Добірка наукової літератури з теми "Hydrogen-based fuel cell"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hydrogen-based fuel cell".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hydrogen-based fuel cell"

1

Wu, Wenxuan, Yiqu Zhou, and Qiyue Wang. "Thermodynamic model of hydrogen-based fuel cell." Applied and Computational Engineering 23, no. 1 (November 7, 2023): 130–34. http://dx.doi.org/10.54254/2755-2721/23/20230624.

Повний текст джерела
Анотація:
The contemporary scholarly treatise expatiates on a lofty and refined mathematical schema of a Proton Exchange Membrane fuel cell seamlessly integrated into the Matlab Simulink milieu. The central aim of this model is to transcend the short descriptions of fuel cell functioning using parameters that denote certain physical connotations in an all-embracing manner. With minimal computational overhead, it could be extended to simulate an entire stack of fuel cells within the purview of an energetic system. The performance of each cell and its response to variations in pressure, temperature, humidity, and partial pressure of reactants are scrutinized with the utmost care, and the paramountcy of membrane hydration is exposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LI, L., and J. HURLEY. "Ammonia-based hydrogen source for fuel cell applications." International Journal of Hydrogen Energy 32, no. 1 (January 2007): 6–10. http://dx.doi.org/10.1016/j.ijhydene.2006.05.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rana, Ishani. "Hydrogen as Fuel of Tomorrow." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (May 29, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem34632.

Повний текст джерела
Анотація:
As well know that carbon-based fossil fuels are a non- renewable resource and these are depleting at an alarming rate. The unmonitored explicit usage of fossil fuels certainly demands for an alternate type of fuel which could replace it in the future because not today but in the near future there will come a time when we will be short on carbon based fuels and need for an alternative type of fuel will the demand of the day. The increasing global demand for sustainable and clean energy sources has finally demanded the exploration of alternative fuels. Hydrogen, with its high energy density and zero carbon and greenhouse gas emissions during combustion, has emerged as a promising fuel of the future. Hydrogen is a potential fuel which can change our fossil fuel based dependency for energy generation to hydrogen economy. The various properties of hydrogen make it excellent alternative and soon to be primary source of fuel in the future. The various techniques of hydrogen production such as electrolysis and coal-based extraction will be discussed as well as the storage methods. Hydrogen is a better fuel in every term. There will be comparative study as well which compares the versatility, the combustion properties, electrical generation efficiency, thermal usage efficiency and also that it’s extraction methods are certainly more eco friendly as compared to other fossils fuels. Researchers are still going to make hydrogen as feasible as fossil fuels are today and soon in the upcoming years, we will see hydrogen economy booming. Keywords—Hydrogen, electrolysis, fuel, efficiency, fuel cell
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SMITH, NICK. "GEOFFREY BALLARD: FUEL CELL VISIONARY." Engineer 302, no. 7932 (January 2022): 54–55. http://dx.doi.org/10.12968/s0013-7758(22)90333-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Jingyu, Xiaoyu Guo, Luoyun Xu, Liuchao Wang, Zhongpei Lu, and Zhen Dong. "Integrated Controller for Fuel Cell Systems: A Full-loop Architecture." Journal of Physics: Conference Series 2774, no. 1 (July 1, 2024): 012053. http://dx.doi.org/10.1088/1742-6596/2774/1/012053.

Повний текст джерела
Анотація:
Abstract In response to the global initiative towards hydrogen energy, increasing focus has been placed on enhancing the performance, reliability and endurance of fuel cells by utilizing advanced control and monitoring strategies. However, due to the multi-variable. multi-loop and multi-physics nature of hydrogen fuel cells, the current decentralized architecture, where fuel cell controllers are isolated and placed in separate enclosures is no longer sufficient to carry out intricate coordinated control strategies. To this end, in this paper, we introduce a novel full-loop architecture, which enables the integration of the fuel cell controller, the air compressor controller, and the power electronics controller within one enclosure, reducing system size and cost. Moreover, based on the integrated hardware architecture, coordinated control such as oxygen/hydrogen pressure coordination can be carried out efficiently. A case study on electrochemical impedance spectroscopy has been conducted, demonstrating the advanced control and monitoring capabilities of this controller architecture.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhao, Ming, Wenbin Wang, Xiaochun Zhu, Mengxue Cao, Zhengyuan Gao, Ke Sun, Shuzhan Bai, and Guoxiang Li. "Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine." Energies 16, no. 13 (June 25, 2023): 4931. http://dx.doi.org/10.3390/en16134931.

Повний текст джерела
Анотація:
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine, and its performance has an important impact on the economy and power of the engine system. In this paper, a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW, and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed, and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6%, the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions, the anode pressure is relatively stable, and the stack can operate efficiently and reliably.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Yuan, Jianshan Lu, Xinyu Zhu, Jianfeng Ye, You Kong, and Weina Hao. "A GM-Based Energy Management Strategy of Hybrid Power System for Hydrogen Fuel Cell Buses." Journal of Advanced Transportation 2023 (April 26, 2023): 1–11. http://dx.doi.org/10.1155/2023/6656612.

Повний текст джерела
Анотація:
Hydrogen energy is a clean, carbon-free, flexible, efficient, and widely used secondary energy source, which is an ideal alternative to promote the clean and efficient use of traditional fossil fuels. Hydrogen fuel cell bus has the advantages of a high-energy conversion rate, absolute pollution-free, sufficient raw materials, and convenient filling. The hybrid power system, composed of fuel cell and auxiliary energy source, is one of the key technologies to promote the development of hydrogen fuel cell vehicle. This study aims to propose an energy management strategy by analyzing the output characteristics and power allocation of fuel cell and power battery in the hybrid power mode with fuel cell as the main and battery as the auxiliary. A GM (1, N) power prediction strategy was proposed and compared with other strategies as an on-off control strategy and logical threshold value strategy in this study. The variation curves of the battery SOC and fuel cell output power under two working conditions of CCBC and real vehicle conditions were analyzed by using these three strategies, when the initial SOC of power battery is 30%, 70%, and 90%, respectively. Results showed that the power prediction strategy based on GM (1, N) has a better performance in output efficiency and fuel economy when compared to the other two strategies by analyzing the aspects of the battery in the SOC variation and equivalent hydrogen consumption and the fuel cell in the output power variation and hydrogen consumption. This research can be helpful to provide the suggested solution for energy management of the hybrid power system for hydrogen fuel cell buses.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Choi, Jaehoon, and Jangyoung Choi. "Research Status of Hydrogen Fuel Cell System Based on Hydrogen Electric Vehicle." Journal of Energy Engineering 29, no. 4 (December 31, 2020): 26–34. http://dx.doi.org/10.5855/energy.2020.29.4.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Backurs, A., L. Jansons, L. Zemite, and A. Laizans. "The Practical Implementation of Hydrogen-Based Sustainable Power Generation Backup." Latvian Journal of Physics and Technical Sciences 61, no. 6 (November 30, 2024): 69–79. https://doi.org/10.2478/lpts-2024-0044.

Повний текст джерела
Анотація:
Abstract Hydrogen fuel cell backup power is a modern way to ensure an uninterrupted and decentralised supply of electricity. A stationary and mobile fuel cell, commonly referred to as a hydrogen generator, is used to produce electricity during power outages or other emergency situations. These fuel cell backups are designed to provide a reliable and efficient source of electricity for critical loads, such as hospitals, data centres, and other critical infrastructures. Hydrogen generators are typically used in situations where a reliable and efficient source of electricity is needed, and in cases when conventional diesel generators are not the priority. These generators can also be used in remote locations where access to the grid is limited or unavailable, or in applications where the use of fossil fuels is not practical or desirable. The article covers the thematic related to comparison of diesel and hydrogen generators, with regards to advantages and shortcomings of the latter, as well as provides an insight into possible use of hydrogen generators in Latvia.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jawad, Noor H., Ali Amer Yahya, Ali R. Al-Shathr, Hussein G. Salih, Khalid T. Rashid, Saad Al-Saadi, Adnan A. AbdulRazak, Issam K. Salih, Adel Zrelli, and Qusay F. Alsalhy. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review." Sustainability 14, no. 21 (November 7, 2022): 14653. http://dx.doi.org/10.3390/su142114653.

Повний текст джерела
Анотація:
Fuel cells have lately received growing attention since they allow the use of non-precious metals as catalysts, which reduce the cost per kilowatt of power in fuel cell devices to some extent. Until recent years, the major barrier in the development of fuel cells was the obtainability of highly conductive anion exchange membranes (AEMs). On the other hand, improvements show that newly enhanced anion exchange membranes have already reached high conductivity levels, leading to the suitable presentation of the cell. Currently, an increasing number of studies have described the performance results of fuel cells. Much of the literature reporting cell performance is founded on hydrogen‒anion exchange membrane fuel cells (AEMFCs), though a growing number of studies have also reported utilizing fuels other than hydrogen—such as alcohols, non-alcohol C-based fuels, and N-based fuels. This article reviews the types, performance, utilized membranes, and operational conditions of anion exchange membranes for fuel cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Hydrogen-based fuel cell"

1

Kirk, Thomas Jackson. "A solid oxide fuel cell using hydrogen sulfide with ceria-based electrolytes." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/11270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Naidoo, Sivapregasen. "Cesium hydrogen sulphate and cesium dihydrogen phosphate based solid composite electrolyte for fuel cell application." Thesis, University of the Western Cape, 2004. http://etd.uwc.ac.za/index.php?module=etd&amp.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sporar, Daniel. "Sputter Deposition of Iron Oxide and Tin Oxide Based Films and the Fabrication of Metal Alloy Based Electrodes for Solar Hydrogen Production." Connect to Online Resource-OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1183481021.

Повний текст джерела
Анотація:
Thesis (M.S.Ch.E.)--University of Toledo, 2007.
Typescript. "Submitted as partial fulfillment of the requirements for The Master of Science degree in Chemical Engineering." Bibliography: leaves 72-77.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MAROCCO, PAOLO. "Hydrogen-based energy storage systems for off-grid locations." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2945185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

PEDRAZZO, FRANCESCO. "Use of hydrogen as energy storage medium in off-­grid, PEM fuel cells based power systems." Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2497207.

Повний текст джерела
Анотація:
Fuel cells are device capable to convert chemical energy into electrical energy. During the last decade fuel cell market had an expansion in specific market niches, such as automotive and backup power. My research activity was related to the development of fuel cell based power system for backup in telecommunication applications. Several installations done in the last years demonstrated that the technology can be used and features many advantages with respect to conventional battery uninterruptible power supply and diesel generators, related to cost reduction, availability and durability. The market of telecommunication equipment is continuously expanding, in particular in Asian markets, where the business of mobile phones is ramping up quickly. Many new sites are located in remote areas, where the main distribution of electrical energy is not available. The solution to power those sites involves renewable energy sources, that are often instable and with a low availability. Solutions for local energy accumulation are mandatory to perform power peak shaving and power backup. The same approach can be used to improve the robustness of smart grid applications, where the power is generated locally, in a number of small and distributed energy sources, and delivered to the network. Hydrogen can be used as energy carrier and as energy storage to power sites when the energy produced by renewable sources is less than the amount required by the load. The thesis explores the design of a power system, a device capable to generate hydrogen and store the compressed gas from renewable sources and to use the gas to generate electrical energy to supply the load.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Chieh-Chun. "Evaluation of Ceria Based Anodes of Solid Oxide Fuel Cells and their Sulfur Tolerance." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1291324978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Anak, Justin Elissa Cresenta. "Study of electromagnetic compatibility of a very high frequency GaN‐based power converter designed for a hydrogen fuel cell." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD069.

Повний текст джерела
Анотація:
Le sujet de thèse proposé concerne l’étude, l'intégration et le comportement fréquentiel d'un convertisseur statique DC/DC à base d’interrupteurs de puissance en GaN (HEMT EPC/Infineon) couplé à une pile à hydrogène intégrant des fonctionnalités avancées de diagnostic des performances de la cellule. L'étude de la compatibilité électromagnétique (CEM) de l'ensemble convertisseur statique couplé à une pile à hydrogène vise à obtenir l'analyse fréquentielle de l'ensemble sachant que dans un contexte d'intégration, les inductances et capacités parasites peuvent perturber le fonctionnement du système. Il sera intéressant de vérifier que des phénomènes électromagnétiques ne perturbent pas les mesures nécessaires au pilotage et au diagnostic. Une étude théorique des perturbations conduites générées dans le cadre des exigences CEM ainsi qu'un prototype de convertisseur statique fortement intégré sur une pile à hydrogène de 500W seront réalisés. La chambre réverbérante à brassage de modes CRBM ainsi que des réseaux de couplage seront utilisés pour évaluer les émissions électromagnétiques rayonnées et conduites du convertisseur statique développé pour vérifier sa conformité à la Directive CEM 2014/30/UE
The proposed thesis topic concerns the study, integration, and frequency behavior of a DC/DC static converter based on GaN (HEMT EPC/Infineon) power switches coupled with a hydrogen fuel cell, which incorporates advanced performance diagnostics features. The study of electromagnetic compatibility (EMC) of the entire static converter coupled with a hydrogen fuel cell aims to conduct a frequency analysis of the system, considering that in an integrated context, parasitic inductances and capacitances may disturb the system's operation. It will be important to verify that electromagnetic phenomena do not interfere with the measurements necessary for control and diagnostics. A theoretical study of the conducted disturbances generated in compliance with EMC requirements will be carried out, along with the development of a highly integrated static converter prototype on a 500W hydrogen fuel cell. A mode-stirred reverberation chamber (MSRC) and coupling networks will be used to evaluate the radiated and conducted electromagnetic emissions of the developed static converter to ensure its compliance with the EMC Directive 2014/30/EU
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Braden, Drew J. "Fuel cell grade hydrogen production from the steam reforming of bio-ethanol over co-based catalysts an investigation of reaction networks and active sites /." Connect to this title online, 2005. http://hdl.handle.net/1811/301.

Повний текст джерела
Анотація:
Thesis (Honors)--Ohio State University, 2005.
Title from first page of PDF file. Document formattted into pages: contains [55] p.; also includes graphics. Includes bibliographical references. Available online via Ohio State University's Knowledge Bank.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kotelnikova, Alena. "Analysis of a hydrogen-based transport system and the role of public policy in the transition to a decarbonised economy." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX057/document.

Повний текст джерела
Анотація:
Quel cadre économique et réglementaire à long terme (2030-50) pour soutenir la transition énergétique des carburants fossiles vers l’hydrogène dans le secteur européen des transports ? Cette recherche combine les approches théoriques et empiriques pour répondre aux trois questions suivantes :1. Comment concevoir des politiques de soutien adaptées pour pallier les imperfections de marché lors du déploiement de technologies de mobilité hydrogène ?2. Comment modéliser les coûts d’abattement en tenant compte des effets d’apprentissage (LBD) ?3. Comment définir la trajectoire optimale de déploiement quand le LBD et la convexité des coûts d’investissement sont présents ?L’article ‘Transition vers un Système de Transport de Passagers à Hydrogène : Analyse Politique Comparée’ passe au crible des politique de soutien destinées à résoudre les imperfections de marché dans le déploiement de la mobilité hydrogène. L’article effectue une comparaison internationale entre les instruments en faveur du déploiement des véhicules. Les indicateurs ex post d’efficacité des politiques sont développés et calculés pour classifier les pays selon leur volontarisme dans la promotion des véhicules à piles à combustible (FCEV). Aujourd’hui le Japon et le Danemark apparaissent comme les meilleurs fournisseurs d’un environnement favorable au déploiement de la mobilité hydrogène. Les autorités locales introduisent de solides instruments prix (tels que des subventions et des exemptions fiscales) pour rendre le FCEV plus attractif par rapport à son analogue à essence et coordonnent le déploiement de l’infrastructure hydrogène sur le territoire.L’article ‘Modélisation des Coûts d’Abattement en Présence d’Effets d’Apprentissage : le Cas du Véhicule à Hydrogène’ présente un modèle de transition du secteur des transports d’un état polluant à un état propre. Un modèle d’équilibre partiel est développé pour un secteur automobile de taille constante. L’optimum social est atteint en minimisant le coût de la transition du parc automobile au cours du temps. Ce coût comprend les coûts privés de production des véhicules décarbonés (sujets aux effets d’apprentissage) ainsi que le coût social des émissions de CO2 qui suit une tendance haussière exogène. L’article caractérise la trajectoire optimale qui est un remplacement progressif des véhicules polluants par les décarbonés. Au cours de la transition, l’égalisation des coûts marginaux tient compte de l’impact des actions présentes sur les coûts futurs via l’effet d’apprentissage. L’article décrit aussi une trajectoire sous-optimale où la trajectoire de déploiement serait une donnée exogène : quelle serait alors la date optimale de début de la transition ? L’article présente une évaluation quantitative de la substitution des FCEV aux véhicules à combustion interne (ICE). L’analyse conclut que le FCEV deviendra une option économiquement viable pour décarboner une partie du parc automobile allemand à l’horizon 2050 dès que le prix du carbone atteindra 50-60€/t.L’article ‘Le rôle des Effets d’Apprentissage dans l’Adoption d’une Technologie Verte : le Cas LBD Linéaire’ étudie les caractéristiques d’une trajectoire optimale de déploiement des véhicules décarbonés dans le cas où les effets d’apprentissage et la convexité sont présents dans la fonction de coût. Le modèle d’équilibre partiel de Creti et. al (2015) est utilisé comme point de départ. Dans le cas LBD linéaire la trajectoire de déploiement optimale est obtenue analytiquement. Un apprentissage fort induit une transition antérieure vers les véhicules verts dans le cas d’une convexité faible et une transition ultérieure dans le cas d’une convexité forte. Ce résultat permet de revisiter le projet H2 Mobility en Allemagne. Un effet d’apprentissage plus fort et une accélération du déploiement aboutissent à une transition moins coûteuse et une période de cash flow négatif plus courte
What economic and policy framework would foster a transition in the European transport sector from fossil fuels to hydrogen in the long term (2030-50)? This research combines empirical and theoretical approaches and aims to answers the following questions:1. How to design appropriate policy instruments to solve inefficiencies in hydrogen mobility deployment?2. How to define abatement cost and an optimal launching date in the presence of learning-by-doing (LBD)?3. How to define an optimal deployment trajectory in presence of LBD and convexity in investment costs?The paper ‘Transition Towards a Hydrogen-Based Passenger Car Transport: Comparative Policy Analysis‘ draws a cross-country comparison between policy instruments that support the deployment of Fuel Cell Electric Vehicle (FCEV). The existing policy framework in favour of FCEV and hydrogen infrastructure deployment is analysed. A set of complementary ex-post policy efficiency indicators is developed and calculated to rank the most active countries, supporters of FCEV. Denmark and Japan emerge as the best providers of favourable conditions for the hydrogen mobility deployment: local authorities put in place price-based incentives (such as subsidies and tax exemptions) making FCEV more financially attractive than its gasoline substitute, and coordinate ramping-up of their hydrogen infrastructure nationally.The paper ’Defining the Abatement Cost in Presence of Learning-by-doing: Application to the Fuel Cell Electric Vehicle’ models the transition of the transport sector from a pollutant state to a clean one. A partial equilibrium model is developed for a car sector of a constant size. In this model the objective of the social planner is to minimize the cost of phasing out a stock of polluting cars from the market over time. The cost includes the private cost of green cars production, which are subject to LBD, and the social cost of carbon, which has an exogenous upward trend. During the transition, the equalization of marginal costs takes into account the fact that the current action has an impact on future costs through LBD. This paper also describes a suboptimal plan: if the deployment trajectory is exogenously given, what is the optimal starting date for the transition? The paper provides a quantitative assessment of the FCEV case for the substitution of the mature Internal Combustion Engine (ICE) vehicles. The analysis concludes that the CO2 price should reach 53€/t for the program to start and for FCEV to be a socially beneficial alternative for decarbonizing part of the projected German car park in the 2050 time frame.The impact of LBD on the timing and costs of emission abatement is, however, ambiguous. On the one hand, LBD supposes delaying abatement activities because of cost reduction of future abatement due to LBD. On the other hand, LBD supposes starting the transition earlier because of cost reduction due to added value to cumulative experience. The paper ‘The Role of Learning-by-Doing in the Adoption of a Green Technology: the Case of Linear LBD’ studies the optimal characteristics of a transition towards green vehicles in the transport sector when both LBD and convexity are present in the cost function. The partial equilibrium model of (Creti et al., 2015) is used as a starting point. For the case of linear LBD the deployment trajectory can be analytically obtained. This allows to conclude that a high learning induces an earlier switch towards green cars in the case of low convexity, and a later switch in the case of high convexity. This insight is used to revisit the hydrogen mobility project in Germany. A high learning lowers the corresponding deployment cost and reduces deepness and duration of the, investment ‘death valley’ (period of negative project’s cash flow). An acceleration of exogenously defined scenario for FCEV deployment, based on the industry forecast, would be beneficial to reduce the associated transition cost
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Šmídek, Miroslav. "Kladná elektroda na bázi MnOx pro PEMFC." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219066.

Повний текст джерела
Анотація:
Construed bachelor work features into problems hydrogen fuel articles and survey on low-temperature fuell elements with polymeric electrolyte (PEMFC). Basic sight work is study feature catalyzers on base MnOx on real fuel cell type PEMFC. Exit are then measured characteristic this way creation fuel cell.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Hydrogen-based fuel cell"

1

Minnesota. Business and Community Development Division. Developing the hydrogen economy in Minnesota: Creating jobs and economic development through Minnesota-based renewable hydrogen resources : a report to the State Legislature pursuant to Minn. Laws, Chapter 11, Article 2, Section 19. St. Paul, Minn: The Division, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mustanir. Nanocrystalline magnesium based hydrides prepared by reactive mechanical alloying as hydrogen storage materials for fuel cell powered vehicle application: Final report international collaboration research and publication. Banda Aceh]: University of Syiah Kuala, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yartys, Volodymyr, Yuriy Solonin, and Ihor Zavaliy. HYDROGEN BASED ENERGY STORAGE: STATUS AND RECENT DEVELOPMENTS. Institute for Problems in Materials Science, 2021. http://dx.doi.org/10.15407/materials2021.

Повний текст джерела
Анотація:
The book presents the recent achievements in the use of renewable energy sources, chemical processes, biomaterials for the efficient production of hydrogen, its storage and use as a fuel in the FC-based power systems. Novel results were obtained within two research programs, namely, the NATO Science for Peace G5233 project “Portable Energy Supply” (2017-21) and the priority program of the NAS of Ukraine "Development of scientific principles of the production, storage and use of hydrogen in autonomous energy systems" (2019-21). The priority program was implemented by the leading institutes of the National Academy of Sciences of Ukraine and contained three focus areas: efficient materials and technologies for the production, storage and use of hydrogen. This includes the development of new functional materials for the fuel cells and the application of the latter in autonomous power supply systems. 4-years NATO's project was implemented by a consortium led by the Institute for Energy Technology (Coordinator; NATO country - Norway) together with the institutes from the NATO partner country – Ukraine – belonging to the NAS of Ukraine: Physico-Mechanical Institute, Institute for Problems of Materials Science and Institute of General and Inorganic Chemistry. The work included the studies of H2 generation by the hydrolysis of MgH2, Al and NaBH4, analysis of the mechanisms of these processes and selection of the most efficient catalyzers. The project successfully developed a system integrating hydrolysis process and a PEM fuel cell.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

IAEA. Role of Nuclear Based Techniques in Development and Characterization of Materials for Hydrogen Storage and Fuel Cells: IAEA Tecdoc Series No. 1676. International Atomic Energy Agency, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hydrogen-based fuel cell"

1

Grube, Thomas, and Bernd Höhlein. "Costs of Making Hydrogen Available in Supply Systems Based on Renewables." In Hydrogen and Fuel Cell, 223–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44972-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoo, Sung Jong, and Yung-Eun Sung. "Design of Palladium-Based Alloy Electrocatalysts for Hydrogen Oxidation Reaction in Fuel Cells." In Fuel Cell Science, 111–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470630693.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Luoji, Ying Zhang, and Qiulin Li. "Literature Mining Based Hydrogen Fuel Cell Research." In Proceedings of the Eleventh International Conference on Management Science and Engineering Management, 117–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59280-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kumar, Pranjal, and Onkar Singh. "Fuel Cell and Hydrogen-based Hybrid Energy Conversion Technologies." In Prospects of Hydrogen Fueled Power Generation, 207–21. New York: River Publishers, 2024. http://dx.doi.org/10.1201/9781032656212-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lin, Jianlong, Wenjia Wu, and Jingtao Wang. "Lamellar and Nanofiber-Based Proton Exchange Membranes for Hydrogen Fuel Cell." In Functional Membranes for High Efficiency Molecule and Ion Transport, 167–217. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8155-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rahman, M. R., F. S. Hosseini, P. Taleghani, M. Ghassemi, and M. Chizari. "Design and Prototype an Educational Proton-Exchange Membrane Fuel Cell Model." In Springer Proceedings in Energy, 235–44. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_22.

Повний текст джерела
Анотація:
AbstractProton-exchange membrane (PEM) cells fuel cells are being used as highly efficient and zero-emission power units to produce electricity from a renewable source. The purpose of the current study is to present the design of a simple PEM type fuel cell model that can be used in an educational environment. The study has illustrated possibility of the design through a product design specification (PDS) process. Three different designs were studied and ranked based on design parameters such as cost, environmental safety, size and weight, educational application etc. Then the highest score design was selected. The selected design then improved by utilizing a 3D computer modelling to come up with the final design. The developed design was then manufactured in house and assembled to form a full functional prototype. The model then was tested, and outcome was compared against existing fuel cell models. Test results show that the prototype can produce reasonable amount of electricity. However, the efficiency of the higher heating value and lower heating value of hydrogen was about 15% less compared to the existing fuel cell model. Furthermore, there are some concerns about the controlling combustible and flammable gas which need to be consumed immediately inside the system instead of storing the gas. The project is under development to be safe enough for any educational environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huang, Zheng, Chaoxian Wu, Shaofeng Lu, and Fei Xue. "Hydrogen Consumption Minimization for Fuel Cell Trains Based on Speed Trajectory Optimization." In Lecture Notes in Electrical Engineering, 335–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2862-0_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Shaorui, Jing Chen, Chun Xiao, and Qinhao Deng. "Hydrogen Fuel Cell Vehicle Energy Management Strategy Based on Adaptive Optimization Methods." In Lecture Notes in Electrical Engineering, 59–65. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0897-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lust, Daniel, Marcus Brennenstuhl, Robert Otto, Tobias Erhart, Dietrich Schneider, and Dirk Pietruschka. "Case Study of a Hydrogen-Based District Heating in a Rural Area: Modeling and Evaluation of Prediction and Optimization Methodologies." In iCity. Transformative Research for the Livable, Intelligent, and Sustainable City, 145–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92096-8_10.

Повний текст джерела
Анотація:
AbstractBuildings are accountable for about one third of the greenhouse gas emissions in Germany. An important step toward the reduction of greenhouse gases is to decarbonize the power productions and heating systems. However, in an energy system with a high share of renewable energy sources, large shares of energy have to be stored in summer for the winter season. Chemical energy storages, in this case hydrogen, can provide these qualities and offer diverse opportunities for coupling different sectors.In this work, a simulation model is introduced which combines a PEM electrolyzer, a hydrogen compression, a high-pressure storage, and a PEM fuel cell for power and heat production. Applied on a building cluster in a rural area with existing PV modules, this system is optimized for operation as a district heating system based on measured and forecasted data. Evolutionary algorithms were used to determine the optimized system parameters.The investigated system achieves an overall heat demand coverage of 63%. However, the local hydrogen production is not sufficient to meet the fuel cell demand. Several refills of the storage tanks with delivered hydrogen would be necessary within the year studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singh, Shiv Prakash, Suneel Raju Pendem, Brij Kishor, Dogga Raveendhra, and M. Venkatesh Naik. "A review on hybridization and energy management strategies for hydrogen-based fuel cell electric vehicle applications." In Hydrogen Energy, 281–302. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003537816-16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hydrogen-based fuel cell"

1

Hu, Sha, Weida Chen, and Weihong Yang. "Sales research for hydrogen-fuel-cell commercial vehicles based on Vensim." In 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE), 1113–16. IEEE, 2024. https://doi.org/10.1109/epee63731.2024.10875420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhou, Siying, and Wenzhen Fang. "Modeling and Simulation of Fuel Cell Cogeneration System Based on Photovoltaic Hydrogen Production." In 2024 International Symposium on Electrical, Electronics and Information Engineering (ISEEIE), 507–12. IEEE, 2024. https://doi.org/10.1109/iseeie62461.2024.00098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huang, Amin, Haiying Dong, and Na Sun. "Research on Life Prediction of Hydrogen Fuel Cell Based on Bi-LSTM-SSA." In 2024 IEEE 5th International Conference on Advanced Electrical and Energy Systems (AEES), 147–52. IEEE, 2024. https://doi.org/10.1109/aees63781.2024.10872582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abele, Andris R. "Advanced Hydrogen Fuel Systems for Fuel Cell Vehicles." In ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1703.

Повний текст джерела
Анотація:
On-board storage and handling of hydrogen continues to be a major challenge on the road to the widespread commercialization of hydrogen fuel cell vehicles. QUANTUM Fuel Systems Technologies WorldWide, Inc. (QUANTUM) is developing a number of advanced technologies in response to the demand by its customers for compact, lightweight, safe, robust, and cost-effective hydrogen fuel systems. QUANTUM approaches hydrogen storage and handling as an engineered system integrated into the design of the vehicle. These engineered systems comprise advanced storage, regulation, metering, and electronic controls developed by QUANTUM. In 2001, QUANTUM validated, commercialized, and began production of lightweight compressed hydrogen storage systems. The first commercial products include storage technologies that achieved 7.5 to 8.5 percent hydrogen storage by weight at 350 bar (5,000 psi). QUANTUM has also received German TUV regulatory approval for its 700 bar (10,000-psi) TriShield10™ hydrogen storage cylinder, based on hydrogen standards developed by the European Integrated Hydrogen Project (EIHP). QUANTUM has patented an In-Tank Regulator for use with hydrogen and CNG, which have applications in both fuel cell and alternative fuel vehicle markets. To supplement the inherent safety features designed into the new 700 bar storage tank, QUANTUM’s patented 700 bar In-Tank Regulator provides additional safety by confining the high pressure in the tank and allowing only a maximum delivery pressure of 10 bar (150-psi) outside the storage system. This paper describes initial applications for these hydrogen fuel systems, which have included fuel cell automobiles, buses, and hydrogen refueling stations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gay, Sébastien E., and Mehrdad Ehsani. "Ammonia Hydrogen Carrier for Fuel Cell Based Transportation." In Future Transportation Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Sipu. "A hydrogen fuel cell vehicle based on solar energy hydrogen production technology." In 5th International Conference on Mechatronics and Computer Technology Engineering (MCTE 2022), edited by Dalin Zhang. SPIE, 2022. http://dx.doi.org/10.1117/12.2660381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Okazaki, Ken. "PROSPECT OF HYDROGEN-BASED ADVANCED ENERGY SYSTEMS INTEGRATING FOSSIL FUEL, HYDROGEN, FUEL CELL AND CO2 SEQUESTRATION." In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p30.280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gay-Desharnais, Sebastien E., Jean-Yves Routex, Mark Holtzapple, and Mehrdad Ehsani. "Investigation of Hydrogen Carriers for Fuel-Cell Based Transportation." In SAE 2002 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-0097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morales-Barrera, Jose, and F. J. Novegi-Anleo. "Hydrogen fuel cell design and plant-based electrolyte analysis." In 2022 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). IEEE, 2022. http://dx.doi.org/10.1109/coniiti57704.2022.9953678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mukherjee, Abhijit, Jason M. Keith, Daniel A. Crowl, David W. Caspary, Jeff Allen, Jeff Naber, Dennis Desheng Meng, John Lukowski, Jay Meldrum, and Barry Solomon. "Fuel Cells and Hydrogen Education at Michigan Technological University." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33343.

Повний текст джерела
Анотація:
There is a strong need for a transformative curriculum to train the next generation of engineers who will help design, construct, and operate fuel cell vehicles and the associated hydrogen fueling infrastructure. In this poster we discuss how we integrate fuel cell and hydrogen technology into the project-based, hands-on learning experiences in engineering education at Michigan Technological University. Our approach is to involve students in the learning process via team-based interactive projects with a real-world flavor. This project has resulted in the formation of an “Interdisciplinary Minor in Hydrogen Technology” at Michigan Technological University. To receive the 16 credit minor, students are required to satisfy requirements in four areas, which are: • Participation in multiple semesters of the Alternative Fuels Group Enterprise, where students work on hands-on integration, design, and/or research projects in hydrogen and fuel cells. • Enrolling in a fuel cell course. • Enrolling in a lecture or laboratory course on hydrogen energy. • Enrolling in discipline-specific elective courses.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hydrogen-based fuel cell"

1

Author, Not Given. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet). Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/993336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Steward, D., M. Penev, G. Saur, W. Becker, and J. Zuboy. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1087789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Recupero, V., T. Torre, G. Saija, and N. Fiordano. Development of a hydrogen generator for fuel cells based on the partial oxidation of methane. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

FONTECAVE, Marc, Sébastien CANDEL, and Thierry POINSOT. Hydrogen today and tomorrow. Académie des sciences, August 2024. http://dx.doi.org/10.62686/8.

Повний текст джерела
Анотація:
The prospects offered by hydrogen as part of the energy transition and the decarbonization of the energy system are major topical issues. Although sources of natural hydrogen have been identified in various parts of the world, it is not possible to estimate at this time the potential of these sources, nor to assess their exploitation capacities without further exploration. Thus, hydrogen is not a primary energy source but should only be considered as an energy carrier. Most of this hydrogen, produced today from fossil resources mainly for industrial usage (including oil refining and ammonia synthesis), will have to be obtained tomorrow from decarbonized processes and used more widely for other industrial applications (notably to reduce the carbon footprint of steel and cement production) and for heavy mobility. Given that hydrogen production must be guided primarily by the need to reduce greenhouse gas emissions, this report aims to define what is meant by "decarbonized" hydrogen, which must take precedence over all carbon-based hydrogen. The aim of this report is to clarify how hydrogen can be produced with minimal emissions of greenhouse gases, consider the significant needs it will generate in terms of electrical energy production1, on this basis identify the most appropriate uses for it in the future and derive estimates of a reasonable level of hydrogen production and consumption. The production of hydrogen by water electrolysis, which appears to be a key element in terms of carbon dioxide emissions (CO2), is really decarbonized if the electricity employed for its production is low carbon (nuclear or renewable), which is far from being the case in Europe or at a worldwide level. For the time being, the European electricity mix is largely carbon-based, and its use to power electrolyzers would lead to CO2 emissions twice as high as those of the conventional methane synthesis process. With its remarkably low carbon electricity mix, France has a major asset in playing a pioneering role in the deployment of low carbon hydrogen, provided that the new electricity production capacities required are rapidly available and themselves low carbon. The present analysis underlines the importance of the industrial competitiveness challenge of developing electrolyzers with the highest possible performance, in the service of national energy sovereignty. Efforts in this field deserve to be supported by scientific and technological research into the energy efficiency of electrolyzers and fuel cells, issues relating to reducing the environmental footprint of these components, improving their stability and lifespan, and, more generally, all the elements in the value chain (tanks, new materials, materials and molecules for storing and transporting hydrogen, etc.). The report also highlights the need to guide choices and developments through life-cycle analyses carried out across the entire value chain. The safety issues in using hydrogen are of major importance. New scientific and technological knowledge is essential if one wishes to define safe hydrogen applications. For applications envisaged outside industrial areas, one has to ensure that protocols and regulations remain compatible with their dissemination. Analysis of the future uses of carbon-free hydrogen indicates that, applications should initially be mainly in: (i) the industrial field, essentially to defossilize the industrial processes that emit the largest amounts of greenhouse gases (notably steel and cement production) and to replace grey hydrogen in current industrial uses (synthesis of ammonia and methanol); (ii) the field of heavy transport (sea or air), notably by enabling the synthesis of alternative fuels to replace current fossil fuels.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії