Добірка наукової літератури з теми "HSC chemistry software"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "HSC chemistry software".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "HSC chemistry software":

1

Fica, Jorge Alejandro Manriquez, Patricio Eugenio Navarro Donoso, Cristian Alejandro Vargas Riquelme, and Hector Javier Alonso Olivera Villarroel. "Análisis de circuitos de flotación utilizando el software de simulación HSC Sim Chemistry." Brazilian Journal of Animal and Environmental Research 5, no. 4 (December 13, 2022): 4227–33. http://dx.doi.org/10.34188/bjaerv5n4-063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Se diseñó y evaluó un circuito de flotación mediante simulación en el software HSC versión 6.12, modelado en el módulo “Sim Flowsheet Simulation”, empleando etapas rougher, scavenger y cleaner, sin remolienda y una mineralogía de alimentación compuesta por 0,0012% de oro, 11,2% de FeS2, 3,2% de CuFeS2 y 85,6% de ganga no sulfurosa compuesta por un 90% de SiO2 y un 10% de Al2O3. El modelo de simulación se basa en el balance másico de los distintos minerales participantes del proceso, con principal atención en los parámetros de operación como lo son mineralogía y leyes de alimentación, tiempos de residencia, fracciones de mineral flotable, medianamente flotable y no flotable con sus respectivas constantes de cinéticas. Como resultado de las simulaciones que evalúan distintos circuitos, se obtuvieron resultados de ley de cobre en el concentrado de 28,6% y en las colas de un 0,15%, con porcentaje de recuperación de cobre de un 86,5% para un circuito que consta de dos etapas rougher, dos etapas cleaner y dos etapas scavenger. El modelo permitió determinar el efecto del cambio en el contenido de FeS2 y de los tiempos de residencia en las leyes de concentrado y recuperación de Cu.
2

Kartika, Wahyu, Rafdi Abdul Majid, and Dovina Navanti. "Studi Pemanfataan Limbah Terak Timah 2 Bangka Sebagai Sumber Sekunder Unsur Skandium." Jurnal Kajian Ilmiah 19, no. 1 (January 15, 2019): 7. http://dx.doi.org/10.31599/jki.v19i1.312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Terak timah (tin slag) adalah sisa dari pengolahan timah yang mengandung radioaktif dan cenderung menjadi limbah karena pemanfaatannya yang belum maksimal. Studi ini bertujuan untuk memanfaatkan limbah terak timah sebagai sumber sekunder unsur skandium sehingga pemanfaatannya dapat meminimalkan risiko paparan radioaktif terhadap lingkungan. Skandium banyak digunakan sebagai solid oxide fuel cells (SOFC’s) dapat menyebabkan reaksi terjadi pada temperatur yang lebih rendah, dalam bidang metalurgi sebagai paduan kekuatan tinggi aluminium, dalam bidang keramik penambahan skandium karbida akan meningkatkan kekerasan, lampu metal halida dengan intensitas tinggi, elektronik, dan penelitian laser. Penelitian ini menggunakan sampel terak timah 2 Bangka (TTB). Pada tahap awal TTB dipanaskan sampai suhu 900⁰C, lalu dicelupkan ke dalam air, dikeringkan dan di ayak (terak timah 2 Bangka yang dipanaskan, dicelup ke dalam air dan diayak, disebut TTB-PCA). Studi pertama, TTB-PCA yang dilarutkan ke dalam asam florida (disebut kode sampel F) dan studi kedua, TTB-PCA dilarutkan ke dalam HCl kemudian dilarutkan ke dalam NaOH (disebut kode sampel AB). TTB, TTB-PCA, kode sampel F dan AB dilakukan karakterisasi dengan X-Ray Fluorescence (XRF). Hasil karakterisasi memperlihatkan kadar skandium di dalam TTB sebesar 319 ppm dan kadar skandium tertinggi pada TTB-PCA dengan ukuran butir 200 mesh sebesar 804 ppm. Pada penelitian digunakan software HSC Chemistry 6 sebagai pendukung diskusi termodinamika. Kata Kunci: terak timah Bangka, software hsc chemistry 6, limbah padat, skandium, pelarutan ABSTRACT - Tin slag is the waste of tin processing that contains radioactive and tends to become waste due to its not maximal utilization. This study aims to utilize waste tin slag as a secondary source of scandium element so that its utilization can minimize the risk of radioactive exposure to the environment. Scandium widely used as solid oxide fuel cells (SOFC's) can cause reactions to occur at lower temperatures, in the field of metallurgy as high-strength aluminum alloys, in the field of ceramic addition of scandium carbide will increase hardness, metal halide lamps with high intensity, electronics, and laser research. This research used Bangka tin slag 2 (TTB), the initial stage of TTB was roasted to 900°C, then water quenched, dried and sieved (TTB roasted, water quenched and sieved, called TTB -PCA). The first study, TTB-PCA dissolved into fluoride acid (called code sample F) and a second study, TTB-PCA dissolved into HCl and then dissolved into NaOH (called AB code sample). TTB, TTB-PCA, sample code F and AB are characterized by X-Ray Fluorescence (XRF). The characterization results show scandium content in TTB of 319 ppm and the highest scandium content in TTB-PCA with grain size of 200 mesh of 804 ppm. In the study used HSC Chemistry 6 software as a supporter of thermodynamic discussion.Keywords: bangka tin slag, hsc chemistry 6 software, solid waste, scandium, dissolution
3

Ding, Jian. "Investigation of Thermodynamic Equilibrium of MSWI Fly Ash during High-Temperature Treatment." Advanced Materials Research 610-613 (December 2012): 1871–75. http://dx.doi.org/10.4028/www.scientific.net/amr.610-613.1871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
MSWI (municipal solid waste incineration) fly ash during the high-temperature treatment was a chemical reaction process system of multiphase-component systems. The thermodynamic Equilibrium of the MSWI fly ash was simulated by the part of equilibrium composition of the chemical thermodynamic calculation software HSC-Chemistry 6.0. The characteristics of heavy metals were analyzed basing on the results of simulation in a certain temperature range under different working conditions.
4

Bhosale, Rahul R., Anand Kumar, Fares AlMomani, Majeda Khraisheh, and Gorakshnath Takalkar. "Solar Energy Storage via Thermochemical Metal Oxide/Metal Sulfate Water Splitting Cycle." MRS Advances 3, no. 24 (2018): 1341–46. http://dx.doi.org/10.1557/adv.2018.50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTThis paper reports the effect of Ar molar flow-rate on thermodynamic efficiency analysis of zinc oxide-zinc sulfate (ZnS-ZnO) water splitting cycle useful for solar H2 production. The thermodynamic efficiency analysis is conducted using the HSC Chemistry 7.1 software and its thermodynamic database. Influence of Ar molar flow-rate on total solar energy input essential for the continuous operation of the cycle is explored. Furthermore, the solar-to-fuel energy conversion efficiency for the ZnS-ZnO water splitting cycle is determined.
5

Berlanga, C., and J. A. Ruiz. "Study of Corrosion in a Biomass Boiler." Journal of Chemistry 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/272090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biomass plants, apart from producing energy, help to reduce CO2(g) emissions. One of the biggest problems for their development is superheater corrosion due to fuel corrosivity, especially of the straw. This limits both the temperature of the vapour and also the effectiveness of the plant. In order to know more about the reactions which happen inside the boiler of biomass, thermodynamic calculations using software (HSC Chemistry) have been carried out. Field tests have been carried out in the Sangüesa Biomass Plant in Navarra (Spain): determination of the types of oxides and the deposits formed on the superheaters tubes as well as a program to measure temperatures. Finally, the global results are discussed.
6

Gajić, Nataša, Željko Kamberović, Zoran Anđić, Jarmila Trpčevská, Beatrice Plešingerova, and Marija Korać. "Synthesis of Tribological WS2 Powder from WO3 Prepared by Ultrasonic Spray Pyrolysis (USP)." Metals 9, no. 3 (February 28, 2019): 277. http://dx.doi.org/10.3390/met9030277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper describes the synthesis of tungsten disulfide (WS2) powder by the sulfurization of tungsten trioxide (WO3) particles in the presence of additive potassium carbonate (K2CO3) in nitrogen (N2) atmosphere, first at lower temperature (200 °C) and followed by reduction at higher temperature (900 °C). In addition, the ultrasonic spray pyrolysis of ammonium meta-tungstate hydrate (AMT) was used for the production of WO3 particles at 650 °C in air. The HSC Chemistry® software package 9.0 was used for the analysis of chemistry and thermodynamic parameters of the processes for WS2 powder synthesis. The crystalline structure and phase composition of all synthesized powders were analyzed by X-ray diffraction (XRD) measurements. The morphology and chemical composition of these samples were examined by scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX).
7

Wang, Xin, Shao-Hua Ju, C. Srinivasakannan, Da-Jin Yang, and Jin-Hui Peng. "Carbothermic Reduction of Zinc Ferrite by Microwave Heating." High Temperature Materials and Processes 32, no. 5 (October 25, 2013): 485–91. http://dx.doi.org/10.1515/htmp-2012-0170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe kinetics of carbothermic reduction of ZnFe2O4 in the temperature range 823–1223 K, was investigated in a microwave reactor. The mechanism of formation of ZnO and Fe3O4/FeO by decomposition of ZnFe2O4 was explained using the equilibrium calculations and thermodynamics analysis using HSC chemistry software 6.0. In addition the effect of parameters such as the decomposition temperature, C/ZnFe2O4 ratio, particle size and microwave power were assessed on the decomposition kinetics. Zn recovery as high as 98.83% could be achieved at a decomposition temperature of 1023 K, C/ZnFe2O4 ratio of 1:3, particle size of +74–61 µm and microwave power of 1200 W. The kinetics of decomposition was found to be carbon gasification reaction controlled, with the activation energy of 39.21 kJ/mol.
8

Fosu, Allen Yushark, Ndue Kanari, James Vaughan, and Alexandre Chagnes. "Literature Review and Thermodynamic Modelling of Roasting Processes for Lithium Extraction from Spodumene." Metals 10, no. 10 (September 30, 2020): 1312. http://dx.doi.org/10.3390/met10101312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This review adds to the public domain literature on the extraction of lithium from mineral ores. The focus is on the pyrometallurgical pre-treatment of spodumene. Information on the phase transformation from α to β, the heat treatment methods as well as the behavior of various compounds in the roasting processes are evaluated. Insight into the chemical thermodynamics of the baking process is evaluated using HSC Chemistry software up to 1200 °C. It was observed that the alkaline, sulfation, chlorination (using Cl2 and CaCl2), carbonizing (to form Li2CO3) and fluorination processes were feasible either throughout or at a point within the temperature range considered. Chlorination using KCl and carbonizing to form Li2O are the processes found to be nonspontaneous throughout the temperatures considered.
9

Grudinsky, Pavel, Ekaterina Podjelnikova, and Valery Dyubanov. "Study of Sulphatizing Roasting Process Using Iron Sulphates for the Treatment of Zinc Leach Residue." Materials Science Forum 989 (May 2020): 448–55. http://dx.doi.org/10.4028/www.scientific.net/msf.989.448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper presents the results of the investigation of zinc leach residue (ZLR) processing by sulphatizing roasting with iron sulphates FeSO4 and Fe2(SO4)3 followed by water leaching. The elemental and phase compositions of ZLR of JSC "Chelyabinsk Zinc Plant" were studied. Based on the thermodynamic calculations using HSC Chemistry 9.9 software, the temperature ranges of the sulphatizing roasting and the required amounts of iron sulphate additives for the sulphation of zinc and copper were determined. Subsequent experiments showed that recovery rates of zinc and copper reached 99.5% and 89.1% respectively, while iron remained in the leached residue. The results have indicated a high efficiency of sulphatizing roasting to transform zinc and copper contained in ZLR from ferrite to water-soluble sulphate.
10

Babenko, Anatoly A., Leonid A. Smirnov, and Alena G. Upolovnikova. "Fundamental Research as a Basis for the Creation of New Technologies in Steel Ladle Metallurgy." Materials Science Forum 946 (February 2019): 493–99. http://dx.doi.org/10.4028/www.scientific.net/msf.946.493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Theoretical and experimental studies including a study of slag viscosity of the CaO-SiO2-B2O3 system containing 25% Al2O3 and 8% MgO and equilibrium interphase distribution of sulfur and boron between slag and a low-carbon metal were carried out using a simplex-lattice experiment design and HSC 6.1 Chemistry software (Outokumpu). Fundamental research has contributed to the development of technology of basic boron-containing slags formation in ladle at ladle-furnace. These slags have a low viscosity, retaining high refining properties and providing direct microalloying of steel by boron. This technology has no analogues in domestic and foreign practice. The development of technology in the converter plant AO "ArcelorMittal Temirtau" (Kazakhstan) provided low-carbon steel production in wide grade composition, containing 0.001-0.008% boron and 0.004-0.014% sulfur, decreased consumption of manganese, high mechanical properties of rolled metal and improved environmental conditions.

Дисертації з теми "HSC chemistry software":

1

Fosu, Allen Yushark. "Development of a Chloride Route for Lithium Extraction from Spodumene." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le lithium est un composant majeur des batteries Li-ion, utilisées dans la fabrication de nombreux appareils électroniques portables. La transition énergétique entraîne le passage des véhicules thermiques aux véhicules électriques et hybrides, qui repose principalement sur l'utilisation de batteries Li-ion pour le stockage réversible de l'énergie. Le développement des véhicules électriques basés sur la technologie lithium-ion est à l'origine d'une demande record de sel de lithium (principalement carbonate et hydroxyde de lithium). Le spodumène est la principale source de lithium à partir de minerais. Son traitement nécessite une transformation de phase de la forme α à la forme β, suivie d'un grillage conduisant à la formation d'un sel de lithium après des étapes de lixiviation, de purification et de récupération. Dans cette thèse, le concentré de spodumène de la région de Pilbara en Australie occidentale a été caractérisé pour le traitement thermique et hydrométallurgique. Le traitement thermique est responsable de la formation de fissures dans les grains qui deviennent plus visibles avec l'augmentation de la température. La désintégration du matériau, la fusion et l'agglomération avec les minéraux contenus dans la gangue ont également été observées en augmentant la température jusqu'à 1050 °C. Des énergies d'activation apparentes de 655±20 kJ mol-1 ont été calculées pour la transformation de l'α-spodumène, ce qui confirme une forte dépendance à la température pour les transformations polymorphes du spodumène. Par la suite, nous avons étudié une voie alternative aux méthodes conventionnelles (procédé à l'acide sulfurique) pour traiter le concentré de spodumène dans le but de réduire la consommation d'énergie élevée des étapes de transformation de phase et de grillage au sulfate. Pour ce faire, nous avons procédé à la chloration directe de l'α-spodumène avec du chlorure de calcium, suivie d'une lixiviation à l'eau du résidu pour récupérer le chlorure de lithium. L'analyse du résidu obtenu après lixiviation a indiqué que la forme α était le seul polymorphe présent, ce qui suggère que l'extraction se fait directement à partir de la phase α. Dans des conditions optimales, un traitement thermique à 1000 °C pendant 60 minutes du concentré de spodumène en présence de chlorure de calcium à un rapport molaire chlorure de calcium/spodumène de 2,0 est nécessaire pour extraire près de 90 % du lithium et récupérer 85 % dans la liqueur de lixiviation. Une énergie d'activation apparente d'environ 122±6 kJ mol-1 a été calculée pour des températures allant de 800 à 950 ℃. La liqueur obtenue après lixiviation a été purifiée par échange d'ions et extraction par solvant afin de récupérer du chlorure de lithium d'une pureté suffisante pour être considéré comme un précurseur dans la production de matériaux pour batteries au lithium-ion
Lithium is a major component of Li-ion batteries, used in the manufacture of many portable electronic devices. The energy transition is driving the shift from thermal to electric and hybrid vehicles, which relies mainly on the use of Li-ion batteries for reversible energy storage. The development of electric vehicles based on lithium-ion technology is responsible for a record demand for lithium salt (mainly lithium carbonate and hydroxide). Spodumene is the main source of lithium from ores. Its processing requires a phase transformation from α-form to β-form, followed by roasting leading to the formation of a lithium salt after a leaching, purification, and recovery steps. In this thesis, spodumene concentrate from the Pilbara region of Western Australia was characterized for thermal and hydrometallurgical processing. Heat treatment is responsible for the formation of cracks in the grains which become more noticeable with increasing temperature. Disintegration of the material, melting and agglomeration with minerals contained in the gangue have also been observed by increasing the temperature up to 1050 °C. Apparent activation energies of 655±20 kJ mol-1 was calculated for the transformation of α-spodumene which confirms a strong temperature dependence for polymorphic transformations of spodumene. Subsequently, we investigated an alternative route to conventional methods (sulphuric acid process) to treat the spodumene concentrate with the aim of reducing the high energy consumption of the phase transformation and sulphate roasting steps. This was achieved by direct chlorination of α-spodumene with calcium chloride, followed by water leaching of the residue to recover lithium chloride. Analysis of the residue obtained after leaching indicated that the α-form was the only polymorph present, suggesting that extraction occurs directly from the α-phase. Under optimal conditions, heat treatment at 1000 °C for 60 minutes of the spodumene concentrate in the presence of calcium chloride at a calcium chloride/spodumene molar ratio of 2.0 is required to extract nearly 90% of lithium and recover 85% in the leach liquor. An apparent activation energy of about 122±6 kJ mol-1 was calculated for temperatures ranging from 800 to 950 ℃. The liquor obtained after leaching was purified by ion exchange and solvent extraction to recover lithium chloride of sufficient purity for consideration as a precursor in the production of lithium-ion battery materials

Частини книг з теми "HSC chemistry software":

1

Guy, H. Grant, and Richards W. Graham. "Introduction." In Computational Chemistry. Oxford University Press, 1995. http://dx.doi.org/10.1093/hesc/9780198557401.003.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This introductory chapter provides an overview of computational chemistry, which is one of the fastest growing areas of chemistry. Although there are specialists in the field, increasingly the techniques are applied by experimental chemists using the ever-growing power of ever-cheaper computers. Ultimately, computational chemistry involves taking known theory and developing the computer software to solve chemical problems. The chapter then looks at the computer hardware and software that many computational chemists use. The main classes of problems which can be resolved by computer include single molecule calculations, assemblies of molecules, and reactions of molecules. Every time a significant advance has been made in computing technology or in application, computational chemists have seized the opportunity and incorporated it into their own field. The chapter considers two examples to illustrate this: computer graphics and neural networks.
2

Pete, Biggs. "Software for the laboratory." In Computers in Chemistry. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198504467.003.0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter looks at what software does when used in instrumentation. It defines the concept of the master/slave set-up, wherein the master computer, or PC, decides on the general strategy while the slave computer performs the actual tasks. It also mentions that some slave computers are not physically located in the instrument but instead manifest as an interface card in the PC, which is beneficial when transferring large amounts of data between master and slave as it will speed up the process. The chapter refers to modern instruments that have some form of intelligence built into them. These are still capable of working in a master/slave environment, even if they have enough built-in intelligence to be stand-alone machines. The chapter addresses the issues on how to get data from an instrument to a computer and what can be done with them.
3

Pete, Biggs. "Chemistry and the Internet." In Computers in Chemistry. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198504467.003.0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter discusses how chemistry has benefited from the internet as there are countless sources of chemical information available online. It explains that the graphical aspects of the internet are of great advantage for chemistry, as molecules and other things can be displayed in three dimensions or animated in ways not possible with standard paper publications. However, the evolution of protocols and formats of the data needed to produce complex chemical graphics also pose challenges in that a particular computer that does not have the right software installed may fail to display the graphics. The chapter also analyses the evolving nature of the internet and argues that this creates a big problem as publications become outdated as soon as they have been written. It discusses the vast amounts of information available on the internet on all aspects of chemistry.
4

Patrick, Graham L. "In silico drug design." In An Introduction to Medicinal Chemistry. Oxford University Press, 2023. http://dx.doi.org/10.1093/hesc/9780198866664.003.0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter looks at in silico drug design and how various software programs are used to assist the drug design process. It focuses on molecular modelling, which is key to structure-based drug design and de novo drug design. It also cites examples of how in silico drug design and specialist software programs are used in medicinal chemistry. The chapter examines molecular mechanics programs that use equations based on classical physics to calculate force fields, including atoms that are treated as spheres and bonds as springs. It discusses how energy minimization is carried out on any molecule constructed with molecular modelling software. This involves alteration of bond lengths, bond angles, torsion angles, and non-bonded interactions until a stable conformation is obtained.
5

Harvey, Jeremy. "Molecular Mechanics Methods." In Computational Chemistry. Oxford University Press, 2018. http://dx.doi.org/10.1093/hesc/9780198755500.003.0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter evaluates molecular mechanics methods. In this approach, a known chemical bonding pattern is assumed and used to define preferred bond lengths and angles, and thereby an energy expression that takes into account distortions away from these ideal values. For a given bonding environment, the type of energy terms needed, and the numerical parameters within the energy expression, are transferable from one system to another. Hence, general forcefields can be constructed with quite general applicability. The chapter describes how the energy terms and parameters are chosen, based on input from experiment and quantum chemistry. Molecular mechanics can be applied to large systems due to its efficiency, allowing calculations on liquids, solutions, and solids. This frequently makes use of periodically repeating models and the chapter looks at special measures needed to treat such models. Finally, it discusses the type of software used for molecular mechanics.

Тези доповідей конференцій з теми "HSC chemistry software":

1

Guo, Jingni, Yu Wang, Ziling Zhou, Feng Xie, Jiejuan Tong, Kerong Wang, Peng Li, and Jing Jiang. "Summary of Methods for Studying the Chemical States of Nuclides In Nuclear Energy Systems." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-90873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The chemical states of nuclides affect their physical and chemical properties including thermal conductivity, melting point, adsorption and desorption behavior, diffusion process, and chemical reactivity. It is an important issue in nuclear energy systems and spent fuel reprocessing. In this review, we summarize the theoretical calculations and experimental measurements to determine the chemical states of nuclides in nuclear energy systems. Software such as FactSage, HSC Chemistry and The Geochemist’s Workbench are generally used to determine the macroscopic-scale thermodynamic parameters such as thermodynamically stable phases. Quantum chemistry calculation software such as Gaussian 03 is employed for microscopic first-principles calculations to elucidate chemical reaction channels, microstructures, bonding characteristics, and rate constants. The experimental methods to determine chemical states of nuclides include X-ray, spectroscopy and chemical extraction.
2

Tap, Ferry, Casper Meijer, Dmitry Goryntsev, Anton Starikov, Mijo Tvrdojevic, and Peter Priesching. "Predictive CFD Modeling of Diesel Engine Combustion Using an Efficient Workflow Based on Tabulated Chemistry." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of 3D CFD combustion models based on tabulated chemistry is becoming increasingly popular. Especially the runtime benefit is attractive, as the tabulated chemistry method allows to include state-of-the-art chemical reaction schemes in CFD simulations. In this work, the Tabkin FGM combustion model in AVL FIRE™ is used to assess the predictivity on a large database of a light-duty Diesel engine measurements. The AVL TABKIN™ software is used to create the chemistry look-up tables for the Tabkin FGM model. The TABKIN software has been extended with the kinetic soot model, where the soot mass fraction calculation is done during the chemistry tabulation process, as well as an NO model using a second progress variable. From recent validation studies, a best-practice and nearly automated workflow has been derived to create the look-up tables for Diesel engine applications based on minimal input. This automated modeling workflow is assessed in the present study. A wide range of parameter variations are investigated for 5 engine load points, with and without EGR, in total 186 cases. This large number of CFD simulations is run in an automated way and the parameters of the CFD sub-models are kept equal as well as all numerical settings. Results are presented for combustion and emissions (NO and soot). Combustion parameters and NO emissions correlate very well to the experimental database with R2 values above 0.95. Soot predictions give order-of-magnitude agreement for most of the cases; the trend however is not always respected, which limits the overall correlation for all cases together, as reported by other authors. Further fundamental research on modeling soot formation and oxidation process remains required to improve the models. In terms of CPU time, the present study was executed on an off-the-shelf HPC cluster, using 8 CPU cores per case and requiring around 3 hrs of wall-time per case, e.g. such a large set of calculations can be simulated overnight on a standard HPC cluster.
3

Lovell, John R., Omar Kulbrandstad, Sai Madem, and Daniel Meza. "Real-Time Digital Chemistry Offshore Transforms Flow Assurance Management." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31121-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Managing asphaltene accumulation in offshore Gulf-of-Mexico wells is a significant challenge. Until recently there was no real-time chemical monitoring that could advise on whether chemical inhibition was making a particular well more, or less, stable. This changed with the development of real-time hardware that directly measures the ratio of asphaltene flowing in the oil. A new generation of that hardware has now been launched which meets all of the Qualification and HSE requirements for deployment on offshore platforms. A microwave resonator was designed to receive fluid at wellhead conditions, i.e., without a reduction in pressure or temperature, and the parameters of that resonator were optimized to maximize microwave intensity for typical oilfield fluids. The microwave circuitry is incorporated in an explosion-proof container with Class 1 Div 2 rated electrical and fluid connections. By combining that resonator with a solenoid that can generate a large magnetic field around a flowline, the resulting device resonates electrons within asphaltene molecules to create a unique signature that is proportional to the total asphaltene count. Estimates of oil-water cut and gas-oil ratio are also obtained as part of the processing and this combination gives the percentage of asphaltene within the oil. The use of this hardware with controlling software and cloud processing creates a unique Internet-of-Things device which can be used to optimize asphaltene-related flow assurance challenges offshore. Pressure testing up to 5ksi and 120C gives the device a working envelope well exceeding typical offshore production hardware requirements. For a fixed fluid, the computation of asphaltene ratio was shown to be independent of applied pressure. Conversely, it was found that in a live well chemical properties of fluids can change over the course of a few hours even when the surface pressure and flow-rates stay the same. In one well, the surface asphaltene percentage within an oil was seen to vary from 0.3% to 3% because of alternating deposition and erosion of an asphaltene layer that had been forming along the ID of production tubing. Over the course of a series of tests in the Middle East, it was observed that those wells with uniform asphaltene percentage were seen as less troublesome to manage compared to wells with a higher deviation. In two Permian fields subject to CO2 flooding, a geographic variation in asphaltene percentage which correlated to the long-term exposure to injected gas was observed. It has long been standard for chemical properties of fluids to be obtained by sending samples to a lab. This paper demonstrates additional value that can be obtained from getting that data in real-time, especially when viewed in the context of an overall chemical management program.

До бібліографії