Добірка наукової літератури з теми "Hybrid Plasmonic Metamaterials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hybrid Plasmonic Metamaterials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hybrid Plasmonic Metamaterials"

1

Jaksic, Zoran, Marko Obradov, Olga Jaksic, Goran Isic, Slobodan Vukovic, and Vasiljevic Radovic. "Methods of decreasing losses in optical metamaterials." Facta universitatis - series: Electronics and Energetics 31, no. 4 (2018): 501–18. http://dx.doi.org/10.2298/fuee1804501j.

Повний текст джерела
Анотація:
In this work we review methods to decrease the optical absorption losses in metamaterials. The practical interest for metamaterials is huge, but the possible applications are severely limited by their high inherent optical absorption in the metal parts. We consider the possibilities to fabricate metamaterial with a decreased metal volume fraction, the application of alternative lower-loss plasmonic materials instead of the customary utilized noble metals, the use of all-dielectric, high refractive index contrast subwavelength nanocomposites. Finally, we dedicate our attention to various methods to optimize the frequency dispersion in metamaterials by changing their geometry and composition in order to reach lower absorption, which includes the use of the hypercrystals. The final goal is to widen the range of different metamaterialbased devices and structures, including those belonging to transformation optics. Maybe the most important among them is the fabrication of a novel generation of alloptical or hybrid optical/electronic integrated circuits that would operate at optical frequencies and at the same time would offer a packaging density and complexity of the contemporary integrated circuits, owing to the strong localization of electromagnetic fields enabled by plasmonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maccaferri, Nicolò, Alessio Gabbani, Francesco Pineider, Terunori Kaihara, Tlek Tapani, and Paolo Vavassori. "Magnetoplasmonics in confined geometries: Current challenges and future opportunities." Applied Physics Letters 122, no. 12 (March 20, 2023): 120502. http://dx.doi.org/10.1063/5.0136941.

Повний текст джерела
Анотація:
Plasmonics represents a unique approach to confine and enhance electromagnetic radiation well below the diffraction limit, bringing a huge potential for novel applications, for instance, in energy harvesting, optoelectronics, and nanoscale biochemistry. To achieve novel functionalities, the combination of plasmonic properties with other material functions has become increasingly attractive. In this Perspective, we review the current state of the art, challenges, and future opportunities within the field of magnetoplasmonics in confined geometries, an emerging area aiming to merge magnetism and plasmonics to either control localized plasmons, confined electromagnetic-induced collective electronic excitations, using magnetic properties, or vice versa. We begin by highlighting the cornerstones of the history and principles of this research field. We then provide our vision of its future development by showcasing raising research directions in hybrid magnetoplasmonic systems to overcome radiation losses and novel materials for magnetoplasmonics, such as transparent conductive oxides and hyperbolic metamaterials. Finally, we provide an overview of recent developments in plasmon-driven magnetization dynamics, nanoscale opto-magnetism, and acousto-magnetoplasmonics. We conclude by giving our personal vision of the future of this thriving research field.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pancaldi, Matteo, Naëmi Leo, and Paolo Vavassori. "Selective and fast plasmon-assisted photo-heating of nanomagnets." Nanoscale 11, no. 16 (2019): 7656–66. http://dx.doi.org/10.1039/c9nr01628g.

Повний текст джерела
Анотація:
Hybrid plasmonic-magnetic elements facilitate contactless, fast, spatially-selective, and sublattice-specific control of temperature in functional magnetic metamaterials via optical degrees of freedom.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeng, Shuwen, Guozhen Liang, Alexandre Gheno, Sylvain Vedraine, Bernard Ratier, Ho-Pui Ho, and Nanfang Yu. "Plasmonic Metasensors Based on 2D Hybrid Atomically Thin Perovskite Nanomaterials." Nanomaterials 10, no. 7 (June 30, 2020): 1289. http://dx.doi.org/10.3390/nano10071289.

Повний текст джерела
Анотація:
In this work, we have designed highly sensitive plasmonic metasensors based on atomically thin perovskite nanomaterials with a detection limit up to 10−10 refractive index units (RIU) for the target sample solutions. More importantly, we have improved phase singularity detection with the Goos–Hänchen (GH) effect. The GH shift is known to be closely related to optical phase signal changes; it is much more sensitive and sharp than the phase signal in the plasmonic condition, while the experimental measurement setup is much more compact than that of the commonly used interferometer scheme to exact the phase signals. Here, we have demonstrated that plasmonic sensitivity can reach a record-high value of 1.2862 × 109 µm/RIU with the optimum configurations for the plasmonic metasensors. The phase singularity-induced GH shift is more than three orders of magnitude larger than those achievable in other metamaterial schemes, including Ag/TiO2 hyperbolic multilayer metamaterials (HMMs), metal–insulator–metal (MIM) multilayer waveguides with plasmon-induced transparency (PIT), and metasurface devices with a large phase gradient. GH sensitivity has been improved by more than 106 times with the atomically thin perovskite metasurfaces (1.2862 × 109 µm/RIU) than those without (918.9167 µm/RIU). The atomically thin perovskite nanomaterials with high absorption rates enable precise tuning of the depth of the plasmonic resonance dip. As such, one can optimize the structure to reach near zero-reflection at the resonance angle and the associated sharp phase singularity, which leads to a strongly enhanced GH lateral shift at the sensor interface. By integrating the 2D perovskite nanolayer into a metasurface structure, a strong localized electric field enhancement can be realized and GH sensitivity was further improved to 1.5458 × 109 µm/RIU. We believe that this enhanced electric field together with the significantly improved GH shift would enable single molecular or even submolecular detection for hard-to-identify chemical and biological markers, including single nucleotide mismatch in the DNA sequence, toxic heavy metal ions, and tumor necrosis factor-α (TNFα).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fujita, Kazuhiro. "Hybrid Newmark-conformal FDTD modeling of thin spoof plasmonic metamaterials." Journal of Computational Physics 376 (January 2019): 390–410. http://dx.doi.org/10.1016/j.jcp.2018.09.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kilic, Ufuk, Matthew Hilfiker, Alexander Ruder, Rene Feder, Eva Schubert, Mathias Schubert, and Christos Argyropoulos. "Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials." Advanced Functional Materials 31, no. 20 (February 17, 2021): 2010329. http://dx.doi.org/10.1002/adfm.202010329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ahmadivand, Arash, Burak Gerislioglu, G. Timothy Noe, and Yogendra Kumar Mishra. "Gated Graphene Enabled Tunable Charge–Current Configurations in Hybrid Plasmonic Metamaterials." ACS Applied Electronic Materials 1, no. 5 (April 17, 2019): 637–41. http://dx.doi.org/10.1021/acsaelm.9b00035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Huan, Jiajun Linghu, Xuezhi Wang, Qiyi Zhao, and Hao Shen. "Angular-Dependent THz Modulator with Hybrid Metal-Graphene Metastructures." Nanomaterials 13, no. 13 (June 23, 2023): 1914. http://dx.doi.org/10.3390/nano13131914.

Повний текст джерела
Анотація:
The coupling effects of surface plasmon resonance (SPR) from metamaterials induce variation in both the frequency and intensity of plasmonic modes. Here, we report an angular-dependent THz modulator with hybrid metal–graphene metastructures. The metastructures composed of the period gold split-rod arrays on top of a monolayer graphene, which show redshift modulation in the THz region with an increasing incident angle due to the strong out-of-plane magnetic flux introduced by the clockwise circular current at the oblique incidence. By utilizing graphene-based actively tunable conductor with ion-gel electrical gating, the THz transmission can be significantly modified. The modulation depth of the hybrid metal–graphene metastructure modulator can reach ~37.6% at 0.62 THz with a gate voltage of −3 V. The theoretical modeling of transmitted dependency on frequency and incident angle is demonstrated at different Fermi energies, which fits well with the experimental results. This hybrid device can offer a useful method for THz applications (such as angle sensors or angular-resolved spectroscopy), where angle-dependent modulation is needed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Yuxiang, Guohua Dong, Ruiqiang Zhao, Kai Wang, Shaoen Zhou, LiLi Sun, Ping Li, Zheng Zhu, Chunying Guan, and Jinhui Shi. "Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials." Journal of Physics D: Applied Physics 51, no. 28 (June 25, 2018): 285105. http://dx.doi.org/10.1088/1361-6463/aac9a3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huang, Jijie, Xin Li Phuah, Luke Mitchell McClintock, Prashant Padmanabhan, K. S. N. Vikrant, Han Wang, Di Zhang, et al. "Core-shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling." Materials Today 51 (December 2021): 39–47. http://dx.doi.org/10.1016/j.mattod.2021.10.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hybrid Plasmonic Metamaterials"

1

Schalch, Jacob. "Hybrid Terahertz Metamaterials| From Perfect Absorption to Superconducting Plasmonics." Thesis, University of California, San Diego, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10980156.

Повний текст джерела
Анотація:

Metamaterials operating at terahertz (THz) region of the electromagnetic spectrum have remained have remained a promising area of study not only for realizing technologies in a historically underdeveloped spectral regime, but also as a scientific tool for exploring and controlling fundamental physical phenomena at meV energy scales in a variety of condensed matter systems. In this thesis, I will present several projects in which metamaterials and more traditional condensed matter systems are integrated into hybrid metamaterial systems. We leverage these systems to realize new practical THz devices, as well as to couple to and control quantum phenomena in condensed matter systems. I will begin with an introduction to the conceptual, numerical, and experimental techniques in the THz metamaterial toolbox. The first research endeavor I will discuss is a metamaterial system that incorporates perhaps the simplest material; air. This metamaterial perfect absorber with a continuously tunable air dielectric layer allows for comprehensive exploration of metamaterial absorber systems, and demonstrates some unique phenomena owing to its lossless dielectric layer. Next I will introduce an applications oriented device; an electrically actuated broadband terahertz switch which transitions from a non-reflective, transmissive state to a fully absorptive state. It employs an all dielectric metamaterial layer to suppress reflections and trap light, and an electrically actuated phase change material, VO 2 to transition between states. The final section of this dissertation will explore strong coupling effects between a metamaterial and the superconducting c-axis Josephson plasmon in the layered cuprate, La2–x SrxCuO4. Preliminary measurements are first presented then followed by high field THz measurements in which complex nonlinear behavior is observed.

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rashed, Alireza Rahimi, Roberto Bartolino, Carlo C. Versace, and Giuseppe Strangi. "Absorpitive losses mitigation in gain-plasmon hybrid systems as optical metamaterials." Thesis, 2013. http://hdl.handle.net/10955/1007.

Повний текст джерела
Анотація:
Scuola di Scienza e Tecnica "Bernardino Telesio", Dottorato di Ricerca in Scienza e Tecnologia delle Mesofasi e Materiali Molecolari, Ciclo XXVI, a.a.2013
In the past decade, plasmonic nanoparticles (NPs) have gained a lot of interest due to their exceptional and fascinating properties which have been accomplishing vital role in emerging science and technology towards multifunctional applications. The extensive current research efforts in nanoplasmonics trigger towards various opto-electronic and medical applications such as invisibility, perfect lens, increasing the efficiency of solar cells, designing and extra-sensitive single-particle detection of biomolecular recognition and in particular optical metamaterials. The negative real part and the low value of the imaginary part of dielectric permittivity are crucial for applications of nanoparticles as subunits of optical metamaterials. However, the performance of plasmonic nanostructures is significantly limited by the intrinsic and strong energy dissipation in metals, especially in the visible range. In fact, regardless of the challenges to synthesize plasmonic nanostructures, the path to use them as building blocks of optical metamaterial is crossing through the finding a solution to mitigate their optical losses. In this research thesis, it is demonstrated experimentally that the incorporation of gain material such as organic dye molecules and quantum dots in close proximity of enhanced local fields of various properly designed plasmonic systems makes it possible to induce resonant energy transfer processes from gain units to plasmonic nanoparticles, to accompanish loss compensation in optical metamaterials. Steady-state experiments and time resolved spectroscopy along with modification of Rayleigh scattering and optical transmission of a probe beam as a function of impinging energy are crucial evidences of mitigation of absorptive losses in different gain doped plasmonic systems The strategy that has been followed here towards mitigation of absorptive losses in optical metamaterials acts at different spatial scales from nano to macro (see Figure 1). The systems at nano-scale (10-100 nm) are based on dispersion of NPs, in particular, gain assisted (nanoparticle-dye dispersion), gain-functionalized core-shell gold NPs (encapsulated dye molecules into the shell) and dye grafted gold core multimeric nanostructures. The study of such nano-composites allows to recognize experimentally how the parameters such as the geometry and size of the metal nanostructures, inter-particle distance, overlap between emission spectrum of gain material and plasmon band of metal NPs, concentration and quantum yield of donor molecules are playing an important role to create more efficient nonradiative RET processes from donor molecules to acceptors. Figure 1 The followed spatial stages on this research study ranged from (a) nano-scale and (b) mesco scale towards (c) macro scale. The obtained results in nano-scale generate further motivations to move forward to study meso-scale (100-900 nm) plasmonic systems which include both dispersion (nanoshell composites) and bulk (periodic layers of gain materials and lossy metal elements) systems. The nanoshells which are consisted of dye doped dielectric core coated gold shell dispersed in ethanol solution are designed with an optimized ratio of core diameter and metallic shell thickness. The time resolved fluorescence spectroscopy results along with pump-probe experiments on nanoshells are convincing evidences for optical loss mitigation. Finally in third stage, the optical properties of gain-plasmon composites dispersed in PDMS host matrix as an example for bulk samples at the macroscopic scale (1 μm and beyond) have been investigated. The achieved results on this stage can help to design and fabricate such plasmonic structures that lead from fundamental physics towards practical applications. In this regard, the first four chapters provide the background concerning the main elements of this research work. The first chapter contains an introduction to the metamaterials. Second chapter describes the optical properties of plasmonic nanostructures. In third chapter, gain materials and the optical processes beyond these materials have been investigated. The fourth chapter deals with the optical properties of hybrid systems consisted of active materials and nano-plasmonic elements. After providing a brief introduction regarding the applied setups and instruments in this research study in chapter five, the last three chapters represent the acquired experimental results in each mentioned spatial scale. In chapter six, the optical properties of nano-scaled gain-plasmon systems in solution including gain-assisted, gainfunctionalized and dye grafted multimeric samples are investigated. Chapter seven explores the optical characteristics of dispersion of nanoshell sample as an example of the study in mesoscale. Finally, the thesis is completed with the study of the optical features of macro-scaled bulk samples based on core–shell type quantum dots and gold NPs dispersed in PDMS, and a short conclusion of this research study. This study emphasizes effective progress in materials science and paves the way towards further promising scientific research aimed to enable the wide range of electromagnetic properties of plasmonic metamaterials
Università della Calabria
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hybrid Plasmonic Metamaterials"

1

Téllez-Limón, Ricardo, and Rafael Salas-Montiel. "Nanowires Integrated to Optical Waveguides." In Nanowires - Recent Progress. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95689.

Повний текст джерела
Анотація:
Chip-scale integrated optical devices are one of the most developed research subjects in last years. These devices serve as a bridge to overcome size mismatch between diffraction-limited bulk optics and nanoscale photonic devices. They have been employed to develop many on-chip applications, such as integrated light sources, polarizers, optical filters, and even biosensing devices. Among these integrated systems can be found the so-called hybrid photonic-plasmonic devices, structures that integrate plasmonic metamaterials on top of optical waveguides, leading to outstanding physical phenomena. In this contribution, we present a comprehensive study of the design of hybrid photonic-plasmonic systems consisting of periodic arrays of metallic nanowires integrated on top of dielectric waveguides. Based on numerical simulations, we explain the physics of these structures and analyze light coupling between plasmonic resonances in the nanowires and the photonic modes of the waveguides below them. With this chapter we pretend to attract the interest of research community in the development of integrated hybrid photonic-plasmonic devices, especially light interaction between guided photonic modes and plasmonic resonances in metallic nanowires.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hybrid Plasmonic Metamaterials"

1

Oulton, Rupert F., Volker J. Sorger, Guy Bartal, and Xiang Zhang. "A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long Range Propagation." In Plasmonics and Metamaterials. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/meta_plas.2008.mtud3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fontana, Laura, Ilaria Fratoddi, Roberto Matassa, Giuseppe Familiari, Iole Venditti, Chiara Batocchio, Elena Magnano, et al. "Hybrid metal-organic conductive network with plasmonic nanoparticles and fluorene (Conference Presentation)." In Metamaterials, edited by Vladimír Kuzmiak, Peter Markos, and Tomasz Szoplik. SPIE, 2017. http://dx.doi.org/10.1117/12.2269103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Lin, Li Chen, XiaoFei Zang, YiMing Zhu, and SongLin Zhuang. "Multipolar Plasmonic Resonances in Terahertz Hybrid Metamaterials." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.jth2a.55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Feng, and Hayk Harutyunyan. "Hybrid plasmonic-dielectric metamaterials for enhanced nonlinear response." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/noma.2017.nom2c.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Farhang, Arash, Anantha Ramakrishna, and Olivier J. F. Martin. "Multipolar effects and strong coupling in hybrid plasmonic metamaterials." In SPIE OPTO, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2012. http://dx.doi.org/10.1117/12.908923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harutyunyan, Hayk. "Hybrid plasmonic-dielectric metamaterials for enhanced nonlinear response (Conference Presentation)." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2018. http://dx.doi.org/10.1117/12.2319817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fusco, Zelio, Mohsen Rahmani, Nunzio Motta, Mikael Kall, Dragomir Neshev, and Antonio Tricoli. "Hybrid plasmonic-semiconducting fractal metamaterials for superior sensing of volatile compounds." In Biophotonics Australasia 2019, edited by Ewa M. Goldys and Brant C. Gibson. SPIE, 2019. http://dx.doi.org/10.1117/12.2539740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ghindani, Dipa, Alireza R. Rashed, Mohsin Habib, and Humeyra Caglayan. "Electrically Tunable Strongly Coupled Epsilon-Near-Zero and Plasmonic Hybrid Mode." In 2022 Sixteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2022. http://dx.doi.org/10.1109/metamaterials54993.2022.9920710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Singh, Mahi R. "A review of nano-optics in metamaterial hybrid heterostructures." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gorkunov, M. V., I. V. Kasyanova, Y. A. Draginda, V. V. Artemov, M. I. Barnik, A. R. Geivandov, and S. P. Palto. "Plasmon-mediated electrical and optical control of light transmitting hybrid metal gratings." In 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials). IEEE, 2017. http://dx.doi.org/10.1109/metamaterials.2017.8107861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії