Добірка наукової літератури з теми "Hydroacoustic signal"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hydroacoustic signal".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hydroacoustic signal"

1

Tarasov, Sergei, Petr Pivnev, Wenjian Chen, and Dmitry Durov. "Nonlinear acoustics methods in the investigations of elastic wave interactions in the ocean." E3S Web of Conferences 127 (2019): 02017. http://dx.doi.org/10.1051/e3sconf/201912702017.

Повний текст джерела
Анотація:
Hydroacoustic parametric systems and methods of nonlinear acoustics in the investigation of the Ocean and the Arctic shelf are considered. A short description of the most promising directions of development of hydroacoustic systems with parametric radiating antennas is given. Characteristics of parametric devices are given, and the results of their applications to solve various problems of hydroacoustics are considered. We discuss new opportunities, which appear when applying parametric antennas, to illuminate underwater environment by autonomous underwater vehicles, and to ensure their navigation along the paths. The results of studies demonstrating single-mode excitation of a waveguide in a wide frequency band, of a parametric antenna, are presented. The possibility of broadband signal compression during its propagation in the result of waveguide dispersion, which leads to intensity increase, is shown. The ways of modernization and the prospective of application of the hydroacoustic means, using nonlinear acoustics methods, are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Павликов, С. Н., Е. Ю. Копаева, Ю. Ю. Колесов, П. Н. Петров, and А. Н. Крючков. "Hydroacoustic communication method." MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg>, no. 1(55) (March 3, 2022): 208–14. http://dx.doi.org/10.37220/mit.2022.55.1.028.

Повний текст джерела
Анотація:
Развитие инфокоммуникационных систем требует повышения эффективности использования акустических методов. Однако, совершенствование гидроакустической связи связано с высокой нелинейностью и нестационарностью канала. Происходят раскоорреляция сигнала за счет трансформации в пространстве и во времени. Приемник не видит ожидаемого сигнала с заданными параметрами. Морских интеллектуальных систем кроме радиоволн могут и должны использовать гидроакустические сигналы. В работе предлагается новый способ гидроакустической связи, учитывающий высокие требования к мобильности и пропускной способности инфокоммуникационных технологий морских интеллектуальных систем. Целью работы является повышение качества гидроакустической связи путем тестирования канала и передачи части функций обработки в среду распространения. Актуальность связана с возрастанием требований по увеличению пропускной способности морских интеллектуальных систем между абонентами включая и гидроакустические каналы. Но для этого нужна новая технология, приведенная в данной работе и основанная на повышении помехозащищенности при увеличении допустимых скоростей взаимного перемещения путем увеличения коэффициента взаимной корреляции прошедшего канал и ожидаемого сигнала. Метод решения поставленных задач основан на анализе развития и прогнозировании технологий звукоподводной связи. Новизна заключается в использовании мониторинга передаточной характеристики гидроакустического канала между абонентами с использованием специальных сигналов и методов их обработки. Основные выводы: при незначительных изменениях процессов метода гидроакустического обмена информацией между легитимными абонентами достигнуто повышение качества связи. The development of infocommunication systems requires an increase in the efficiency of the use of acoustic methods. However, the improvement of hydroacoustic communication is associated with high nonlinearity and non-stationarity of the channel. There is a decoorrelation of the signal due to transformation in space and time. The receiver does not see the expected signal with the specified parameters. Marine intelligent systems can and should use sonar signals in addition to radio waves. Vessels, except for research and fishing, do not use hydroacoustics to solve telecommunications problems. The paper proposes a new method of hydroacoustic communication, taking into account the high requirements for mobility and bandwidth of infocommunication technologies of marine intelligent systems. The aim of the work is to improve the quality of hydroacoustic communication by testing the channel and transferring part of the processing functions to the distribution environment. Relevance is associated with the increasing requirements for increasing the capacity of marine intelligent systems between subscribers, including sonar channels. But this requires a new technology, given in this work and based on increasing noise immunity while increasing the permissible speeds of mutual movement by increasing the coefficient of mutual correlation of the past channel and the expected signal. The method of solving the tasks is based on the analysis of the development and forecasting of sound-submarine communication technologies. The novelty lies in the use of monitoring the transfer characteristics of the sonar channel between subscribers using special signals and methods of their processing. The main conclusions: with minor changes in the processes of the method of hydroacoustic exchange of information between legitimate subscribers, an increase in the quality of communication has been achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kasatkin, B. A., N. V. Zlobina, S. B. Kasatkin, and G. V. Kosarev. "Spectral-Correlation Signal Processing in the Infrasonic Frequency Range." IOP Conference Series: Earth and Environmental Science 988, no. 3 (February 1, 2022): 032065. http://dx.doi.org/10.1088/1755-1315/988/3/032065.

Повний текст джерела
Анотація:
Abstract The article discusses hydroacoustic receiving systems, consisting of combined receivers, and the processing of the received hydroacoustic signals. Each module of the sonar system has four channels for receiving information. Spectral processing was carried out using sixteen information parameters, which made it possible to achieve the maximum noise immunity of the receiving system. Correlation processing of signals confirmed the high correlation of signals on the elements of the receiving hydroacoustic system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nejevenko, E. S., and A. A. Sotnikov. "Adaptive modeling for hydroacoustic signal processing." Pattern Recognition and Image Analysis 16, no. 1 (January 2006): 5–8. http://dx.doi.org/10.1134/s1054661806010020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zamarenova, L. N., E. V. Kotel'nikova, and M. I. Skipa. "Energy loss model for hydroacoustic information offshore nets." Electronics and Communications 16, no. 5 (May 29, 2012): 70–74. http://dx.doi.org/10.20535/2312-1807.2011.16.5.247754.

Повний текст джерела
Анотація:
The power loss model when the signals propagating in the information network hydroacoustic channel on the shelf is considered. The experimental signal propagation power loss data are described by the trend approximated using the functions of the exponential and polynomial type. It is shown that in the case of the signal propagation in the bottom sound channel the trend is described by this approximating functions with the confidence no less than 0,9
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Czapiewska, Agnieszka, Andrzej Luksza, Ryszard Studanski, and Andrzej Zak. "Reduction of the Multipath Propagation Effect in a Hydroacoustic Channel Using Filtration in Cepstrum." Sensors 20, no. 3 (January 29, 2020): 751. http://dx.doi.org/10.3390/s20030751.

Повний текст джерела
Анотація:
During data transmission in a hydroacoustic channel, one of the problems is the multipath propagation effect, which leads to a decrease in the transmission parameters and sometimes completely prevents it. Therefore, we have attempted to develop a method, which is based on a recorded hydroacoustic signal, that allows us to recreate the original (generated) signal by eliminating the multipath effect. In our method, we use cepstral analysis to eliminate replicas of the generated signal. The method has been tested in simulation and during measurements in a real environment. Additionally, the influence of the method on data transmission in the hydroacoustic channel was tested. The obtained results confirmed the usefulness of the application of the developed method and improved the quality of data transmission by reducing the multipath propagation effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lillis, Ilse Van, and Olaf Boebel. "Marine soundscape planning: Seeking acoustic niches for anthropogenic sound." Journal of Ecoacoustics 2, no. 1 (March 29, 2018): 1. http://dx.doi.org/10.22261/jea.5gsnt8.

Повний текст джерела
Анотація:
Both marine mammals and hydroacoustic instruments employ underwater sound to communicate, navigate or infer information about the marine environment. Concurrent timing of acoustic activities using similar frequency regimes may result in (potentially mutual) interference of acoustic signals when both sources are within audible range of the recipient. While marine mammal fitness might be negatively impacted upon, both on individual and population level, hydroacoustic studies may generate low quality data or suffer data loss as a result of bioacoustic interference. This article pursues, in analogy to landscape planning, the concept of marine soundscape planning to reconcile potentially competing uses of acoustic space by managing the anthropogenic sound sources. We here present a conceptual framework exploring the potential of soundscape planning in reducing (mutual) acoustic interference between hydroacoustic instrumentation and marine mammals. The basis of this framework is formed by the various mechanisms by which acoustic niche formation (i.e., the partitioning of the acoustic space) occurs in species-rich communities that acoustically coexist while maintaining high fidelity (hi-fi) soundscapes, i.e., by acoustically partitioning the environment on the basis of time, space, frequency and signal structure. Hydroacoustic measurements often exhibit certain flexibility in their timing, and even instrument positioning, potentially offering the opportunity to minimize the ecological imprint of their operation. This study explores how the principle of acoustic niches could contribute to reduce potential (mutual) acoustic interference based on actual acoustic data from three recording locations in polar oceans. By employing marine soundscape planning strategies, entailing shifting the timing or position of hydroacoustic experiments, or adapting signal structure or frequency, we exemplify the potential efficacy of smart planning for four different hydroacoustic instrumentation types: multibeam echosounders, air guns, RAFOS (Ranging and Fixing of Sound) and tomographic sound sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaplun, Dmitry, Alexander Voznesensky, Sergei Romanov, Valery Andreev, and Denis Butusov. "Classification of Hydroacoustic Signals Based on Harmonic Wavelets and a Deep Learning Artificial Intelligence System." Applied Sciences 10, no. 9 (April 29, 2020): 3097. http://dx.doi.org/10.3390/app10093097.

Повний текст джерела
Анотація:
This paper considers two approaches to hydroacoustic signal classification, taking the sounds made by whales as an example: a method based on harmonic wavelets and a technique involving deep learning neural networks. The study deals with the classification of hydroacoustic signals using coefficients of the harmonic wavelet transform (fast computation), short-time Fourier transform (spectrogram) and Fourier transform using a kNN-algorithm. Classification quality metrics (precision, recall and accuracy) are given for different signal-to-noise ratios. ROC curves were also obtained. The use of the deep neural network for classification of whales’ sounds is considered. The effectiveness of using harmonic wavelets for the classification of complex non-stationary signals is proved. A technique to reduce the feature space dimension using a ‘modulo N reduction’ method is proposed. A classification of 26 individual whales from the Whale FM Project dataset is presented. It is shown that the deep-learning-based approach provides the best result for the Whale FM Project dataset both for whale types and individuals.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Koltakov, S. A., and A. A. Cherepnev. "HARDWARE-SOFTWARE COMPLEX FOR DIGITAL PROCESSING OF HYDROACOUSTIC SIGNALS." Issues of radio electronics, no. 5 (June 8, 2019): 60–63. http://dx.doi.org/10.21778/2218-5453-2019-5-60-63.

Повний текст джерела
Анотація:
The article describes the hardware‑software complex (HSC) based on the debugging stand, its composition, modules and operations. A method for synthesizing the output signal is described, a formula and a table of parameters for its calculation are given. Signals and spectra at the input and output of the developed HSC are shown. The obtained parameters of the performance of various agribusiness, based on the signal processor with a General‑purpose processor and two variants with General‑purpose processors. The proposed version of the HSC2–3 times wins in performance compared to the HSC based on the general‑ purpose processor of Intel. This is achieved through the use of modern methods and programming tools, digital signal processing modules, as well as the optimization of the executable code. Recommendations for possible further improvement of the proposed complex are given, which is possible due to the use of modern FPGAs and high‑speed interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rose, G. A., and W. C. Leggett. "Hydroacoustic Signal Classification of Fish Schools by Species." Canadian Journal of Fisheries and Aquatic Sciences 45, no. 4 (April 1, 1988): 597–604. http://dx.doi.org/10.1139/f88-073.

Повний текст джерела
Анотація:
Features extracted from hydroacoustic backscatter from fish schools enabled classification by species. Target species were cod (Gadus morhua), capelin (Mallotus villosus), and mackerel (Scomber scombrus), observed in the northern Gulf of St. Lawrence during 1985–86. Two features of internal school density (20 log R amplification) were the best discriminators. These were mean standardized peak to trough distance (SPT) and mean distance between voltage peaks (PP). Quadratic discriminant functions based on the variables SPT, PP, an inverse coefficient of variation, school depth, and off-bottom distance correctly classified 93% of schools (1986). These functions also correctly classified 93% of cod and capelin schools acoustically sampled independently during 1985. The target strength of individual fish was a less successful discriminator of species. For cod and capelin of known length, average target strength (TS) was a linear function of length: TS (decibels) = −65 + 20 log10 length (centimetres). Mackerel had target strengths that were 8–12 dB less than those of cod of equivalent length. Quadratic discriminant functions based on target strength, school depth, and off-bottom distance correctly classified 77% of schools by species. Our methods are generalized to any schooling species or environment.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hydroacoustic signal"

1

Дудко, Андрій Володимирович. "Модуль генерації гідроакустичного сигналу в плоско-паралельному хвилеводі". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/28408.

Повний текст джерела
Анотація:
Метою дипломної роботи є створення програмного продукту для генерації гідроакустичного сигналу в плоско-паралельному хвилеводі променевим методом. Об’єктом дослідження є способи та алгоритми моделювання сигналів. Було виконано огляд існуючих програмних застосунків для моделювання сигналів та ознайомитися із проблемами моделювання гідроакустичних сигналів, розроблено програмний продукт для генерації гідроакустичних сигналів, який реалізовано методом уявних джерел для розрахунку поля тиску в плоско-паралельному хвилеводі, даний метод відноситься до променевих моделей. Створена програмний продукт може бути використаний, як частина системи для моделювання гідроакустичних об’єктів та для наукових досліджень. Загальний обсяг роботи: 67 сторінок, 19 ілюстрацій, 17 бібліографічних посилань та 3 додатки.
The purpose of the thesis is to create a program product for generating a hydroacoustic signal in a plane-parallel waveguide beam method. The objects of research are the methods and algorithms of signal simulation. An overview of the existing software applications for simulation of signals and the problems of modeling of hydroacoustic signals was performed, the program software of generation hydroacoustic signals, implemented by the imaginary sources for calculating the field of pressure in a plane-parallel waveguide, was implemented, this method belongs to beam models. The created program product can be used as part of the system for modeling hydroacoustic objects and for scientific research. Total volume of work: 67 pages, 19 illustrations, 17 bibliographic references and 3 attachments.
Целью дипломной работы является создание программного продукта для генерации гидроакустических сигналов в плоско-параллельном волноводе лучевым методом. Объектом исследования являются способы и алгоритмы моделирования сигналов. Было выполнено обзор существующих программных приложений для моделирования сигналов и ознакомиться с проблемами моделирования гидроакустических сигналов, разработано программный продукт для генерации гидроакустических сигналов, который реализован методом мнимых источников для расчета поля давления в плоско-параллельном волноводе, данный метод относится к лучевым моделям. Созданная программа может быть использована как часть системы для моделирования гидроакустических объектов и для научных исследований.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sweet, Geoffrey William. "The processing of data from multi-hydrophone towed arrrays of uncertain shape." Thesis, University of Southampton, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Тимофеева, М. А., Віктор Васильович Авраменко, Виктор Васильевич Авраменко та Viktor Vasylovych Avramenko. "Разработка компьютерной системы распознавания гидроакустических сигналов и моделирование ее работы". Thesis, Изд-во СумГУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/20932.

Повний текст джерела
Анотація:
Разработан алгоритм и компьютерная программа для распознавания судна по текущему значению анализируемого гидроакустического сигнала. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/20932
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hydroacoustic signal"

1

PERSSON, L., and E. SANGFELT. "DETECTION OF HYDROACOUSTIC TRANSIENTS BY MEANS OF HIGHER-ORDER STATISTICS." In Signal Processing, 1813–16. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-444-89587-5.50156-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tuma, Matthias, Christian Igel, and Mark Prior. "Hydroacoustic Signal Classification Using Support Vector Machines." In Signal and Image Processing for Remote Sensing, Second Edition, 37–56. CRC Press, 2012. http://dx.doi.org/10.1201/b11656-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NIKOLAYENKO, YU A. "Hydroacoustic Navigation and Positioning Aids with Transponder Beacons and Emergency Signal Sources." In History of Russian Underwater Acoustics, 722–28. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790941_0040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hydroacoustic signal"

1

Klionskiy, Dmitry M., Dmitry I. Kaplun, Alexander M. Golubkov, and Vyacheslav V. Gulvanskiy. "Adaptive algorithm for hydroacoustic signal processing." In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2017. http://dx.doi.org/10.1109/eiconrus.2017.7910649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tuma, Matthias, Christian Igel, and Mark Prior. "Hydroacoustic Signal Classification Using Kernel Functions for Variable Feature Sets." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dolgikh, G. I., A. F. Scherbatyuk, S. S. Budrin та V. A. Chupin. "ОСОБЕННОСТИ ПРИМЕНЕНИЯ АВТОНОМНОГО НЕОБИТАЕМОГО ПОДВОДНОГО АППАРАТА ПРИ ИЗУЧЕНИИ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ ГИДРОАКУСТИЧЕСКИХ ПОЛЕЙ". У Fizika geosfer. ФГБУН Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН, 2019. http://dx.doi.org/10.35976/poi.2019.85.25.001.

Повний текст джерела
Анотація:
В работе описывается эксперимент, проведенный с участием автономного необитаемого подводного аппарата (АНПА), оснащенного высокоточной гидроакустической измерительной аппаратурой, низкочастотным гидроакустическим излучателем, а так же береговыми лазерными деформографами. Целью данного эксперимента являлось изучение пространственновременного распределения поля давления, создаваемого низкочастотным гидроакустическим излучателем на шельфе клиновидной формы, а также выявление закономерностей трансформации гидроакустической энергии в сейсмическую. В ходе анализа и обработки полученных экспериментальных данных, была построена общая картина пространственного распределения поля гидроакустического давления на шельфе убывающей глубины, разработаны алгоритмы построения вертикальных разрезов поля давления по глубине на произвольном расстоянии от излучателя, по которым, в свою очередь можно вычислять горизонтальное распределение гидроакустической энергии на всем протяжении трассы излучения. По вертикальным распределениям давления, в представленной работе, были сделаны некоторые заключения о взаимодействии гидроакустического сигнала с дном и трансформации его в сейсмоакустический сигнал. Представлены результаты расчетов горизонтального распределения энергии и их сравнения с теоретически рассчитанными данными. Ключевые слова: гидроакустический излучатель, автономный необитаемый подводный аппарат, деформограф, пространственное распределение поля давления, шельф, трансформация гидроакустической энергии.The paper describes an experiment conducted with the participation an autonomous uninhabited underwater vehicle (AUV) was equipped with highprecision hydroacoustic measuring equipment, a lowfrequency hydroacoustic radiator, and coastal laser strainmeters. The aims of this experiment was to study the spatiotemporal distribution of the pressure field, created by a lowfrequency radiator on a wedgeshaped shelf, as well as to identify patterns of transformation of hydroacoustic energy into seismic. During the analysis and processing of the obtained experimental data, a general picture of the spatial distribution of the field of hydroacoustic pressure on the shelf of decreasing depth was gained, algorithms for constructing vertical layer of the pressure field by depth at an arbitrary distance from the radiator were developed, from which, in turn, it is possible to calculate the horizontal distribution of hydroacoustic energy all along the radiation path. By the vertical pressure distributions, in the present work, some conclusions were inferred about the interaction of the hydroacoustic signal with the bottom and its transformation into a seismic signal. The results of calculations of the horizontal energy distribution and their comparison with theoretically calculated data are presented. Keywords: hydroacoustic radiator, autonomous uninhabited underwater vehicle, strainmeter, spatial distribution of the pressure field, shelf, transformation of hydroacoustic energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dolgikh, G. I., A. F. Scherbatyuk, S. S. Budrin та V. A. Chupin. "ОСОБЕННОСТИ ПРИМЕНЕНИЯ АВТОНОМНОГО НЕОБИТАЕМОГО ПОДВОДНОГО АППАРАТА ПРИ ИЗУЧЕНИИ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ ГИДРОАКУСТИЧЕСКИХ ПОЛЕЙ". У Fizika geosfer. ФГБУН Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН, 2019. http://dx.doi.org/10.35976/poi.2019.1.38280.

Повний текст джерела
Анотація:
В работе описывается эксперимент, проведенный с участием автономного необитаемого подводного аппарата (АНПА), оснащенного высокоточной гидроакустической измерительной аппаратурой, низкочастотным гидроакустическим излучателем, а также береговыми лазерными деформографами. Целью данного эксперимента являлось изучение пространственновременного распределения поля давления, создаваемого низкочастотным гидроакустическим излучателем на шельфе клиновидной формы, а также выявление закономерностей трансформации гидроакустической энергии в сейсмическую. В ходе анализа и обработки полученных экспериментальных данных, была построена общая картина пространственного распределения поля гидроакустического давления на шельфе убывающей глубины, разработаны алгоритмы построения вертикальных разрезов поля давления по глубине на произвольном расстоянии от излучателя, по которым, в свою очередь можно вычислять горизонтальное распределение гидроакустической энергии на всем протяжении трассы излучения. По вертикальным распределениям давления, в представленной работе, были сделаны некоторые заключения о взаимодействии гидроакустического сигнала с дном и трансформации его в сейсмоакустический сигнал. Представлены результаты расчетов горизонтального распределения энергии и их сравнения с теоретически рассчитанными данными.The paper describes an experiment conducted with the participation an autonomous uninhabited underwater vehicle (AUV) was equipped with highprecision hydroacoustic measuring equipment, a lowfrequency hydroacoustic radiator, and coastal laser strainmeters. The aims of this experiment was to study the spatiotemporal distribution of the pressure field, created by a lowfrequency radiator on a wedgeshaped shelf, as well as to identify patterns of transformation of hydroacoustic energy into seismic. During the analysis and processing of the obtained experimental data, a general picture of the spatial distribution of the field of hydroacoustic pressure on the shelf of decreasing depth was gained, algorithms for constructing vertical layer of the pressure field by depth at an arbitrary distance from the radiator were developed, from which, in turn, it is possible to calculate the horizontal distribution of hydroacoustic energy all along the radiation path. By the vertical pressure distributions, in the present work, some conclusions were inferred about the interaction of the hydroacoustic signal with the bottom and its transformation into a seismic signal. The results of calculations of the horizontal energy distribution and their comparison with theoretically calculated data are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Piskur, Pawel, and Piotr Szymak. "Digital Signal Processing for Hydroacoustic Passive Obstacle Detection System in Biomimetic Underwater Vehicle." In 2018 International Conference on Applied Mathematics & Computational Science (ICAMCS.NET). IEEE, 2018. http://dx.doi.org/10.1109/icamcs.net46018.2018.00027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Yang, Jun Wang, Bingbing Zhang, Yanqun Wu, Jing Zhu, Zonglun Che, and Zhengliang Hu. "Array Shape Estimation Algorithm Based on Single Attitude Sensor and Hydroacoustic Signal Combination." In 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 2021. http://dx.doi.org/10.1109/icicsp54369.2021.9611855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Malakhov, Ilya M., Sergey V. Dushin, Igor Y. Kurov, and Sergey S. Shavrin. "Adaptive Equalization Algorithms Efficiency Investigations in Hydroacoustic Communication Applications with FBMC Modulation." In 2021 23rd International Conference on Digital Signal Processing and its Applications (DSPA). IEEE, 2021. http://dx.doi.org/10.1109/dspa51283.2021.9535708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rusin, P. V., V. I. Anisimov, and V. A. Krymovskiy. "JUSTIFICATION OF CONSTRUCTION OF THE HYDROACOUSTIC CONTROL CHANNEL IN CONDITIONS OF MULTI-FREQUENCY SIGNAL DISTRIBUTION." In V International Scientific and Technical Conference "Radio Engineering, Electronics and Communication". Omsk Scientific-Research Institute of Instrument Engineering, 2019. http://dx.doi.org/10.33286/978-5-6041917-2-9.124-127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kebkal, K. G., R. Bannasch, and O. G. Kebkal. "Statistical characteristics of digital hydroacoustic signal with sweep-spread carrier in the receiver predetection point." In OCEANS 2011 - SPAIN. IEEE, 2011. http://dx.doi.org/10.1109/oceans-spain.2011.6003549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dushin, Sergey V. "Modeling of a High-Frequency Hydroacoustic Communication Channel in Shallow Water of the Black Sea." In 2020 22th International Conference on Digital Signal Processing and its Applications (DSPA). IEEE, 2020. http://dx.doi.org/10.1109/dspa48919.2020.9213278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hydroacoustic signal"

1

Tolstoy, M., and D. Bohnenstiehl. Location, Characterization and Quantification of Hydroacoustic Signals in the Indian Ocean. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kohlmorgen, L. R., S. Coers, K. Bischof, I. Kröncke, and A. Bartholoma. Differences in hydroacoustic backscatter signals and epifauna growth in a stony and coarse grain habitat ("Helgolaender Steingrund", German Bight, North Sea). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії