Статті в журналах з теми "Hybrid power systems Victoria"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Hybrid power systems Victoria.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Hybrid power systems Victoria".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Matlock, Jay, Stephen Warwick, Philipp Sharikov, Jenner Richards, and Afzal Suleman. "Evaluation of energy efficient propulsion technologies for unmanned aerial vehicles." Transactions of the Canadian Society for Mechanical Engineering 43, no. 4 (December 1, 2019): 481–89. http://dx.doi.org/10.1139/tcsme-2018-0231.

Повний текст джерела
Анотація:
The transition to cleaner, more efficient and longer-endurance aircraft is at the forefront of research and development in air vehicles. The focus of this research is to experimentally evaluate hybrid propulsion and energy harvesting systems in unmanned aerial vehicles (UAVs). Hybrid systems offer benefits over conventional gasoline and electric systems including lower environmental impacts, reduced fuel consumption, redundancy, and distributed propulsion. Additional energy efficiency can be achieved by harvesting some of the thermal energy of the exhaust gases. The development and experimental evaluation of a hybrid propulsion UAV was carried out at the University of Victoria Center for Aerospace Research (UVIC-CfAR) in the framework of the Green Aviation Research & Development Network (GARDN) grant. The work involved the development of a framework to evaluate UAV hybrid propulsion efficiency, and to predict the amount of power harvestable from thermoelectric generators (TEGs). The objective was to combine all of the components into a modular test bench that will allow the performance of the parallel hybrid system to be characterized and compared with theoretical results. Several experiments were performed to collect performance data of various components including a triple-TEG system connected to an engine, and system variables were modified to simulate flight profiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lan, Kaixin, Bohao Duan, Shichao Qiu, Yang Xiao, Meng Liu, and Haocen Dai. "Task Allocation and Traffic Route Optimization in Hybrid Fire-fighting Unmanned Aerial Vehicle Network." Highlights in Science, Engineering and Technology 9 (September 30, 2022): 340–55. http://dx.doi.org/10.54097/hset.v9i.1864.

Повний текст джерела
Анотація:
With the increase of extreme weather conditions in the world, the probability of forest fires is increasing. How the forest fire management decision-making system can monitor and control the fire quickly and effectively is the key of forest fire fighting work. This paper uses SSA drones carrying high-definition and thermal imaging cameras and telemetry sensors in conjunction, as well as Repeater drones used to greatly expand the frontline low-power radio range, to support fire management decision-making systems. At the same time, explore a drone cooperation plan to deal with different fire terrains and different scales of fire conditions. The aim of this paper is to improve the existing fire management decision system in order to quickly respond to the emergency fire. Research object for the Australian state of Victoria on October 1, 2019 to January 7, 2020 wildfires, explore SSA drones and Repeater drones in the application of the forest fire, ensure that fire management decision-making system to provide the optimal number deployment scheme of fire task quickly and efficiently, and achieve the maximum efficiency and economic optimal compatibility.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Horan, Peter, Mark B. Luther, and Hong Xian Li. "Guidance on Implementing Renewable Energy Systems in Australian Homes." Energies 14, no. 9 (May 6, 2021): 2666. http://dx.doi.org/10.3390/en14092666.

Повний текст джерела
Анотація:
The purpose of this paper is to examine several real house cases as renewable energy resources are installed. It is an empirical study, based on first principles applied to measured data. In the first case presented, a PV solar system has been installed and a hybrid vehicle purchased. Battery storage is being considered. Smart Meter data (provided in Victoria, Australia) measures the electrical energy flowing to and from the grid in each half hour. Missing is the story about what the house is generating and what its energy requirements are through each half hour interval. We apply actual (on site) solar PV data to this study, resolving the unknown energy flows. Analysing energy flow has revealed that there are five fundamental quantities which determine performance, namely energy load, energy import, energy harvesting, energy export and energy storage. As a function of PV size these quantities depend on four parameters, easily derivable from the Smart Meter data, namely the house load, the night-time house load (no PV generation), the rating of the solar PV system and the tariffs charged. This reveals most of the information for providing advice on PV array size and whether to install a battery. An important discovery is that a battery, no matter what size, needs a PV system large enough to charge it during the winter months. The analysis is extended to two more houses located within 5 km for which detailed solar data is unavailable.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fourlas, G. K., K. J. Kyriakopoulos, and C. D. Vournas. "Hybrid systems modeling for power systems." IEEE Circuits and Systems Magazine 4, no. 3 (2004): 16–23. http://dx.doi.org/10.1109/mcas.2004.1337806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Taghavi, Reza, and Alireza Seifi. "Optimal Reactive Power Control in Hybrid Power Systems." Electric Power Components and Systems 40, no. 7 (April 27, 2012): 741–58. http://dx.doi.org/10.1080/15325008.2012.658597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Taghavi, Reza, Ali Reza Seifi, and Meisam Pourahmadi-Nakhli. "Fuzzy reactive power optimization in hybrid power systems." International Journal of Electrical Power & Energy Systems 42, no. 1 (November 2012): 375–83. http://dx.doi.org/10.1016/j.ijepes.2012.04.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hung, W. W., and G. W. A. McDowell. "Hybrid UPS for standby power systems." Power Engineering Journal 4, no. 6 (1990): 281. http://dx.doi.org/10.1049/pe:19900055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hu, Qiang Lu, Shengwei Mei, Y. H. S, Wei. "Hybrid Emergency Control for Power Systems." Electric Power Components and Systems 29, no. 8 (August 2001): 683–93. http://dx.doi.org/10.1080/153250001753182683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maria, G. A., C. Tang, and J. Kim. "Hybrid transient stability analysis (power systems)." IEEE Transactions on Power Systems 5, no. 2 (May 1990): 384–93. http://dx.doi.org/10.1109/59.54544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wijewardana, S. M. "Control Systems in Hybrid Energy Renewable Power Systems: Reviews." Engineer: Journal of the Institution of Engineers, Sri Lanka 47, no. 4 (October 27, 2014): 1. http://dx.doi.org/10.4038/engineer.v47i4.6872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dilettoso, Emanuele, Salvina Gagliano, Nunzio Salerno, and Giuseppe Marco Tina. "Optimization of Hybrid Solar Wind Power Systems." International Journal of Applied Electromagnetics and Mechanics 26, no. 3-4 (August 30, 2007): 225–31. http://dx.doi.org/10.3233/jae-2007-912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Goyal, Sourabh, Sandeep Singla, Mayank Mahamna, Sandeep Khokher, and Dr Kesari JP. "Solar-Wind Hybrid Systems For Power Generation." International Journal of Mechanical Engineering 6, no. 5 (May 25, 2019): 14–21. http://dx.doi.org/10.14445/23488360/ijme-v6i5p103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tseng, Chung-Jen, Cheng-I. Chen, Cheng-You Yao, and Kan-Rong Lee. "Hybrid Power Systems for Buildings and Factories." E3S Web of Conferences 209 (2020): 02008. http://dx.doi.org/10.1051/e3sconf/202020902008.

Повний текст джерела
Анотація:
Integrated hybrid power systems have become more and more important in recent years. The functioning of medium-temperature proton-conducting solid oxide fuel cell (pSOFC) hybrid system is proposed in this work. The combined system consists of a pSOFC stack, steam methane reformer, compressors, burners, heat exchangers and methanol synthesizing reactor. The excess waste heat of the burner is recovered using heat exchangers. Also, the unutilized hydrogen from SOFC is used for carbon reduction by methanol production. The functioning of configured system is explored by using Matlab/Simulink/Thermolib software. In pSOFC operation, stoichiometric ratio (Sto) of air is maintained 3 and Sto of hydrogen is varied between 1.4 to1.7. Results show that the benefit of carbon reduction depends on methanol production. By using water separator, the methanol production efficiency increases dramatically. In addition, hydrogen transfer membrane is used to increase stack efficiency and control the temperature of stack chamber and reformer. This further improves benefit of carbon reduction. The proposed hybrid system in this work can be used to power huge residential buildings and some factories.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Williams, T. A. "Characterization of alternative hybrid power tower systems." Le Journal de Physique IV 09, PR3 (March 1999): Pr3–699—Pr3–704. http://dx.doi.org/10.1051/jp4:19993111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sreeraj, E. S., Kishore Chatterjee, and Santanu Bandyopadhyay. "Design of isolated renewable hybrid power systems." Solar Energy 84, no. 7 (July 2010): 1124–36. http://dx.doi.org/10.1016/j.solener.2010.03.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Curcic, T., and S. A. Wolf. "Superconducting Hybrid Power Electronics for Military Systems." IEEE Transactions on Appiled Superconductivity 15, no. 2 (June 2005): 2364–69. http://dx.doi.org/10.1109/tasc.2005.849667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Corson, Donald W. "High power battery systems for hybrid vehicles." Journal of Power Sources 105, no. 2 (March 2002): 110–13. http://dx.doi.org/10.1016/s0378-7753(01)00927-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bailera, Manuel, Pilar Lisbona, and Luis M. Romeo. "Power to gas-oxyfuel boiler hybrid systems." International Journal of Hydrogen Energy 40, no. 32 (August 2015): 10168–75. http://dx.doi.org/10.1016/j.ijhydene.2015.06.074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yousef, H., A. H. Al-Badi, and A. Polycarpou. "Power management for hybrid distributed generation systems." International Journal of Sustainable Engineering 11, no. 1 (October 12, 2017): 65–74. http://dx.doi.org/10.1080/19397038.2017.1387825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Poudel, R. C., J. F. Manwell, and J. G. McGowan. "Performance analysis of hybrid microhydro power systems." Energy Conversion and Management 215 (July 2020): 112873. http://dx.doi.org/10.1016/j.enconman.2020.112873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Palensky, Peter, Arjen van der Meer, Claudio Lopez, Arun Joseph, and Kaikai Pan. "Applied Cosimulation of Intelligent Power Systems: Implementing Hybrid Simulators for Complex Power Systems." IEEE Industrial Electronics Magazine 11, no. 2 (June 2017): 6–21. http://dx.doi.org/10.1109/mie.2017.2671198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Filomeno, Mateus de L., Marcello L. R. de Campos, H. Vincent Poor, and Moises V. Ribeiro. "Hybrid Power Line/Wireless Systems: An Optimal Power Allocation Perspective." IEEE Transactions on Wireless Communications 19, no. 10 (October 2020): 6289–300. http://dx.doi.org/10.1109/twc.2020.3002451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Aien, Morteza, Morteza Gholipour Khajeh, Masoud Rashidinejad, and Mahmud Fotuhi‐Firuzabad. "Probabilistic power flow of correlated hybrid wind‐photovoltaic power systems." IET Renewable Power Generation 8, no. 6 (August 2014): 649–58. http://dx.doi.org/10.1049/iet-rpg.2013.0120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Švec, Jan, Zdeněk Müller, Andrew Kasembe, Josef Tlustý, and Viktor Valouch. "Hybrid power filter for advanced power quality in industrial systems." Electric Power Systems Research 103 (October 2013): 157–67. http://dx.doi.org/10.1016/j.epsr.2013.05.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ntomaris, Andreas V., and Anastasios G. Bakirtzis. "Optimal Bidding of Hybrid Power Stations in Insular Power Systems." IEEE Transactions on Power Systems 32, no. 5 (September 2017): 3782–93. http://dx.doi.org/10.1109/tpwrs.2016.2632971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Al-Falahi, Monaaf D. A., Kutaiba S. Nimma, Shantha D. G. Jayasinghe, Hossein Enshaei, and Josep M. Guerrero. "Power management optimization of hybrid power systems in electric ferries." Energy Conversion and Management 172 (September 2018): 50–66. http://dx.doi.org/10.1016/j.enconman.2018.07.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mohammad Rozali, Nor Erniza, Sharifah Rafidah Wan Alwi, Zainuddin Abdul Manan, Jiří Jaromír Klemeš, and Mohammad Yusri Hassan. "Optimal sizing of hybrid power systems using power pinch analysis." Journal of Cleaner Production 71 (May 2014): 158–67. http://dx.doi.org/10.1016/j.jclepro.2013.12.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Roslan, Sharul Baggio, Dimitrios Konovessis, and Zhi Yung Tay. "Sustainable Hybrid Marine Power Systems for Power Management Optimisation: A Review." Energies 15, no. 24 (December 19, 2022): 9622. http://dx.doi.org/10.3390/en15249622.

Повний текст джерела
Анотація:
The increasing environmental concerns due to emissions from the shipping industry have accelerated the interest in developing sustainable energy sources and alternatives to traditional hydrocarbon fuel sources to reduce carbon emissions. Predominantly, a hybrid power system is used via a combination of alternative energy sources with hydrocarbon fuel due to the relatively small energy efficiency of the former as compared to the latter. For such a hybrid system to operate efficiently, the power management on the multiple power sources has to be optimised and the power requirements for different vessel types with varying loading operation profiles have to be understood. This can be achieved by using energy management systems (EMS) or power management systems (PMS) and control methods for hybrid marine power systems. This review paper focuses on the different EMSs and control strategies adopted to optimise power management as well as reduce fuel consumption and thus the carbon emission for hybrid vessel systems. This paper first presents the different commonly used hybrid propulsion systems, i.e., diesel–mechanical, diesel–electric, fully electric and other hybrid systems. Then, a comprehensive review of the different EMSs and control method strategies is carried out, followed by a comparison of the alternative energy sources to diesel power. Finally, the gaps, challenges and future works for hybrid systems are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bournez, Olivier, and Michel Cosnard. "On the computational power of dynamical systems and hybrid systems." Theoretical Computer Science 168, no. 2 (November 1996): 417–59. http://dx.doi.org/10.1016/s0304-3975(96)00086-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Balan, Horia, Maria Buzdugan, I. Vadan, E. Simion, and P. Karaissas. "Hybrid Commutation Converter in HVDC Systems." Materials Science Forum 670 (December 2010): 415–24. http://dx.doi.org/10.4028/www.scientific.net/msf.670.415.

Повний текст джерела
Анотація:
This paper deals with DC – AC static converter systems, of very high voltages and currents, used for electricity power transmission. It has been analyzed three types of converters: with forced commutation, with commutation from load and the solution proposed by the authors. There are shown the advantages in hybrid switching converters, which in essence connect, constructive and as principle of operation, the advantages of the two known conversion systems. The analysis of the benefits of the proposed solution is done by comparing the circulating power of assets and also by analyzing the power factor. Not in the last, must be mentioned the paper contribution to the development of the theoretical base design for switching converters with hybrid commutation.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Stanley, Andrew P. J., Jennifer King, Aaron Barker, Darice Guittet, William Hamilton, Christopher Bay, Paul Fleming, and Michael Sinner. "Multi-Timescale Wind-Based Hybrid Energy Systems." Journal of Physics: Conference Series 2265, no. 4 (May 1, 2022): 042062. http://dx.doi.org/10.1088/1742-6596/2265/4/042062.

Повний текст джерела
Анотація:
Abstract This paper focuses on the design of wind-based hybrid power plants that operate at different timescales ranging from seconds to days. Traditionally, renewable power plants have been designed to maximize the amount of energy produced. As the energy system transitions to higher amounts of renewables, hybrid power plants may be asked to provide baseload or peaking plant services that have been traditionally been serviced by coal and natural gas power plants. This paper demonstrates that considering these types of plants and their corresponding objects, that operate at different timescales, result in different solutions and should be considered in the design phase of hybrid power plant development.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chernyshov, Maxim, Valery Dovgun, and Sergei Temerbaev. "Hybrid Power Quality Conditioner for Three-Phase Four-Wire Power Systems." Известия высших учебных заведений. Электромеханика 63, no. 1 (2020): 55–61. http://dx.doi.org/10.17213/0136-3360-2020-1-55-61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mohamed, Ayman M. O., and Ramadan El‐Shatshat. "Sequential network‐flow based power‐flow method for hybrid power systems." IET Generation, Transmission & Distribution 15, no. 16 (May 18, 2021): 2384–95. http://dx.doi.org/10.1049/gtd2.12185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Chernyshov, Maxim, Valery Dovgun, Sergei Temerbaev, and Zumeyra Shakurova. "Hybrid power quality conditioner for three-phase four-wire power systems." E3S Web of Conferences 178 (2020): 01009. http://dx.doi.org/10.1051/e3sconf/202017801009.

Повний текст джерела
Анотація:
The article considers a hybrid power quality conditioner (HQPC) for 3-phase 4-wire systems with a distributed modular structure. Some conditioner modules provide compensation for the component currents and voltages that form the negative and zero sequence systems. The open structure of the HQPC, consisting of independent modules, allows compensating for distortions of currents and voltages of the 3-phase network caused by the nonlinear nature and asymmetry of single-phase loads. The compensation characteristics of the proposed conditioner were researched using a model developed in the MatLab environment. The simulation showed that the proposed conditioner can ensure normalization of power quality in 3-phase 4-wire system at various modes of network operation.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Natsheh, Emad Maher, Abdel Razzak Natsheh, and Alhussein Albarbar. "Intelligent controller for managing power flow within standalone hybrid power systems." IET Science, Measurement & Technology 7, no. 4 (July 1, 2013): 191–200. http://dx.doi.org/10.1049/iet-smt.2013.0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bansal, R. C. "Automatic Reactive-Power Control of Isolated Wind–Diesel Hybrid Power Systems." IEEE Transactions on Industrial Electronics 53, no. 4 (June 2006): 1116–26. http://dx.doi.org/10.1109/tie.2006.878322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Sharma, P., T. S. Bhatti, and K. S. S. Ramakrishna. "Compensation of Reactive Power of Isolated Wind-Diesel Hybrid Power Systems." Journal of The Institution of Engineers (India): Series B 93, no. 1 (March 2012): 1–6. http://dx.doi.org/10.1007/s40031-012-0001-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Abido, M. A., and Y. L. Abdel-Magid. "A hybrid neuro-fuzzy power system stabilizer for multimachine power systems." IEEE Transactions on Power Systems 13, no. 4 (1998): 1323–30. http://dx.doi.org/10.1109/59.736272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Koko, J., A. Riza, and U. K. Mohamad Khadik. "Design of solar power plants with hybrid systems." IOP Conference Series: Materials Science and Engineering 1125, no. 1 (May 1, 2021): 012074. http://dx.doi.org/10.1088/1757-899x/1125/1/012074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kovalenko, E. V., and M. G. Tyagunov. "HYBRID COGENERATION POWER COMPLEXES IN INSULATED ENERGETIC SYSTEMS." Alternative Energy and Ecology (ISJAEE), no. 10-11 (November 13, 2015): 167–77. http://dx.doi.org/10.15518/isjaee.2015.10-11.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hubarevych, V. M., and Yu V. Marunia. "SINGLE-PHASE HYBRID FILTER FOR DECENTRALIZED POWER SYSTEMS." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2021, no. 59 (September 20, 2021): 99–103. http://dx.doi.org/10.15407/publishing2021.59.099.

Повний текст джерела
Анотація:
The analysis of the single-phase hybrid filter of network current harmonics, which can be applied in the decentralized power system, was carried out. Mathematical modeling of such a system that feeds a bridge rectifier with a capacitive filter and the 10 kW active load was performed. A comparison of current spectrograms and current diagrams of different configurations of a hybrid filter implemented in the active part on the basis of an active corrector of the parallel type, and in the passive part - a broadband LMC filter with an additional winding Ld was carried out. The maximum current deviations from the shape of the first harmonic of the current consumption for different structures of the passive filter were determined, which is decisive for the calculation of the power part of the active filter. The installed power of the active filter was calculated, the harmonic coefficients of the current consumption of the power supply network were obtained. Ref. 11, fig. 5, table.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Amutha, W. Margaret, Renugadevi, and V. Rajini. "A Novel Fused Converter for Hybrid Power Systems." Advanced Materials Research 984-985 (July 2014): 744–49. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.744.

Повний текст джерела
Анотація:
—Hybrid power system consists of different sources of electrical energy with different operating times during different seasons. Deployment of a hybrid power system is expected in rural areas. Supplying remote load systems such as rural telephony, hospitals, military etc.., where continuous power supply is required, can be realized with the combination of wind and solar power. The proposed topology is designed for telecom load which uses dual input dc-dc fused converter for combining solar and wind energy sources. For the further research and improvements in the proposed fused converter topology, it is necessary to know in detail the power flow from solar and wind sources to the load or to storage battery depending on different seasons. For various wind speed with constant solar irirradiation and, for various solar irirradiations with constant wind speed, the power flow of the hybrid power system is simulated and presented. The same topology is investigated for different switching frequencies (10 kHz and 20 kHz), using MATLAB/SIMULINK, and the efficiencies are calculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lv, Hai Rong, Hai Feng Wang, Feng Gao, Jun Hua Ma, Wen Jun Yin, Jin Dong, and Jing Chen Wu. "Hybrid Energy Storage for Wind Electric Power Systems." Advanced Materials Research 433-440 (January 2012): 1380–85. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.1380.

Повний текст джерела
Анотація:
As the renewable energy (wind energy, solar energy) being utilized more and more, there is strong demand for improvement on the policies of energy storage management. Several papers have shown that hybrid storage system is more efficient and economic than single storage system. In this paper, a policy based on the accurate prediction of wind speed in the near future is introduced and compared with state-of-charge (SOC) management approach and single storage system. The current simulation results demonstrate that the new policy proposed has a minor improvement on the set-up cost and the system performance over the state-of-charge policy.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kang, Seung-Jin, Hee-Sang Ko, Chang-Jin Boo, and Ho-Chan Kim. "Multi-agent Control for Wind Hybrid Power Systems." Journal of the Korea Academia-Industrial cooperation Society 15, no. 12 (December 31, 2014): 7451–58. http://dx.doi.org/10.5762/kais.2014.15.12.7451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

K.Rotich, Leonard, Joseph Kamau, Robert Kinyua,, and Jared Ndeda. "Hybrid Power Systems for Commercial Application in Kenya." International Journal of Research and Engineering 5, no. 2 (March 2018): 320–24. http://dx.doi.org/10.21276/ijre.2018.5.3.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Fumo, N., P. J. Mago, and L. M. Chamra. "Hybrid-cooling, combined cooling, heating, and power systems." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 223, no. 5 (May 8, 2009): 487–95. http://dx.doi.org/10.1243/09576509jpe709.

Повний текст джерела
Анотація:
Combined cooling, heating, and power (CCHP) systems have the ability to optimize fuel consumption by recovering thermal energy from the prime mover of the power generation unit (PGU). Design of a CCHP system requires consideration, among other variables, of CCHP system components size and type. This study focuses on the analysis of hybrid-cooling, heating, and power (hybrid-cooling CCHP) systems that have an absorption chiller (CH) and a vapour compression system to handle the cooling load. The effect of the size of both cooling mechanisms is analysed in conjunction with the PGU size and efficiency. For better energy performance analysis simulations, results are presented based on the building-CCHP system primary energy consumption (PEC). Hybrid-cooling CCHP systems yield higher primary energy reduction than CCHP systems with an absorption CH alone. To account for the effect of climate conditions, hot and cold climates were considered by performing simulations for Tampa and Chicago weather conditions. The results are presented in tabular form to show the value of the PEC reduction as a function of the PGU size and efficiency, and the size of the absorption CH.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sau, Matius, Hestikah Eirene Patoding, and Agustina Kasa. "Solar-diesel hybrid power plant battery charging systems." IOP Conference Series: Materials Science and Engineering 885 (August 6, 2020): 012008. http://dx.doi.org/10.1088/1757-899x/885/1/012008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Malkin, Peter, and Meletios Pagonis. "Superconducting electric power systems for hybrid electric aircraft." Aircraft Engineering and Aerospace Technology 86, no. 6 (September 30, 2014): 515–18. http://dx.doi.org/10.1108/aeat-05-2014-0065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Jamaluddin, Khairulnadzmi, Sharifah Rafidah Wan Alwi, Zainuddin Abdul Manan, Khaidzir Hamzah, and Jiří Jaromír Klemeš. "Hybrid power systems design considering safety and resilience." Process Safety and Environmental Protection 120 (November 2018): 256–67. http://dx.doi.org/10.1016/j.psep.2018.09.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Lee, Jui-Yuan, Kathleen B. Aviso, and Raymond R. Tan. "Optimal Sizing and Design of Hybrid Power Systems." ACS Sustainable Chemistry & Engineering 6, no. 2 (January 23, 2018): 2482–90. http://dx.doi.org/10.1021/acssuschemeng.7b03928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії