Дисертації з теми "Human activity monitoring"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-24 дисертацій для дослідження на тему "Human activity monitoring".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
TOKALA, SAI SUJIT, and RANADEEP ROKALA. "HUMAN ACTIVITY MONITORING USING SMARTPHONE." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2566.
Повний текст джерелаI denna modell har vi utvecklat en algoritm för aktivitetsklassificeringoch energiförbrukning uppskattning , vilket hjälper oss i övervakningen daglig mänsklig aktivitet med större noggrannhet . Resultaten valideras med standard energiförbrukning teknik och aktivitetsklassificeringsvideoobservationer. Vi vill att denna modell ska integreras i smarta mobiltelefoner för att ge slutanvändaren en vänlig atmosfär utan att lägga några komplicerade funktioner för hantering av utrustningen . Denna modell är mycket användbart i klinisk uppföljning av patienterna , kommer det att hjälpa oss att övervaka gamla , sjuka och utvecklingsstörda personens aktivitetsidentifiering och hjälper oss i nära övervakning av patienterna men fysiskt att vara borta från dem . Våra bärbara MEMS baserade treaxlig accelerometer system baserat smartphone kompatibel algoritm tillsammans med andra fysiologiska övervakningsparametrarkommer att ge korrekt övervakning rörelse och energiförbrukning uppskattning för klinisk analys . Denna modell är användbar för analys och övervakning av grupp -och enskilda individer , vilket kommer att leda till att spåra deras rörelser och en framgångsrik räddningsaktion för att rädda dem från dödliga sjukdomar och förebygga risker när de är skadade . Framtida arbete kommer att vara kontinuerlig övervakning av ämnen enskild aktivitet tillsammans med gruppaktivitet . Identifiera hållning övergång av olika aktiviteter i en kort tid som att springa till sittande , sittande till stående , står att krypa etc.
0091-7660885577
Wusk, Grace Caroline. "Psychophysiological Monitoring of Crew State for Extravehicular Activity." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103386.
Повний текст джерелаDoctor of Philosophy
A spacewalk is one of the most important and physically and mentally challenging tasks that astronauts complete. With next-generation missions to the Moon and Mars, exploration spacewalks will challenge astronauts in reduced-weight environments (1/6 and 1/3 Earth's gravity) with longer, more frequent spacewalks and with less help from mission control. To keep astronauts safe while exploring there is a need to better understand astronaut health and performance (physical and mental) during spacewalks. With knowledge of how astronauts will respond to high workload and stressful events, we can plan missions and design tools that can best assist them during spacewalks on the Moon and Mars when help from Earth mission control is limited. Traditional tools of quantifying mental state are not suitable for real-time assessment during spacewalks. Current methods, including subjective surveys and performance-based computer tests, require time and attention to complete and cannot assess real-time operations. The focus of this dissertation is to create a psychophysiological monitoring tool to measure mental workload during a virtual reality (VR) spacewalk. Psychophysiological monitoring uses physiological measures, like heart rate and breathing rate, to predict psychological state, like high workload or stress. Physiological signals were recorded using commercial wearable devices in two human research studies, one at Virginia Tech and one at NASA Johnson Space Center. With machine learning, computer models can be trained to recognize patterns in physiological measures for different psychological states. Once a model is trained, it can be tested on new data to predict mental workload. To train and test the models, participants in the studies completed high and low workload versions of the VR task. The VR task was specifically designed for this study to simulate and measure performance during a mentally-challenging spacewalk scenario. The participants walked at their own pace on a treadmill while wearing a VR headset to move along a virtual lunar surface, while balancing their time and resources. They were also responsible for identifying and recalling flags along their virtual path. Ultimately, this work tests the limits of extending laboratory psychophysiological monitoring to more realistic environments using wearable devices, and of generalizing predictive models across participants, times, and tasks. This work paves the way for future field studies and real-time implementation to close the loop between human and automation.
Rajkumar, Reuben Sajith. "Monitoring Human Activity Patterns in Linnaean Botanical Gardens using Machine Learning." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449230.
Повний текст джерелаGillman, Mark Daniel. "Interpreting human activity from electrical consumption data through non-intrusive load monitoring." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90136.
Повний текст джерела50
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 155-160).
Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear are detectable through their electrical signal. Third, it provides awareness of human activity within a network. Each device has an electrical fingerprint, and specific devices imply associated human actions. From voltage and current measurements at a single point on the network, non-intrusive load monitoring (NILM) disaggregates appliance-level information. This information is available remotely in bandwidth-constrained environments. Four real-world field tests at military micro grids and commercial buildings demonstrate the utility of the NILM in reducing electrical demand, enabling condition-based maintenance, and inferring human activity from electrical activity.
by Mark Daniel Gillman.
S.M.
Tun, Min Han. "Virtual image sensors to track human activity in a smart house." Curtin University of Technology, School of Computing, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17557.
Повний текст джерелаThese algorithms are capable of adapting to the change, however, the quality of the segmentation is very poor during the adaptation phase. In this thesis, a framework to suppress these false positives is introduced. Image properties such as edges and textures are utilised to reduce the amount of false positives during adaptation phase. The framework is built on the idea of sequential pattern recognition. In any background modelling algorithm, the importance of multiple image features as well as different spatial scales cannot be overlooked. Failure to focus attention on these two factors will result in difficulty to detect and reduce false alarms caused by rapid light change and other conditions. The use of edge features in false alarm suppression is also explored. Edges are somewhat more resistant to environmental changes in video scenes. The assumption here is that regardless of environmental changes, such as that of illumination change, the edges of the objects should remain the same. The edge based approach is tested on several videos containing rapid light changes and shows promising results. Texture is then used to analyse video images and remove false alarm regions. Texture gradient approach and Laws Texture Energy Measures are used to find and remove false positives. It is found that Laws Texture Energy Measure performs better than the gradient approach. The results of using edges, texture and different combination of the two in false positive suppression are also presented in this work. This false positive suppression framework is applied to a smart house senario that uses cameras to model ”virtual sensors” to detect interactions of occupants with devices. Results show the accuracy of virtual sensors compared with the ground truth is improved.
Mar, Therese Frances. "The effects of physical activity and gender on the toxicokinetics of toluene in human volunteers /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8441.
Повний текст джерелаTurner, Tyler Norman. "Effects of Human Land Use on the Activity, Diversity, and Distribution of Native Bats." Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522839181353869.
Повний текст джерелаWesteyn, Tracy Lee. "Child's play: activity recognition for monitoring children's developmental progress with augmented toys." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34697.
Повний текст джерелаMokhlespour, Esfahani Mohammad Iman. "Development and Assessment of Smart Textile Systems for Human Activity Classification." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/97249.
Повний текст джерелаPHD
Tsitsoulis, Athanasios. "A Methodology for Extracting Human Bodies from Still Images." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1389793781.
Повний текст джерелаSteinle, Susanne. "Developing a methodology for monitoring personal exposure to particulate matter in a variety of microenvironments." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/14701.
Повний текст джерелаDi, Gregorio Francesco [Verfasser], Marco [Akademischer Betreuer] Steinhauser, and Pellegrino Giuseppe [Akademischer Betreuer] Di. "Error-related brain activity reflects independent systems in human error monitoring [cumulative dissertation] / Francesco Di Gregorio ; Marco Steinhauser, Giuseppe Di Pellegrino." Eichstätt-Ingolstadt : Katholische Universität Eichstätt-Ingolstadt, 2019. http://d-nb.info/1189730561/34.
Повний текст джерелаViklund, Anna. "Designing VoiceUp : a Mobile Application Visualizing Vocal Activity Measured by a Wearable Device." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-111062.
Повний текст джерелаLi, Ian Anthony Rosas. "Personal Informatics and Context: Using Context to Reveal Factors that Affect Behavior." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/100.
Повний текст джерелаWåhlin, Peter. "Enhanching the Human-Team Awareness of a Robot." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-16371.
Повний текст джерелаAnvändningen av autonoma robotar i vårt samhälle ökar varje dag och en robot ses inte längre som ett verktyg utan som en gruppmedlem. Robotarna arbetar nu sida vid sida med oss och ger oss stöd under farliga arbeten där människor annars är utsatta för risker. Denna utveckling har i sin tur ökat behovet av robotar med mer människo-medvetenhet. Därför är målet med detta examensarbete att bidra till en stärkt människo-medvetenhet hos robotar. Specifikt undersöker vi möjligheterna att utrusta autonoma robotar med förmågan att bedöma och upptäcka olika beteenden hos mänskliga lag. Denna förmåga skulle till exempel kunna användas i robotens resonemang och planering för att ta beslut och i sin tur förbättra samarbetet mellan människa och robot. Vi föreslår att förbättra befintliga aktivitetsidentifierare genom att tillföra förmågan att tolka immateriella beteenden hos människan, såsom stress, motivation och fokus. Att kunna urskilja lagaktiviteter inom ett mänskligt lag är grundläggande för en robot som ska vara till stöd för laget. Dolda markovmodeller har tidigare visat sig vara mycket effektiva för just aktivitetsidentifiering och har därför använts i detta arbete. För att en robot ska kunna ha möjlighet att ge ett effektivt stöd till ett mänskligtlag måste den inte bara ta hänsyn till rumsliga parametrar hos lagmedlemmarna utan även de psykologiska. För att tyda psykologiska parametrar hos människor förespråkar denna masteravhandling utnyttjandet av mänskliga kroppssignaler. Signaler så som hjärtfrekvens och hudkonduktans. Kombinerat med kroppenssignalerar påvisar vi möjligheten att använda systemdynamiksmodeller för att tolka immateriella beteenden, vilket i sin tur kan stärka människo-medvetenheten hos en robot.
The thesis work was conducted in Stockholm, Kista at the department of Informatics and Aero System at Swedish Defence Research Agency.
Sundaravadivel, Prabha. "Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157532/.
Повний текст джерелаHerrmann, Théodore. "Centrales de mesures numériques, longue durée, portables pour l'acquisition de signaux physiologiques." Saint-Etienne, 1988. http://www.theses.fr/1988STET4011.
Повний текст джерелаRumeau, Pierre. "Etude par l'évaluation et l'analyse de risques des possibilités de mise en production de services basés sur les HIS." Grenoble, 2010. http://www.theses.fr/2010GRENS031.
Повний текст джерелаAn activity monitoring health smart home (HIS type) based upon an infrared sensor network and the related data fusion was deployed in intermediate and long-term geriatric wards. Frail elderly people in those facilities are the closest substitute to home-dwellers, yet the staff provides the standard for activity monitoring. We could show that: 1. HIS is little intrusive and readily accepted. 2. We may model the capabilities of HIS to trigger an alarm and compare it to other devices measuring activity in specific frail populations. 3. We proved our model on the clinical case of a falling Lewy's bodies disease patient. 4. ISOFDIS 14971 norm on risk management may apply to HIS. 5. Returns may be expected from the first implementation year if an HI Sis deployed at the home a frail elderly lady with cardiovascular condition. Therefore, proposing a commercial service using HIS is medically, socially and economically relevant
LukasHorak and 盧卡思. "A Mobile-Device-based Integrated System for Human Activity Recognition and Energy Expenditure Monitoring." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/98342942611707168848.
Повний текст джерела國立成功大學
醫學資訊研究所
102
Human Activity Recognition and consequent Human Energy Expenditure monitoring have become one of the emerging researched topics nowadays. With newly available sensors and wearable devices getting significant attention, it brought the idea to develop an integrated system for such purposes with running on a smartphone device. In this thesis, we aim to explore various methods for building a parameterized, continuous and energy efficient system to monitor human daily energy expenditure running on a smartphone. We design and implement a system for Activity Recognition and test it on four public data sets. The experimental results show that the performance of our system is comparable with the previous approaches using multiple sensor data, while our approach uses only single stream of accelerometer data.
Oguntala, George A., Raed A. Abd-Alhameed, James M. Noras, Yim Fun Hu, Eya N. Nnabuike, N. Ali, Issa T. Elfergani, and Jonathan Rodriguez. "SmartWall: Novel RFID-enabled Ambient Human Activity Recognition using Machine Learning for Unobtrusive Health Monitoring." 2019. http://hdl.handle.net/10454/17069.
Повний текст джерелаHuman activity recognition from sensor readings have proved to be an effective approach in pervasive computing for smart healthcare. Recent approaches to ambient assisted living (AAL) within a home or community setting offers people the prospect of more individually-focused care and improved quality of living. However, most of the available AAL systems are often limited by computational cost. In this paper, a simple, novel non-wearable human activity classification framework using the multivariate Gaussian is proposed. The classification framework augments prior information from the passive RFID tags to obtain more detailed activity profiling. The proposed algorithm based on multivariate Gaussian via maximum likelihood estimation is used to learn the features of the human activity model. Twelve sequential and concurrent experimental evaluations are conducted in a mock apartment environment. The sampled activities are predicted using a new dataset of the same activity and high prediction accuracy is established. The proposed framework suits well for the single and multi-dwelling environment and offers pervasive sensing environment for both patients and carers.
Tertiary Education Trust Fund of Federal Government of Nigeria and by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement H2020-MSCA-ITN-2016 SECRET-722424
(7861682), Jordan R. Hill. "Information requirements for function allocation during Mars mission exploration activities." Thesis, 2019.
Знайти повний текст джерела"Design, Optimization, and Applications of Wearable IoT Devices." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.62697.
Повний текст джерелаDissertation/Thesis
Human activity recognition dataset
Doctoral Dissertation Computer Engineering 2020
Guimarães, Ricardo Nuno Sousa. "Wearable muscle force sensory system - MuscLab." Master's thesis, 2018. http://hdl.handle.net/1822/59261.
Повний текст джерелаSarcopenia, the age-associated loss of skeletal muscle mass, has been postulated to be a major factor in the strength decline with ageing. Considering the increase in the number of people with muscle weakness, the monitoring of a person’s muscular activity becomes a necessity. This need is also present in the sports area, since the muscles monitoring allows an improvement in the athlete’s technique and may also help preventing possible injuries. The standard method for muscle monitoring is the electromyography signal acquisition, although it presents various problems, like their lack of ergonomics, requiring hairless skin and gel inserted in it, and the need of complex electronics, demanding several hardware filters, since the EMG raw data is full of noise. This dissertation consists in developing a wearable prototype to monitor the user’s muscular activity, through force sensing resistors sensors, and recognize the toe-off gait event. The sensors data are processed by a microcontroller and are sent to a desktop application through wireless connection, or saved in a memory card for a later analysis. This project was also integrated in the robotic system SmartOs. The force sensors output signals were validated by comparing them to the EMG signals. These trials were divided in two groups: static trials, in which the subjects performs specific gestures several times, and dynamic trials, where the subject walks in different paces (slow, medium and fast). Both signals showed some similarity between them, although their similarities were more obvious in the static trials because of their more simple and linear signals. Several regression methods were validated in order to convert the FSR in EMG signals, but the results showed poor results, discarding this possible implementation. The gait event toe-off recognition algorithm was also validated in the dynamic trials performed. The results were satisfactory, showing a high accuracy percentage and low delay times. This dissertation project should provide an easier way to monitor muscles, discarding the needs of complex electronics and hairless skin and providing a clean signal with few noise.
Sarcopenia, a perda de massa muscular esquelética associada à idade, tem sido postulada como um fator importante no declínio de força com o envelhecimento. Com o aumento do número de pessoas com fraqueza muscular, uma monitorização da atividade muscular de uma pessoa torna-se uma necessidade. Esta necessidade também está presente na área do desporto, em que a monitorização muscular permite uma melhoria na técnica do atleta ou prevenir possíveis lesões. O método padrão para a monitorização muscular é a aquisição do sinal EMG, embora apresente vários problemas, como a sua falta de ergonomia, exigindo pele depilada e inserção dum gel específico, e a necessidade de eletrónica complexa, composta por vários filtros, uma vez que os sinais EMG contém muito ruído. Esta dissertação consiste em desenvolver um protótipo vestível para monitorizar a atividade muscular do utilizador através de sensores piezoresistivos e reconhecer o evento da marcha toe-off. Os dados dos sensores são processados por um microcontrolador que envia os dados para uma aplicação gráfica por comunicação wireless ou então são guardados num cartão de memória para uma futura análise. Este sistema também foi integrado no sistema robótico SmartOs. Os sinais provenientes dos sensores de força foram validados, comparando-os com os sinais EMG. Estes testes foram divididos em dois grupos: testes estáticos, onde a pessoa realiza movimentos específicos repetidamente, e testes dinâmicos, onde a pessoa caminha em diferentes velocidades (lenta, média e rápida). Os testes mostraram alguma semelhança entre os dois sinais, embora estas semelhanças foram mais visíveis nos testes estáticos devido ao facto dos seus sinais serem mais simples e lineares que nos testes dinâmicos. O algoritmo de reconhecimento do evento toe-off foi validado nos testes dinâmicos realizados, mostrando resultados satisfatórios tais como altas percentagens de precisão e curtos atrasos temporais. Este projeto deverá fornecer uma maneira mais fácil de monitorizar os músculos, não necessitando de eletrónica complexa ou de ter a pele depilada e a inserção de gel, fornecendo assim um sinal livre de muito ruído.
Maas, Bea. "Birds, bats and arthropods in tropical agroforestry landscapes: Functional diversity, multitrophic interactions and crop yield." Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-0022-5E77-5.
Повний текст джерела