydrogen.Chemical Problems. 2018;16(4): 453–483. DOI:https://doi.org/10.32737/2221-8688-2018-4-453-483 (InRuss., abstract in Eng.)2. Kaur M., Pal K. Review on hydrogen storagematerials and methods from an electrochemical viewpoint.Journal of Energy Storage. 2019;23: 234–249.DOI: https://doi.org/10.1016/j.est.2019.03.0203. Kumar D., Muthukumar K. An overview on activationof aluminium-water reaction for enhancedhydrogen production. Journal of Alloys and Compounds.2020;835: 155189. DOI: https://doi.org/10.1016/j.jallcom.2020.1551894. Litvinov V., Okseniuk I., Shevchenko D., BobkovV. SIMS study of the surface of lanthanum-basedalloys. Ukrainian Journal of Physics. 2018;62(10): 845.DOI: https://doi.org/10.15407/ujpe62.10.08455. Schneemann A., White J. L., Kang S., Jeong S.,Wan L. F., Cho E. S., Heo T. W., Prendergast D., UrbanJ. J., Wood B. C., Allendorf M. D., Stavila V. Nanostructuredmetal hydrides for hydrogen storage. ChemicalReviews. 2018;118(22): 10775–10839. DOI: https://doi.org/10.1021/acs.chemrev.8b003136. Wang Y., Chen X., Zhang H., Xia G., Sun D., Yu X.Heterostructures built in metal hydrides for advancedhydrogen storage reversibility. Advanced Materials.2020;32(31): 2002647. DOI: https://doi.org/10.1002/adma.2020026477. von Colbe J. B., Ares J. R., Barale J., Baricco M.,Buckley C., Capurso G., Gallandate N., Grant D. M.,Guzik M. N.; Jacob I., Jensen E. H., Jensen T., Jepsen J.,Klassen T., Lototskyy M. V., Manickam K., Montone A.,Puszkiel J., Sartori S., Sheppard D. A., Stuart A., WalkerG., Webb C. J.,Yang H.,Yartys V., Züttel A., DornheimM. Application of hydrides in hydrogen storageand compression: Achievements, outlook and perspectives.International Journal of Hydrogen Energy.2019;44(15): 7780–7808. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.1048. Milanese C., Jensen T. R., Hauback B. C., PistiddaC., Dornheim M., Yang H., Lombardo L., Zuettel A.,Filinchuk Y., Ngene P., de Jongh P. E., Buckley C. E.,Dematteis E. M., Baricco M. Complex hydrides forenergy storage. International Journal of Hydrogen Energy.2019;44(15): 7860–7874. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.2089. Abe J. O., Popoola A. P. I., Ajenifuja E., PopoolaO. M. Hydrogen energy, economy and storage: reviewand recommendation. International Journal of HydrogenEnergy. 2019;44(29): 15072–15086. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.06810. He T., Cao H., Chen P. Complex hydrides forenergy storage, conversion, and utilization. AdvancedMaterials. 2019;31(50): 1902757. DOI: https://doi.org/10.1002/adma.20190275711. Luo Y., Wang Q., Li J., Xu F., Sun L., Zou Y.,Chua H., Li B., Zhang K. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. MaterialsToday Nano. 2020;9: 100071. DOI: https://doi.org/10.1016/j.mtnano.2019.10007112. Gambini M., Stilo T., Vellini M. Hydrogen storagesystems for fuel cells: Comparison between highand low-temperature metal hydrides. InternationalJournal of Hydrogen Energy. 2019;44(29): 15118–15134.DOI: https://doi.org/10.1016/j.ijhydene.2019.04.08313. Kim, K. C. A review on design strategies formetal hydrides with enhanced reaction thermodynamicsfor hydrogen storage applications. InternationalJournal of Energy Research. 2018;42(4): 1455–1468.DOI: https://doi.org/10.1002/er.391914. Oliveira A. C., Pavão A. C. Theoretical study ofhydrogen storage in metal hydrides. Journal of MolecularModelling. 2018;24(6): 127. DOI: https://doi.org/10.1007/s00894-018-3661-415. Møller K. T., Sheppard D., Ravnsbæk D. B.,Buckley C. E., Akiba E., Li H. W., Jensen T. R. Complexmetal hydrides for hydrogen, thermal and electrochemicalenergy storage. Energies. 2017;10(10): 1645.DOI: https://doi.org/10.3390/en1010164516. Huot J., Cuevas F., Deledda S., Edalati K., FilinchukY., Grosdidier T., Hauback B.C., Heere M., JensenT. R., Latroch M., Sartori S. Mechanochemistry ofmetal hydrides: Recent advances. Materials.2019;12(17): 2778. DOI: https://doi.org/10.3390/ma1217277817. Tarasov B. P., Fursikov P. V., Volodin A. A., BocharnikovM. S., Shimkus Y. Y., Kashin A. M., YartyscV. A., Chidzivad S., Pasupathid S., Lotot skyy M. V. Metal hydride hydrogen storage and compressionsystems for energy storage technologies. InternationalJournal of Hydrogen Energy. 2020. DOI:https://doi.org/10.1016/j.ijhydene.2020.07.08518. Zhao H., Xia J., Yin D., Luo M., Yan C., Du Y.Rare earth incorporated electrode materials for advancedenergy storage. Coordination Chemistry Reviews.2019;390: 32–49. DOI: https://doi.org/10.1016/j.ccr.2019.03.01119. Guzik M. N., Mohtadi R., Sartori S. Lightweightcomplex metal hydrides for Li-, Na-, and Mg-basedbatteries. Journal of Materials Research. 2019;34(6):877–904. DOI: https://doi.org/10.1557/jmr.2019.8220. Edward P. P., Kuznetsov V. L., David W. I. F.(2007). Hydrogen energy. Philosophical Transactions ofthe Royal Society A: Mathematical, Physical and EngineeringSciences. 2007;365(1853): 1043–1056. DOI:https://doi.org/10.1098/rsta.2006.196521. Weidenthaler C. Crystal structure evolution ofcomplex metal aluminum hydrides upon hydrogenrelease. Journal of Energy Chemistry. 2020;42: 133–143.DOI: https://doi.org/10.1016/j.jechem.2019.05.02622. Kunkel N., Wylezich T. Recent advances in rareearth-doped hydrides. Zeitschrift für Anorganische undAllgemeine Chemie. 2019;645(3): 137–145. DOI:https://doi.org/10.1002/zaac.20180040823. Milanese C., Garroni S., Gennari F., Marini A.,Klassen T., Dornheim M., Pistidda, C. Solid state hydrogenstorage in alanates and alanate-based compounds:A review. Metals. 2018;8(8): 567. DOI: https://doi.org/10.3390/met808056724. Gots I. Y., Lukyanova V. O. Influence of theintroducing rare-earth metal on the strength of thealuminum electrodes. Perspektivnye Materialy. 2020;2:39–47. DOI: https://doi.org/10.30791/1028-978x-2020-2-39-4725. Krapivnyj N. G. Opredelenie kineticheskihparametrov stadii proniknovenija vodoroda v metallynestacionarnym jelektrohimicheskim metodom[Determination of the kinetic parameters of the stageof hydrogen penetration into metals by a nonstationaryelectrochemical method] Electrochemistry. 1981;17(5):672–677. (In Russ.)26. Krapivnyj N. G. Primenenie jelektrohimicheskojjekstrakcii dlja izuchenija navodorozhivanie metallov[Application of electrochemical extraction to the studyof the hydrogenation of metals]. Electrochemistry,1982;18 (9): 1174–1178. (In Russ.)27. Pridatko K. I., Churikov A. V., Volgin M. A.Determination of lithium diffusion rate by pulsepotentiostatic method. Electrochemical Energetics.2003;3(4): 184–191. (In Russ., abstract in Eng.)Available at: https://energetica.sgu.ru/ru/articles/opredelenie-skorosti-diffuzii-litiya-impulsnympotenciostaticheskim-metodom28. Ol’shanskaja L. N., Terina E. M., Nichvolodin A. G.Thermodynamic characteristics of lithium intercalationin С8СrO3 electrode modified by addition ofgraphitizated soot. Electrochemical Energetics.2001;1(4): 49–53. (In Russ., abstract in Eng.) Availablea t : https://energetica.sgu.ru/ru/articles/termodinamicheskie-harakteristiki-interkalatovlitiya-v-s8cro3-elektrode-modificirovannom29. Patrikeev Yu.B., Filand Yu.M. Splavy-nakopitelivodoroda na osnove RZJe dlja jenergopreobrazujushhihustrojstv [Hydrogen-storage alloys for energyconversion devices]. Alternativnaya Energetika iEkologiya = Alternative Energy and Ecology. 2006;7: 32.(in Russ.) Available at: https://elibrary.ru/item.asp?id=942837230. Golovin P. V., Medvedeva N. A., Skrjabina N. E.Katodnoe povedenie splavov na osnove titana v reakciivydelenija vodoroda [Cathodic behavior of titaniumbasedalloys in the hydrogen evolution reaction].Bulletin of the Technological University. 2012;15(17):58–61. (In Russ.) Available at: https://elibrary.ru/item.asp?id=18125773
43

Niesen, T. P., J. Wolff, J. Bill, M. R. De Guire, and F. Aldinger. "Synthesis and Characterization of Titania and Vanadia Thin Films at Organic Self-Assembled Monolayers." MRS Proceedings 576 (1999). http://dx.doi.org/10.1557/proc-576-197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTFunctionalized self-assembled monolayers (SAMs) on single-crystal Si wafers have been used as substrates for the deposition of titania and vanadia thin films. The formation of a titanium chelate was used to stabilize an otherwise spontaneously precipitating aqueous titanium solution. Uniform titania films have been synthesized from Ti(O2)2+ in aqueous HCl solutions at 80°C on sulfonated SAMs. Vanadium oxide hydrate films, V2O5·0.7 H2O, have been directly formed from aqueous vanadate solutions on NH2-terminated SAMs at 45°C. In the as-deposited films, water molecules were intercalated between the vanadium oxide layers. Subsequent annealing at 350°C in air led to nanocrystalline V2O5.
44

Zhou, Jing, Yongzhu Fu, and Tengfei Zhang. "A Cost‐Effective Production Route of Li4Ti5O12 Resisting Unsettled Market and Subsequent Application in the Li‐Ion Capacitor." Small Structures, January 18, 2024. http://dx.doi.org/10.1002/sstr.202300377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Outstanding materials and novel device structures are key factors in satisfying the increasing demand for energy storage. Li‐ion capacitors, as one typical model of asymmetric supercapacitors, benefit from the battery's ultrahigh specific energy and supercapacitor's superlarge specific power to meet the balanced electrochemical energy storage requirements. The inherent and irreplaceable advantages make spinel lithium titanate an optimal candidate for power batteries and Li‐ion capacitors. However, upstream market volatility, including price spikes and supply shortages, tremendously threatens spinel lithium titanate's production, sale, and application. Lithium hydroxide hydrate is an alternative raw material to synthesize spinel lithium titanate synthesis, which can help address these concerns. The indirect production path generates high‐quality lithium carbonate as an intermediate product. Spinel lithium titanate is synthesized preferably via another economically and technically more efficient method that skips the isolation step after carboxylation. The electrochemical performance of the resulting spinel lithium titanate is evaluated to be better than that of commercial competitors. The spinel lithium titanate negative electrode‐based lithium‐ion capacitor achieves a specific energy of 89.5 Wh kg−1. These results demonstrate the success of efforts to find a feasible and affordable synthesis route to mitigate market risks.
45

Vu, T. H., M. Choukroun, C. Sotin, V. Muñoz‐Iglesias, and H. E. Maynard‐Casely. "Rapid Formation of Clathrate Hydrate From Liquid Ethane and Water Ice on Titan." Geophysical Research Letters 47, no. 4 (February 11, 2020). http://dx.doi.org/10.1029/2019gl086265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kots, Pavel A., Tianjun Xie, Brandon C. Vance, Caitlin M. Quinn, Matheus Dorneles de Mello, J. Anibal Boscoboinik, Cong Wang, et al. "Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts." Nature Communications 13, no. 1 (September 3, 2022). http://dx.doi.org/10.1038/s41467-022-32934-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractRuthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2 activation occurs heterolytically, leading to a hydride on Ru, an H+ on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2 and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.
47

Journaux, Baptiste, Anna Pakhomova, Ines E. Collings, Sylvain Petitgirard, Tiziana Boffa Ballaran, J. Michael Brown, Steven D. Vance, et al. "On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions." Proceedings of the National Academy of Sciences 120, no. 9 (February 21, 2023). http://dx.doi.org/10.1073/pnas.2217125120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three “hyperhydrated” sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H 2 O (SC8.5); NaCl·13H 2 O (SC13)]. We found that the dissociation of Na + and Cl − ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H 2 O–NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.
48

Kovalenko, Liliya Yu, Vladimir A. Burmistrov та Dmitrii A. Zakhar’evich,. "Состав и структура фаз, образующихся при термолизе твердых растворов замещения H2Sb2-xVxO6·nH2O". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, № 1 (17 березня 2020). http://dx.doi.org/10.17308/kcmf.2020.22/2507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
В соединениях, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m) общей формулы А2В2X6X’, на месте катионов A могут находиться двух- или трёхзарядные ионы, на месте B – четырёх- или пятизарядные ионы. В большом количестве работ рассматриваются вопросы формирования таких структур в зависимости от природы и размеров катионов A и B, мало внимания уделяется определению температурных интервалов их устойчивости. Поэтому целью данной работы являлось исследование термолиза твердых растворов замещения H2Sb2–xVxO6·nH2Oв интервале температур 25–700 °С, определение влияния природы катиона B (Sb, V) на устойчивость структуры типа пирохлора при нагревании.Твердые растворы замещения были получены методом соосаждения. В качестве объектов исследования выбраны образцы H2Sb2–xVxO6·nH2O, содержащие по данным элементного анализа 0; 5 (x = 0.10); 15 (x = 0.30); 20 (x = 0.40); 24 (x = 0.48) ат.% ванадия. С помощью метода ИК-спектроскопии анализировали изменение протонгидратной подрешетки в образцах, содержащих различное количество V+5. Рентгенофазовый и термогравиметрический анализ образцов позволил смоделировать процесс термолиза и определить состав фаз на каждой стадии.Показано, что при температурах 25–400 °С происходит удаление протонсодержащих группировок из гексагональных каналов структуры типа пирохлора. Увеличение количества ионов V+5 в твердых растворах изменяет энергию связи протонов с ионами кислорода [BO3]–-октаэдра, что приводит к смещению границ стадий: ионы оксония и молекулы воды удаляются при более высоких температурах, а гидроксид-ионы при более низких температурах. Повышениетемпературы выше 500 °С приводит к разрушению структуры по причине удаления кислорода из [BO3]–-октаэдров.Предложена модель заполнения атомами кристаллографических позиций структуры типа пирохлора для фаз, которые образуются при термолизе H2Sb2–xVxO6·nH2O при температурах 25–400 °С.Установлены структурные формулы твердых растворов - (H3O)Sb2-xVxO5(OH)·nH2O, где 0 < x≤ 0.48, 0 <n≤ 1.1. Показано, что на температурные интервалы стадий термолиза влияет энергия связи протонов с ионами кислорода [BO3]–-октаэдров, где B = V, Sb, формирующих каркас структуры. При этом в рамках структуры типа пирохлора исследуемые твердые растворы устойчивы до 400 °С. ЛИТЕРАТУРА Subramanian M. A., Aravamudan G., Rao G. V. S. Oxide pyrochlores — A review. Progress in Solid State Chemistry. 1983;15(2): 55–143. DOI: https://doi.org/10.1016/0079-6786(83)90001-8 Krasnov A. G., Piir I. V., Koroleva M. S., Sekushin N. A., Ryabkov Y. I., Piskaykina M. M., Sadykov V. A., Sadovskaya E. M., Pelipenko V. V., Eremeev N. F. The conductivity and ionic transport of doped bismuth titanate pyrochlore Bi1.6МxTi2O7–d (М– Mg, Sc, Cu). Solid State Ionics. 2017;302: 118–125. DOI: https://doi.org/10.1016/j.ssi.2016.12.019 Cherednichenko L. A., Moroz Ya. A. Catalytic properties of heteropolytungstates with 3d elementsand their thermolysis products. Kinetics and Catalysis. 2018;59(5): 572–577. DOI: https://doi.org/10.1134/S0023158418050038 Krasnov A. G., Kabanov A. A., Kabanova N. A., Piir I. V., Shein I. R. Ab initio modeling of oxygen ionmigration in non-stoichiometric bismuth titanate pyrochlore Bi1.5Ti2O6.25. Solid State Ionics. 2019;335: 135–141. DOI: https://doi.org/10.1016/j.ssi.2019.02.023 Farlenkov A. S., Khodimchuk A. V., Eremin V. A., Tropin E. S., Fetisov A. V., Shevyrev N. A., Leonidov I. I., Ananyev M. V. Oxygen isotope exchange in doped lanthanum zirconates. Journal of Solid State Chemistry. 2018;268: 45–54. DOI: https://doi.org/10.1016/j.jssc.2018.08.022 Rejith R. S., Thomas J. K., Solomon S. Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ionics. 2018;323: 112–122. DOI: https://doi.org/10.1016/j.ssi.2018.05.025 Егорышева А. В., Эллерт О. Г., Гайтко О. М., Берсенева А. А., Максимов Ю. В., Дудкина Т. Д. Магнитные свойства твердых растворов со структурой типа пирохлора Pr2-xFe1+xSbO7, Bi2–xLnxFeSbO7 (Ln = La, Pr). Неорганические материалы. 2016;52(10): 1106–1115. DOI: https://doi.org/10.7868/S0002337X16100079 Rau J. G., Gingras M. J. P. Frustrated quantum rare-earth pyrochlores. Annual Review of Condensed Matter Physics. 2019;10(1): 357-386. DOI: https://doi.org/10.1146/annurev-conmatphys-022317-110520 Ломанова Н. А., Томкович М. В., Соколов В. В., Уголков В. Л. Формирование и термическое поведение нанокристаллического Bi2Ti2O7. Журнал общей химии. 2018;88(12): 1937–1942. DOI: https://doi.org/10.1134/S0044460X18120016 Liu X., Huang L., Wu X., Wang Z., Dong G., Wang C., Liu Y., Wang L. Bi2Zr2O7 nanoparticles synthesized by soft-templated sol-gel methods for visiblelight-driven catalytic degradation of tetracycline. Chemosphere. 2018;210: 424–432. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.040 Weller M. T., Hughes R. W., Rooke J., Knee Ch. S., Reading J. The pyrochlore family – a potential panacea for the frustrated perovskite chemist. Dalton Transactions. 2004;19: 3032–3041. DOI: https://doi.org/10.1039/B401787K Knop O., Brisse F., Meads R. E., Brainbridge J. Pyrochlores. IV. Crystallographic and mossbauer studies of A2FeSbO7 pyrochlores. Canadian Journal of Chemistry. 1968;46: 3829–3832. DOI: https://doi.org/10.1139/v68-635 Sadykov V. A., Koroleva M. S., Piir I. V., Chezhina N. V., Korolev D. A., Skriabin P. I., Krasnov A. V., Sadovskaya E. M., Eremeev N. F., Nekipelov S. V., Sivkov V. N. Structural and transport properties of doped bismuth titanates and niobates. Solid State Ionics. 2018;315: 33–39. DOI: https://doi.org/10.1016/j.ssi.2017.12.008 Егорышева А. В., Попова Е. Ф., Тюрин А. В., Хорошилов А. В., Гайтко О. М., Светогоров Р. Д. Сложные танталаты РЗЭ с пирохлороподобной структурой: синтез, структура и термические свойства. Журнал неорганической химии. 2019;64(11):1154–1165. DOI: https://doi.org/10.1134/S0044457X19110059 McCauley R. A. Structural characteristics of pyrochlore formation. Journal of Applied Physics. 1980;51(1): 290–294. DOI: https://doi.org/10.1063/1.327368 Лупицкая Ю. А., Бурмистров В. А. Фазообразование в системе K2CO3–Sb2O3–WO3 при нагревании. Журнал неорганической химии. 2011; 56 (2): 329–331. Режим доступа: https://www.elibrary.ru/download/elibrary_15599328_91286141.pdf Piir I. V., Koroleva M. S., Korolev D. A., Chezina N. V., Semenov V. G., Panchuk V. V. Bismuth iron titanate pyrochlores: Thermostability, structure and properties. Journal of Solid State Chemistry. 2013;204: 245–250. DOI: https://doi.org/10.1016/j.jssc.2013.05.031 Лупицкая Ю. А., Калганов Д. А., Клюева М. В. Образование cоединений в системе Ag2O-Sb2O3-MoO3 при нагревании. Неорганические материалы. 2018;54(3): 252–256. DOI: https://doi.org/10.7868/S0002337X18030053 Lomakin M. S., Proskurina O. V., Danilovich D. P., Panchuk V. V., Semenov V. G., Gusarov V. V. Hydrothermal synthesis, phase formation and crystal chemistry of the pyrochlore/Bi2WO6 and pyrochlore/a-Fe2O3 composites in the Bi2O3–Fe2O3–WO3 system. Journal of Solid State Chemistry. 2019. DOI: https://doi.org/10.1016/j.jssc.2019.121064 Yang J., Han Y., Shahid M., Pan W., Zhao M., Wu W., Wan C. A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7. Scripta Materialia. 2018;149: 49–52. DOI: https://doi.org/10.1016/j.scriptamat.2018.02.005 Коваленко Л. Ю., Бурмистров В. А., Лупицкая Ю. А., Ковалев И. Н., Галимов Д. М. Синтез твёрдых растворов H2Sb2–xVxO6·nH2O со структурой типа пирохлора. Бутлеровские сообщения. 2018;55(8): 24–30. ROI: jbc-01/jbc-01/18-55-8-24 Коваленко Л. Ю., Бурмистров В. А. Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия. Конденсированные среды и межфазные границы. 2019;21(2): 204–214. DOI: https://doi.org/10.17308/kcmf.2019.21/758 Трофимов В. Г., Шейнкман А. И., Клещев Г. В. О пятиокиси сурьмы в кристаллическом состоянии. Журнал структурной химии. 1973;14(2): 275–279. Коваленко Л. Ю., Ярошенко Ф. А., Бурмистров В. А., Исаева Т. Н., Галимов Д. М. Термолизгидрата пентаоксида сурьмы. Неорганические материалы. 2019;55(6): 628–634. DOI: https://doi.org/10.1134/S0002337X19060083 Chen J., Chen Z., Zhang X., Li X., Yu L., Li. D. Antimony oxide hydrate (Sb2O5·3H2O) as a simple and high effi cient photocatalyst for oxidation of benzene. Applied Catalysis B: Environmental. 2018;210: 379–385. DOI: https://doi.org/10.1016/j.apcatb.2017.04.004 Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Yaroshenko F. A., Filonenko E. M., Bulaeva E. A. Ion exchange of H+/Na+ in polyantimonic acid, doped with vanadium ions. Pure and Applied Chemistry. 2019. DOI: https://doi.org/10.1515/pac-2019-0112 Юхневич Г. В. Успехи в применении ИК-спектроскопии для характеристики ОН-связей. Успехи химии. 1963;32(11): 1397–1423. DOI: https://doi.org/10.1070/RC1963v032n11ABEH001370 Тарасова Н. А., Анимица И. Е. Влияние природы галогена на локальную структуру и интеркалацию воды в оксигалогенидах Ba2InO3X (X = F, Cl, Br). Оптика и спектроскопия. 2018;124(2): 167–170. DOI: https://doi.org/10.21883/OS.2018.02.45518.171-17 Дерягин Б. В., Чураев Н. В., Овчаренко Ф. Д., Тарасевич Ю. И., Букин В. А., Сарвазян А. П., Харакоз Д. П., Саушкин В. В. Вода в дисперсных системах. М.: Химия; 1989. 288 с. Ферапонтов Н. Б., Вдовина С. Н., Гагарин А. Н., Струсовская Н. Л., Токмачев М. Г. Свойства воды в гелях гидрофильных полимеров. Конденсированные среды и межфазные границы. 2011; 13(2): 208–214. Режим доступа: http://www.kcmf.vsu.ru/resources/t_13_2_2011_015.pdf Frenkel L. S. Nuclear magnetic resonance method for determining the moisture holding capacity of cation exchange resins as a function of temperature. Analytical Chemistry. 1973;45(8): 1570–1571. DOI: https://doi.org/10.1021/ac60330a052 Карговский А. В. Водные кластеры: структуры и оптические колебательные спектры. Известия вузов. Прикладная нелинейная динамика. 2006;14(5): 110–119. DOI: https://doi.org/10.18500/0869-6632-2006-14-5-110-119 Eisenberg D., Kauzmann W. The structure and properties of water. Oxford: Oxford University Press; 1969. 296 p. Yu T., Zhang H., Cao H., Zheng G. Understanding the enhanced removal of Bi(III) using modifi ed crystalline antimonic acids: creation of a transitional pyrochlore-type structure and the Sb(V)-Bi(III) interaction behaviors. Chemical Engineering Journal. 2019;360: 313–324. DOI: https://doi.org/10.1016/j.cej.2018.11.209 Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds: Part A: Theory and applications inorganic chemistry (Sixth ed.). New York: John Wiley & Sons; 2009. 419 p. DOI: https://doi.org/10.1002/9780470405840 Birchall T., Sleight A. W. Oxidation states in vanadium antimonate (“VSbO4”). Inorganic Chemistry. 1976;15(4): 868–870. DOI: https://doi.org/10.1021/ic50158a026 Guerrero-Pérez M. O. V-containing mixed oxide catalysts for reduction–oxidation-based reactions with environmental applications: A short review. Catalysts. 2018;8(11): 564. DOI: https://doi.org/10.3390/catal8110564 Котов В. Ю., Ярославцев А. Б. Протонная подвижность в неорганических гидратах кислот и кислых солей. Известия Академии наук. Серия химическая. 2002;4: 515–528. Полинг Л. Природа химической связи. М.:Ленинград: Госхимиздат; 1947. 116 с.

До бібліографії