Зміст
Добірка наукової літератури з теми "Hôte-Pathogen"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hôte-Pathogen".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hôte-Pathogen"
Beliavsky, Alina, Sigmund Krajden, Anita Chae, Barbara Newton, and Greg Sue-A-Quan. "Pasteurella multocida Intramuscular Chest Abscess in a Healthy Man." Canadian Journal of General Internal Medicine 16, no. 3 (September 21, 2021): e78-e80. http://dx.doi.org/10.22374/cjgim.v16i3.510.
Повний текст джерелаSoulie, Marie-Christine, Brigitte Vian, and Thérèse Guillot-Salomon. "Interactions hôte–parasite lors de l'infection par Cercosporella herpotrichoides, agent du piétin-verse : morphologie du parasite et ultrastructure des parois d'hôtes sensibles et résistants." Canadian Journal of Botany 63, no. 5 (May 1, 1985): 851–58. http://dx.doi.org/10.1139/b85-110.
Повний текст джерелаДисертації з теми "Hôte-Pathogen"
Ayenoue, Siadous Fernande. "Manipulation des mécanismes cellulaires de la cellule hôte par deux effecteurs de Coxiella burnetii." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT016/document.
Повний текст джерелаIntracellular pathogenic bacteria manipulate host cell functions by secreting virulence factors (known as effectors) into the cytoplasm of the infected cell. This process allows the pathogen to proliferate in an otherwise hostile environment. The identification and characterization of the specific effectors of the various pathogens is therefore of crucial importance to counteract bacterial infections. Coxiella burnetii is a Class 3 gram-negative pathogen that causes Q fever, a zoonosis that causes major epidemics with a high impact on the economy and health. The natural reservoirs of Coxiella are mainly farm animals that can contaminate the environment by excreting the bacteria mainly in parturition products, vaginal mucus and feces. Human is then infected by inhalation of pseudo-spores disseminated in the environment. The obligate intracellular nature of Coxiella has so far severely limited its study, and as result, bacterial virulence factors involved in the development and progression of infection remain largely unknown. Coxiella replicates within host cells in a large vacuole with autolysosomal characteristics. The development of vacuole and survival of Coxiella in the host cell depend on the translocation of bacterial effectors by the type 4 Dot / Icm secretion system (SST4B) and the manipulation of many trafficking and signaling pathways of the host cell. Our team has generated and screened the first library of Coxiella transposon mutants, leading to the identification of a significant number of candidate virulence determinants and effector proteins. My thesis project is based on the characterization of two effectors of Coxiella, CvpF and AnkA, from the mutant library generated by the team. Mutants of these effectors exhibit defect in intracellular replication and vacuole development phenotypes. Here, we demonstrate that the effector CvpF is a substrate of the SST4B that localizes to vacuoles containing Coxiella (CCV). CvpF is also able to interact with Rab26, leading to the recruitment of the LC3B autophagosomal marker to CCV. cvpF mutants exhibit in vitro and in vivo replication deficiencies, suggesting that diversion of autophagy by this effector is crucial for Coxiella virulence. As for cvpF mutants, ankA mutants show the same in vitro defect of replication and the protein AnkA is a substrate of the SST4. AnkA contains Ankyrin repetition patterns located on its N-terminal domain. The bacterium induces an AnkA-dependent hyperfusion of mitochondria. Our results show that AnkA interacts with Drp1, a motor protein involved in mitochondrial fission, and that this interaction as well as mitochondrial hyperfusion is dependent on the domain containing Ankyrin-repeat motifs. The mechanism by which AnkA acts on Drp1 remains to be determined. However, the observed effects on mitochondria suggest that the organelle's manipulation by the bacterium promotes the development of the vacuole and the intracellular replication of the pathogen. To conclude, our research strongly suggests that multiple Coxiella effectors manipulate host cell pathways to ensure the efficient intracellular development of this pathogen
Duperthuy, Marylise. "Effecteurs moléculaires de lassociation Crassostrea gigas / Vibrio splendidus. Rôle de la porine OmpU dans les mécanismes de résistance et déchappement à la réponse immunitaire de lhôte." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20060.
Повний текст джерелаVibrio splendidus LGP32 is a bacterial pathogen associated to the summer mortality outbreaks that have affected the production of Crassostrea gigas oysters over the past decades. We showed here that the OmpU porin is a major effector of the V. splendidus / C. gigas interaction. For that, we have constructed a ΔompU mutant of V. splendidus, and shown that the OmpU porin is implicated (i) in the resistance of V. splendidus to antimicrobials, including those of oyster, (ii) in its in vivo fitness, and (iii) in its virulence in oyster experimental infections (mortalities have been reduced from 56 % to 11 % upon mutation). In agreement, we have shown that the ompU deletion modified the expression of secreted proteins controlled by the virulence (ToxR) and the membrane integrity (SigmaE) regulation pathways. Furthermore, we have shown that OmpU has a major role in the recognition of V. splendidus by oyster hemocytes. Indeed, (i) in vivo, hemocyt e genes displayed differential responses to an infection with the wild-type or the ΔompU mutant, and (ii) in vitro, OmpU was necessary for hemocyte invasion by V. splendidus. This invasion process required the hemocyte b-integrin and the oyster plasma extracellular SOD, which was found to act as an opsonin recognizing OmpU. Thus, OmpU is a major virulence factor that allows infection of hemocytes in which V. splendidus is able to survive by inhibiting the production of reactive oxygen species and the formation of acidic vacuoles. Resistance of V. splendidus to hemocyte antimicrobials, which is also OmpU-dependant, is probably an additional determinant of V. splendidus intracellular survival
Haller, Samantha. "Etude des interactions hôte-pathogène entre Pseudomonas aeruginosa et Drosophilia melanogaster dans un modèle d'infection intestinale." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ061/document.
Повний текст джерелаDuring my PhD, I studied the host-pathogen interactions between Drosophila melanogaster and Pseudomonas aeruginosa PA14. We previously identified RhlR as a bacterial transcription factor that allows the bacteria to circumvent phagocytosis. My main PhD project was to study and identify how RhlR exerts this function. My first results suggested that RhlR plays also a role independently its the quorum sensing. A screen of PA14 mutants allowed me to identify three genes involved in PA14 virulence and possibility in RhlR function: xcpR, vfR and sltB1. By using tep4 fly mutants, I have shown that RhlR’s role against phagocytosis is most likely required at the level of PA14 detection. Beside this, my results indicated that possibly a volatile compound is involved to synchronize PA14 virulence. In the last part, I studied the effects of a co-infection between an enteric virus and PA14
Feurtey, Alice. "Hybridations inter-spécifiques chez le pommier et co-évolution hôte-pathogène." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS446/document.
Повний текст джерелаIn the first part of my thesis project, I studied the evolutive history of apple tree species in Europe, including interspecific hybridizations. Analyses of whole genome data confirmed that the progenitor species of the cultivated apple tree was M. sieversii, a Central Asia wild apple tree, but also that a high proportion of European cultivated varieties form a genetic group distinct from the wild species. These varieties show traces of introgressions from M. sylvestris and of population subdivision along an East-West axis. Microsatellite markers also showed that introgressions from the cultivated apple were also quite frequent in wild apple tree populations and thus threaten their genetic integrity. We found that introgression levels were correlated to anthropic activities of apple tree cultivation and gave rise to hybrids with no detectable reduced fitness on the traits measured. Our study of the European wild apple tree phylogeography allowed us to detect differentiated genetic groups resulting from the past climatic history of the planet and which should be considered as different evolutionary significant units in conservation.In the second part of my thesis project, I studied coevolution between plant species and their pathogenic fungi in two different systems. I first compared the evolutive history of cultivated and wild apple trees in Central Asia and that of their scab pathogen, Venturia inaequalis. In the Kazakhstan Mountains, the cultivated apple tree has been reintroduced back from Europe during the last two centuries. This created a secondary contact zone, not only between the two apple tree species, but also between the agricultural and the wild types of V. inaequalis. While the invasion of natural populations by the cultivated apple trees still seems geographically limited, the agricultural pathogen is widespread in the forests and on the wild host trees. However, the number of hybrids in the pathogen was limited, probably because of intrinsic reproductive barriers since no ecological barriers were found. I also compared spatial genetic structures at the European scale in the plant Silene latifolia and its anther-smut pathogen Microbotryum lychnidis-dioicae. Our dataset included genotypes from the pathogens and the plants on which they were collected, and the population structures appeared remarquably congruent. Three phylogenetic groups were identified in these both species, corresponding with the temperate species range contraction-expansion cycles during the past glaciations. A substructure was identified in the pathogen suggesting the possibility of a more complex history
Burette, Mélanie. "Etude de la réplication intracellulaire et de la persistance de Coxiella burnetii, agent pathogène de la Fièvre Q." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT053.
Повний текст джерелаIntracellular replication and persistence strategies of the Q fever pathogenCoxiella burnetiiCoxiella burnetii is the causative agent of human Q Fever, considered as one of the most relevant re- emerging zoonosis in Europe. C. burnetii infects humans through the inhalation of contaminated aerosols, causing epidemics with serious economic and health consequences. Following internalisation, C. burnetii subverts host cell functions to inhibit the innate immune response and generate a replicative niche called CCV (Coxiella-containing vacuole) characterised by a unique protein and lipid composition. My thesis project focuses on the study of the host/pathogen interactions underlying the persistence and intracellular replication of C. burnetii.First, the function of the effector protein NopA was discovered showing how this protein inhibits the innate immune response in infected cells. The results obtained during my PhD have shown that NopA interacts with Ran and triggers an imbalance in its nucleocytoplasmic gradient, thereby perturbing the nuclear import of eukaryotic proteins and the expression of pro-inflammatory cytokines. In parallel, the role of lipid metabolism in the establishment of the CCV was investigated. By using a wide array of lipid probes and confocal microscopy, the lipid signature of CCVs was determined and revealed that PI(4)P and LBPA are actively subverted by C. burnetii during infection. Lipid pulldown assays then led to the identification of C. burnetii candidate effector proteins interacting with host cell lipids. One of them, CBU0635, is a putative phosphoinositide phosphatase that diverts the secretory pathway to the forming Coxiella- containing vacuole while CBU2007 manipulates lysobisphosphatidic acid metabolism to recruit the ESCRT machinery and block the biogenesis of multivesicular bodies. These results help to better understand intracellular replication and persistence strategies of C. burnetii and could allow the development of new antimicrobials and the therapeutic repurposing of C. burnetii proteins
Cossé, Mathilde. "Identification et caractérisation d'un nouvel effecteur précoce de Chlamydia trachomatis." Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066083.pdf.
Повний текст джерелаC. trachomatis is an obligate intracellular Gram-negative bacteria and a human pathogen. It is the most prevalent cause of sexually transmitted diseases of bacterial origin and a leading cause of preventable blindness in the developing world. During their biphasic developmental cycle the bacteria remains in a membrane-bounded cellular compartment called an inclusion. Using a type 3 secretion system (T3SS) they translocate effector proteins inside the cytosol of the cell to promote its survival and multiplication.The aim of the PhD was to study the function of CT622, a hypothetic protein from C. trachomatis. We showed that CT622 is an effector protein from the T3SS and that it is secreted early during the infection. We identified a bacterial protein that binds to CT622, and we showed that it acts as a chaperone, stabilizing CT622 and enhancing its secretion. We obtained bacteria lacking CT622 expression, thus demonstrating that CT622 is not essential for bacterial growth in vitro. However, preliminary studies indicate that in the absence of CT622 bacterial development is delayed and T3SS is defective.We identified several molecules interacting with CT622: geranylgeranyl diphosphate, Rab39 and Atg16L1 proteins. Future work will aim at understanding how these identified interactions, or other bacterial or cellular partners still to be discovered, contribute to the establishment of a niche favorable to bacterial development
Rubio, Tristan. "Diversité des mécanismes d’interactions des vibrios du clade Splendidus et de leur hôte, l'huître creuse Crassostrea gigas." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT098/document.
Повний текст джерелаIn the Splendidus clade, Vibrio tasmaniensis and Vibrio crassostreae are two populations of virulent vibrio for oysters that are associated to "juvenile oyster mortality syndrome". Here we were interested in the diversity of interaction mechanisms between the vibrios and their host, the oyster Crassostrea gigas. First, we investigated the pathogenesis process of the strain V. tasmaniensis LGP32 and showed that it exerts a cytotoxic activity against oyster immune cells, the hemocytes, which depend on its entry into the cells through phagocytosis. Transcriptomic analysis of LGP32 response during intracellular stage revealed a crucial role for antioxydant systems and copper efflux in intraphagosomal survival of the bacteria. From a functional point of view, we showed that this virulence mechanisms of LPG32 play a major role in pathogenesis in vivo. Second, we realized a comparative study of the interaction mechanisms between representative strains of the two populations V. tasmaniensis and V. crassostreae with the oyster. Virulent strains from both populations were cytotoxic for hemocytes but this cytotoxicity was independant of phagocytosis in the case of V. crassostreae, in contrary to V. tasmaniensis. Transcriptomic analysis of the oyster responses during infection showed that virulent strains of both populations repressed the expression of genes involved in antibacterial responses. However, some pecific responses were also identified for each virulent strain, highlighting some diversity of interactions. In vivo, virulent strains were able to colonize oyster tissues, in contrary to non-virulent strains, which were controlled by hemocytes. Our work show, although a certain degree of diversity and specificity exist in the interactions between different vibrios of the Splendidus clade and oysters, both virulent populations are cytotoxic for immune cells, and this process is essential for their infectious success. Thus, the capacity to overcome the hemocyte defenses is a conserved phenotype between distinct virulent populations of vibrios from the Splendidus clade. Hence, it would be of particular interest to determine the evolutionary processes that drove the emergence of common virulence traits in distinct populations of pathogens
Juan, Pierre-Alexandre. "Identification du système de transformation naturelle de Legionella pneumophila." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10315.
Повний текст джерелаUnder certain growth conditions, some bacteria are able to develop a « competence » state for natural transformation, that is, to express a panel of genes involved in the assembly of a DNA uptake system that allows bacteria to take up and recombine free exogenous DNA, leading to a genetic and phenotypic transformation. Natural transformation may have played a role in the evolution of the L. pneumophila genome.Thus, the main objective of this work was to describe the main components of the L. pneumophila DNA uptake system and to investigate its role regarding the host-pathogen interaction. Transcriptomic analysis and directed mutagenesis permitted to identify the main components of the system which is not involved in bacterial virulence. The system include a transformation pilus that is a structure frequently found in transformable species. The role of the structural protein MreB has also been investigated.By describing a first model of the natural transformation system of L. pneumophila, this work paves the way to a deeper analysis of the system dynamics and, more generally, to a better understanding of natural transformation in Gram-negative species
Squiban, Barbara. "Criblage par ARN interférence du génome complet de C. elegans pour l' identification de nouveaux gènes impliqués dans l' immunité innée." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4056.
Повний текст джерелаTo investigate innate immune signaling, we study the interaction of C. elegans with the fungus Drechmeria coniospora. One of the responses of the worm to this infection is the up-regulation of a variety of antimicrobial peptide (AMP) genes in the epidermis. Transgenic worms carrying a GFP reporter gene under the control of an AMP promoter fluoresce green after infection by D. coniospora. If a gene required for AMP gene expression is inactivated, the reporter strain will not turn green upon infection. Using this fluorescent read-out, we have been able to screen for signaling molecules required for AMP gene expression using a quantitative semi-automated RNAi approach. We have screened two RNAi libraries that together cover 95% of the ca. 20,000 genes in the C. elegans genome and we obtained 360 high-confidence candidates that reduced the level of induction of green fluorescence after infection, and correspond to 343 genes. A further phenotypic characterization allowed the candidates to be grouped into distinct functional categories and allowed the identification of both a receptor acting upstream the p38 MAPK pathway necessary for the activation of the AMPs, and the implication of stress granules during infection. Altogether, the screen data and its analysis represent the foundation for the establishment of a comprehensive description of the signaling network regulating the innate immune system of the worm and will shed light on the complex interactions between immunity and other physiological processes at the molecular, cellular and organismal level
Richetta, Clémence. "Étude du rôle de l'autophagie dans l'infection par le virus de la rougeole : mécanismes d'induction et conséquences sur le cycle viral." Phd thesis, Université Claude Bernard - Lyon I, 2013. http://tel.archives-ouvertes.fr/tel-01045022.
Повний текст джерелаКниги з теми "Hôte-Pathogen"
A, Bailey John, ed. Biology and molecular biology of plant-pathogen interactions. Berlin: Springer-Verlag, 1986.
Знайти повний текст джерелаVanderplank, J. E. Host-Pathogen Interactions in Plant Disease. Elsevier Science & Technology Books, 2012.
Знайти повний текст джерела