Добірка наукової літератури з теми "Hot carrier solar cell"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hot carrier solar cell".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hot carrier solar cell"

1

Ikeri, H. I., A. I. Onyia, and F. N. Kalu. "Hot carrier exploitation strategies and model for efficient solar cell applications." Chalcogenide Letters 18, no. 11 (November 2021): 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.

Повний текст джерела
Анотація:
Hot carriers are electrons or holes that are created in semiconductors upon the absorption of photons with energies greater than the fundamental bandgap. The excess energy of the hot carrier cools to the lattice temperature via carrier–phonon scattering and wasted as heat in [the] picoseconds timescale. The hot-carrier cooling represents a severe loss in the solar cells that have significantly limits their power conversion efficiencies. Hot carrier solar cells aim to mitigate this optical limitation by effective utilization of carriers at elevated energies. However, exploitation of hot carrier energy is extremely challenging as hot carriers rapidly lose their excess energy in phonon emission and therefore requires a substantial delay of carrier cooling in absorber material. In this paper a simple model was formulated to study the kinetic energies and hence the energy levels of the photo excited carriers in the quantum dots (QDs) whereas Schaller model was used to investigate the threshold energies of considered QDs. Results strongly indicate low threshold photon energies within the energy conservation limit for PbSe, PbTe, PbS, InAs, and InAs QDs. These materials seem to be good candidates for efficient carrier multiplication. It is found also that PbSe, PbTe, PbS, InAs, ZnS and InAs QDs exhibit promising potential for possible hot carrier absorber due to their widely spaced energy levels predicted to offer a large phononic gap between the optical and acoustic branches in the phonon dispersion. This in principle enhances phonon bottleneck effect that dramatically slows down hot carrier cooling leading to retention of hot carriers long enough to enable their exploitation. Two novel strategies were employed for the conversion of hot carriers into usable energies. The first approach involves the extraction of the energetic hot carriers while they are ‘hot’ to create higher photo voltage while the second approach uses the hot carrier to produce more carriers through impact ionization to create higher photo current. These mechanisms theoretically give rise to high overall conversion efficiencies of hot carrier energy well above Shockley and Queisser limit of conventional solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Conibeer, Gavin, Robert Patterson, Lunmei Huang, Jean-Francois Guillemoles, Dirk Kőnig, Santosh Shrestha, and Martin A. Green. "Modelling of hot carrier solar cell absorbers." Solar Energy Materials and Solar Cells 94, no. 9 (September 2010): 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Konovalov, Igor, and Vitali Emelianov. "Hot carrier solar cell as thermoelectric device." Energy Science & Engineering 5, no. 3 (June 2017): 113–22. http://dx.doi.org/10.1002/ese3.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sogabe, Tomah, Kodai Shiba, and Katsuyoshi Sakamoto. "Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell." Electronic Materials 3, no. 2 (May 11, 2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.

Повний текст джерела
Анотація:
The hot-carrier effect and hot-carrier dynamics in GaAs solar cell device performance were investigated. Hot-carrier solar cells based on the conventional operation principle were simulated based on the detailed balance thermodynamic model and the hydrodynamic energy transportation model. A quasi-equivalence between these two models was demonstrated for the first time. In the simulation, a specially designed GaAs solar cell was used, and an increase in the open-circuit voltage was observed by increasing the hot-carrier energy relaxation time. A detailed analysis was presented regarding the spatial distribution of hot-carrier temperature and its interplay with the electric field and three hot-carrier recombination processes: Auger, Shockley–Read–Hall, and radiative recombinations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

König, D., Y. Takeda, and B. Puthen-Veettil. "Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts." Applied Physics Letters 101, no. 15 (October 8, 2012): 153901. http://dx.doi.org/10.1063/1.4757979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Würfel, P., A. S. Brown, T. E. Humphrey, and M. A. Green. "Particle conservation in the hot-carrier solar cell." Progress in Photovoltaics: Research and Applications 13, no. 4 (2005): 277–85. http://dx.doi.org/10.1002/pip.584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

König, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51 (October 22, 2012): 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

König, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51, no. 10S (October 1, 2012): 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Boyer-Richard, Soline, Fei Fan, Nicolas Chevalier, Antoine Létoublon, Alexandre Beck, Karine Tavernier, Shalu Rani, et al. "Preliminary study of selective contacts for hot carrier solar cells." EPJ Photovoltaics 15 (2024): 38. http://dx.doi.org/10.1051/epjpv/2024031.

Повний текст джерела
Анотація:
Hot carrier solar cells are a concept of photovoltaic devices, which offers the opportunity to harvest solar energy beyond the Shockley-Queisser limit. Unlike conventional photovoltaic devices, hot carrier solar cells convert excess kinetic energy into useful electrical power rather than losing it through thermalisation mechanisms. To extract the carriers while they are still “hot”, efficient energy-selective contacts must be developed. In previous studies, the presence of the hot carrier population in a p-i-n solar cell based on a single InGaAsP quantum well on InP substrate at room temperature has been demonstrated by means of complementary optical and electrical measurements, leading to an operating condition for this device beyond the limit for classical device operation. This result allows to design a new generation of devices to increase the hot carrier conversion contribution. In this work, we study InGaAs/AlInAs type II heterojunction as a selective contact for a future hot carrier solar cell device epitaxially grown on (001) oriented InP substrate. Two p-i-n solar cells have been grown by molecular beam epitaxy on InP. The absorber is a 50 nm-thick InGaAs layer surrounded by AlInAs barriers, all lattice-matched to InP. Two architectures are compared, the first with two symmetrical AlInAs barriers and the second with a single InGaAs quantum well in the center of the n-side barrier to allow electron tunneling across the barrier. Electrical characteristics under laser illumination with two different wavelengths have been measured to investigate the effect of the selective contact compared to the barrier. This preliminary study of InGaAs/AlInAs-based selective contacts show that such III–V combination is adapted for a future hot carrier solar cell in the InP technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ferry, D. K. "In search of a true hot carrier solar cell." Semiconductor Science and Technology 34, no. 4 (March 20, 2019): 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hot carrier solar cell"

1

Vezin, Thomas. "Uneven temperatures in hot carrier solar cells : optical characterization and device simulation." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX061.

Повний текст джерела
Анотація:
Les cellules solaires à porteurs chauds promettent des rendements théoriques supérieurs à 66%. N´néanmoins, les dispositifs réels ont des rendements nettement inférieurs, de l’ordre de 10%. Pour comprendre cette différence, il est nécessaire de complexifier notre compréhension des cellules solaires à porteurs chauds en introduisant des effets non-idéaux. Dans cette thèse, nous étudions deux effets ≪ d’écart de température ≫: (i) l’existence d’un gradient de température dans l’absorbeur (température inhomogène) et (ii) l’existence de deux températures différentes pour les électrons et les trous. Dans le premier cas, nous proposons une description théorique du transport adaptée à cette situation particulière. Nous montrons que le transport est ambipolaire et thermoélectrique, et proposons une expression théorique pour les coefficients de transport. Ensuite, nous proposons une expérience basée sur une mesure hyperspectrale de photoluminescence en régime continu pour caractériser les coefficients de transport. Nous mesurons en particulier le coefficient Seebeck ambipolaire d’un puits quantique de (In,Ga,As)P. Dans le second cas, nous commençons par prouver que la température des électrons et des trous sont toutes deux accessibles par une simple mesure de photoluminescence en régime continu. En effet, l’absorptivité ´e d’un échantillon dépend des distributions des électrons et des trous grâce au terme de ≪ band filling ≫. Cette technique nécessite que l’échantillon soit soumis à une excitation intense, de sorte que les électrons et les trous soient dans un régime dégénère. Enfin, nous avons étudié l’impact de ces deux effets sur l’opération des cellules `a porteurs chauds. Nous avons d’abord calcul ´e le voltage d’une cellule sujette à l’un ou l’autre de ces deux effets d’écart de température, et montré qu’ils sont identiques. Ensuite, nous avons montré que la différence de température entre les électrons et les trous (à température effective fixée) conduit `a une augmentation de l’efficacité de la cellule, de l’ordre de 1 `a 2 points maximum. Cet effet ´ étant limité, il n’est pas nécessaire de caractériser avec précision la température des électrons et des trous, la connaissance de la température effective semble suffisante
Hot-carrier solar cells promise theoretical efficiencies exceeding 66%. However, actual devicesexhibit significantly lower efficiencies, around 10%. To understand this discrepancy, it is necessary to complicate our understanding of hot-carrier solar cells by introducing non-ideal effects. In this thesis, we study two “uneven temperature” effects: (i) the existence of a temperature gradient within the absorber (inhomogeneous temperature) and (ii) the existence of two different temperatures for electrons and holes. In the first case, we propose a theoretical description of transport adapted to this specific situation. We show that the transport is ambipolar and thermoelectric, and we propose a theoretical expression for the transport coefficients. Next, we suggest an experiment based on hyperspectral photoluminescence imaging in steady-state to characterize transport coefficients. In particular, we measure the ambipolar Seebeck coefficient of an (In,Ga,As)P quantum well. In the second case, we begin by proving that electron and hole temperatures s are both accessible through steady-state photoluminescence spectroscopy. Indeed, the absorptivity of a sample depends on the distributions of electrons and holes due to the ”band filling” effect. This technique requires that the sample be subjected to intense excitation, ensuring that the electrons and holes are in a degenerate regime. Finally, we studied the impact of these two uneven temperature effects on the operation of hot-carrier solar cells. We first calculated the voltage of a cell subject to either of these effects and showed that they result in identical cell voltage. We then demonstrated that the temperature difference between electrons and holes (at a fixed effective temperature) leads to an increase in cell efficiency, by about 1 to 2 points maximum. This effect being limited, precise characterization of electron and hole temperatures is unnecessary to design hot-carrier solar cells
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rodière, Jean. "Optoelectronic characterization of hot carriers solar cells absorbers." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066703/document.

Повний текст джерела
Анотація:
La cellule photovoltaïque à porteurs chauds est un dispositif de conversion de l’énergie solaire en énergie électrique dont les rendements théoriques approchent les 86%. Additionnellement à une cellule photovoltaïque standard, ce dispositif permet de convertir l’excédent d’énergie cinétique des porteurs photogénérés, en énergie électrique. Pour cela, le phénomène de thermalisation doit être réduit et des contacts électriques sélectifs en énergie ajoutés. Afin de déterminer les performances potentielles des absorbeurs, tout en surmontant le défi de fabrication des contacts électriques sélectifs, un montage et une méthode de cartographie d’intensité absolue de photoluminescence résolue spectralement ont été utilisés. Ceci a permis d’obtenir la température d’émission et la séparation des quasi-niveaux de Fermi, les deux grandeurs thermodynamiques caractéristiques de la performance des absorbeurs. Dans cette étude, des absorbeurs à base de puits quantiques d’InGaAsP sur substrat d’InP sont utilisés. Les grandeurs thermodynamiques sont estimées et la technique de caractérisation utilisée permet l’accès à des grandeurs tel que le facteur de thermalisation mais aussi un coefficient thermoélectrique, appelé photo-Seebeck. L’analyse quantitative de porteurs chauds dans des conditions pertinentes pour le photovoltaïque est une première ; le dispositif étudié permettrait de dépasser la limite de Schockley-Queisser. Enfin, le dispositif étant muni de contacts des caractérisations électriques sont faites et comparé aux mesures optiques. Afin de mieux comprendre l’évolution des grandeurs thermodynamiques étudiées, une première simulation est proposée
The hot carrier solar cell is an energy conversion device where theoretical conversion efficiencies reach almost 86%. Additionally to a standard photovoltaic cell, the device allows the conversion of kinetic energy excess of photogenerated carriers into electrical energy. To achieve this, the thermalisation process must be limited and electrical energy selective contacts added. In order to determine potential absorber performances and overcome the fabrication challenge of energy selective contacts, a set-up and the related method of mapping absolute photoluminescence spectra were used. This technique allows getting quasi-Fermi levels splitting and temperature of emission, both thermodynamic quantities characteristic of the performance of the absorbers. In this study, absorbers based on InGaAsP multiquantum wells on InP substrate were used. The thermodynamic quantities are determined and allow to access at quantities such as thermalisation rate but also a thermoelectric coefficient, so-called Photo-Seebeck. The quantitative analysis of the hot carriers regime, in relevant conditions for photovoltaic is a first: the analysed device indicates a potential photovoltaic conversion over the Schockley-Queisser limit. At last, as the device is supplied with electrical contacts, electrical characterization are made and compared to optical measurements. A first simulation is proposed to better understand the thermodynamic quantities evolution as a function of the electrical bias
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rodière, Jean. "Optoelectronic characterization of hot carriers solar cells absorbers." Electronic Thesis or Diss., Paris 6, 2014. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2014PA066703.pdf.

Повний текст джерела
Анотація:
La cellule photovoltaïque à porteurs chauds est un dispositif de conversion de l’énergie solaire en énergie électrique dont les rendements théoriques approchent les 86%. Additionnellement à une cellule photovoltaïque standard, ce dispositif permet de convertir l’excédent d’énergie cinétique des porteurs photogénérés, en énergie électrique. Pour cela, le phénomène de thermalisation doit être réduit et des contacts électriques sélectifs en énergie ajoutés. Afin de déterminer les performances potentielles des absorbeurs, tout en surmontant le défi de fabrication des contacts électriques sélectifs, un montage et une méthode de cartographie d’intensité absolue de photoluminescence résolue spectralement ont été utilisés. Ceci a permis d’obtenir la température d’émission et la séparation des quasi-niveaux de Fermi, les deux grandeurs thermodynamiques caractéristiques de la performance des absorbeurs. Dans cette étude, des absorbeurs à base de puits quantiques d’InGaAsP sur substrat d’InP sont utilisés. Les grandeurs thermodynamiques sont estimées et la technique de caractérisation utilisée permet l’accès à des grandeurs tel que le facteur de thermalisation mais aussi un coefficient thermoélectrique, appelé photo-Seebeck. L’analyse quantitative de porteurs chauds dans des conditions pertinentes pour le photovoltaïque est une première ; le dispositif étudié permettrait de dépasser la limite de Schockley-Queisser. Enfin, le dispositif étant muni de contacts des caractérisations électriques sont faites et comparé aux mesures optiques. Afin de mieux comprendre l’évolution des grandeurs thermodynamiques étudiées, une première simulation est proposée
The hot carrier solar cell is an energy conversion device where theoretical conversion efficiencies reach almost 86%. Additionally to a standard photovoltaic cell, the device allows the conversion of kinetic energy excess of photogenerated carriers into electrical energy. To achieve this, the thermalisation process must be limited and electrical energy selective contacts added. In order to determine potential absorber performances and overcome the fabrication challenge of energy selective contacts, a set-up and the related method of mapping absolute photoluminescence spectra were used. This technique allows getting quasi-Fermi levels splitting and temperature of emission, both thermodynamic quantities characteristic of the performance of the absorbers. In this study, absorbers based on InGaAsP multiquantum wells on InP substrate were used. The thermodynamic quantities are determined and allow to access at quantities such as thermalisation rate but also a thermoelectric coefficient, so-called Photo-Seebeck. The quantitative analysis of the hot carriers regime, in relevant conditions for photovoltaic is a first: the analysed device indicates a potential photovoltaic conversion over the Schockley-Queisser limit. At last, as the device is supplied with electrical contacts, electrical characterization are made and compared to optical measurements. A first simulation is proposed to better understand the thermodynamic quantities evolution as a function of the electrical bias
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jiang, Chu-Wei School of Photovoltaic Engineering UNSW. "Theoretical and experimental study of energy selective contacts for hot carrier solar cells and extensions to tandem cells." Awarded by:University of New South Wales. School of Photovoltaic Engineering, 2005. http://handle.unsw.edu.au/1959.4/23065.

Повний текст джерела
Анотація:
Photovoltaics is currently the fastest growing energy source in the world. Increasing the conversion efficiency towards the thermodynamic limits is the trend in research development. ???Third generation??? photovoltaics involves the investigation of ideas that may achieve this goal. Among the third generation concepts, the tandem cell structure has experimentally proven to have conversion efficiencies higher than a standard p-n junction solar cell. The alternative hot carrier solar cell design is one of the most elegant approaches. Energy selective contacts are crucial elements for the operation of hot carrier solar cells. Besides the carrier cooling problem within the absorber, carrier extraction has to be done through a narrow range of energy to minimise the interaction between the hot carriers in the absorber and the cooler carriers in the contacts. Resonant tunnelling through localised states, such as associated with atomic defects or with quantum dots in a dielectric matrix, may provide the required energy selectivity. A new model in studying the properties of resonant tunnelling through defects in an insulator is proposed and investigated. The resulting calculations are simple and useful in obtaining physical insight into the underlying tunneling processes. It is found that defects having a normal distribution along the tunnelling direction do not reduce the transmission coefficient dramatically, which increases the engineering prospects for fabrication. Silicon quantum dots embedded in an oxide provide the required deep energy confinement for room temperature resonant tunnelling operation. A single layer of silicon quantum dots in the centre of an oxide matrix are prepared by RF magnetron sputtering. The method has the advantage of controlling the dot size and the dot spatial position along the tunnelling direction. The presence of these crystalline silicon dots in the oxide is confirmed by high resolution transmission electron microscopy (HRTEM). A negative-differential resistance characteristic has been measured at room temperature on such structures fabricated on an N-type degenerated silicon wafer, a feature that can be explained by the desired resonant tunnelling process. A silicon quantum dot superlattice can be made by stacking multiple layers of silicon quantum dots. A model is proposed for calculating the band structure of such a silicon quantum dot superlattice, with the anisotropic silicon effective mass being taken into account. It suggests a high density of silicon quantum dots in a carbide matrix may provide the bandgap and required mobility for the top cell in the stacks for the recently proposed all-silicon tandem solar cell. The resonant tunnelling modeling and silicon quantum dot experiments developed have demonstrated new results relevant to energy selective contacts for hot carrier solar cells. Building on this work, the modeling study on silicon quantum dots may provide the theoretical basis for bandgap engineering of all-silicon tandem cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Qingrong. "Hot Carriers in Thin-film Absorbers." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303146.

Повний текст джерела
Анотація:
Solar energy is one of the most promising sources of confronting the energy crisis. And hot carrier solar cell can be the future to increase the efficiency of solar cells to exceed to the theoretical efficiency limit, Shockley-Queisser limit. After theoretical understanding of some essential aspects of hot carrier solar cell, to better understand the properties of hot carriers and the thermalization mechanisms behind it, analysis is conducted based on the photoluminescence spectra of GaAs thin-film absorber samples with different thicknesses. According to the results of the analysis, information on the properties of hot carriers in thin-film GaAs absorbers will be extracted, as well as a conclusion based on those results.
Solenergi är en av de mest lovande källorna för att konfrontera energikrisen. Och heta bärsolceller kan vara framtiden för att öka solcellernas effektivitet till att överskrida den teoretiska effektivitetsgränsen, Shockley-Queisser-gränsen. Efter teoretisk förståelse av några väsentliga aspekter av varmbärarsolceller, för att bättre förstå egenskaperna hos heta bärare och termismeringsmekanismerna bakom den, utförs analys baserad på fotoluminescensspektra för GaAs tunnfilmsabsorberprover med olika tjocklekar. Enligt resultaten av analysen kommer information om egenskaperna hos heta bärare i tunnfilmiga GaA-absorberare att extraheras, liksom en slutsats baserad på dessa resultat.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Behaghel, Benoît. "Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066729/document.

Повний текст джерела
Анотація:
Le photovoltaïque (PV) s’est imposé comme un acteur majeur de l’énergie. L’innovation dans ce domaine passera sans doute par le PV à haut rendement sur des couches minces flexibles et légères permettant son déploiement dans les applications mobiles. Cette thèse étudie le développement de cellules solaires III-V à structures quantiques visant des concepts PV hauts rendements tels les cellules solaires à bande intermédiaire (IBSC). Ces IBSC se sont montrés limités du fait de l’échappement thermique des porteurs à température ambiante ainsi que la faible absorption optique sous le gap. Nous avons évalué la topologie, le mécanisme d’échappement thermique, la structure quantique ainsi que l’absorption de boites quantiques en In(Ga)As dans un matériau hôte en Al0.2GaAs à grand gap. Nous avons aussi caractérisé de manière quantitative comment opère ce système et avons amélioré son design optique. Sous une forte irradiation, nous avons mis en évidence l’apparition d’une population de porteurs chauds dans les boites quantiques. Par ailleurs, l’effet d’absorption sequentielle à deux photons (S-TPA) a été démontré. Nous avons observé une augmentation de ce S-TPA d’un facteur x5-10 grâce à du management de la lumière réalisé notamment avec des cavités de Fabry-Pérot. Des nanostructures périodiques ont aussi été fabriquées dans le cas de cellules solaires à multi-puits quantiques par l’utilisation de lithographie en nanoimpression. Dans l’ensemble cette étude vise à discuter la possibilité de réaliser des cellules solaires à porteurs chauds assistés d’une bande intermédiaire et améliorées par un management optique afin d’ouvrir la voie pour des cellules à hauts rendements
In the past decade, photovoltaics (PV) has become a key player for the future of worldwide energy generation. Innovation in PV is likely to rely on high efficiency PV with flexible and lightweight thin films to enable PV deployement for mobile applications. In the framework of the Japanese-French laboratory “NextPV”, this thesis investigates the development of III-V quantum structured solar cells to explore high-efficiency photovoltaic concepts especially intermediate band solar cells (IBSC). Quantum structured IBSC have proven to be limited by thermal escape at room temperature and by low subbandgap light absorption. Following a consistent approach, we evaluate the topology, thermal escape mechanism, quantum structure and optical absorption of In(Ga)As quantum dots in a wide gap Al0.2GaAs host material. We also characterize quantitatively the device operation and improve the optical design. For a high irradiation, we evidence a hot carrier population in the quantum dots. At the same time, sequential two-photon absorption (S-TPA) is demonstrated both optically and electrically. We also show that S-TPA for both subbandgap transitions can be enhanced by a factor x5-10 with light management techniques, for example by implementation of Fabry-Perot cavities with the different epitaxial transfer methods that we developed. More advanced periodical nanostructures were also fabricated in the case of multi-quantum well solar cells using nanoimprint lithography techniques. Overall we discuss the possibility of realizing intermediate-band-assisted hotcarrier solar cells with light management to open the path for high-efficiency quantum structured IBSC
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Behaghel, Benoît. "Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066729.

Повний текст джерела
Анотація:
Le photovoltaïque (PV) s’est imposé comme un acteur majeur de l’énergie. L’innovation dans ce domaine passera sans doute par le PV à haut rendement sur des couches minces flexibles et légères permettant son déploiement dans les applications mobiles. Cette thèse étudie le développement de cellules solaires III-V à structures quantiques visant des concepts PV hauts rendements tels les cellules solaires à bande intermédiaire (IBSC). Ces IBSC se sont montrés limités du fait de l’échappement thermique des porteurs à température ambiante ainsi que la faible absorption optique sous le gap. Nous avons évalué la topologie, le mécanisme d’échappement thermique, la structure quantique ainsi que l’absorption de boites quantiques en In(Ga)As dans un matériau hôte en Al0.2GaAs à grand gap. Nous avons aussi caractérisé de manière quantitative comment opère ce système et avons amélioré son design optique. Sous une forte irradiation, nous avons mis en évidence l’apparition d’une population de porteurs chauds dans les boites quantiques. Par ailleurs, l’effet d’absorption sequentielle à deux photons (S-TPA) a été démontré. Nous avons observé une augmentation de ce S-TPA d’un facteur x5-10 grâce à du management de la lumière réalisé notamment avec des cavités de Fabry-Pérot. Des nanostructures périodiques ont aussi été fabriquées dans le cas de cellules solaires à multi-puits quantiques par l’utilisation de lithographie en nanoimpression. Dans l’ensemble cette étude vise à discuter la possibilité de réaliser des cellules solaires à porteurs chauds assistés d’une bande intermédiaire et améliorées par un management optique afin d’ouvrir la voie pour des cellules à hauts rendements
In the past decade, photovoltaics (PV) has become a key player for the future of worldwide energy generation. Innovation in PV is likely to rely on high efficiency PV with flexible and lightweight thin films to enable PV deployement for mobile applications. In the framework of the Japanese-French laboratory “NextPV”, this thesis investigates the development of III-V quantum structured solar cells to explore high-efficiency photovoltaic concepts especially intermediate band solar cells (IBSC). Quantum structured IBSC have proven to be limited by thermal escape at room temperature and by low subbandgap light absorption. Following a consistent approach, we evaluate the topology, thermal escape mechanism, quantum structure and optical absorption of In(Ga)As quantum dots in a wide gap Al0.2GaAs host material. We also characterize quantitatively the device operation and improve the optical design. For a high irradiation, we evidence a hot carrier population in the quantum dots. At the same time, sequential two-photon absorption (S-TPA) is demonstrated both optically and electrically. We also show that S-TPA for both subbandgap transitions can be enhanced by a factor x5-10 with light management techniques, for example by implementation of Fabry-Perot cavities with the different epitaxial transfer methods that we developed. More advanced periodical nanostructures were also fabricated in the case of multi-quantum well solar cells using nanoimprint lithography techniques. Overall we discuss the possibility of realizing intermediate-band-assisted hotcarrier solar cells with light management to open the path for high-efficiency quantum structured IBSC
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hirst, Louise. "A spectroscopic study of strain-balanced InGaAs/GaAsP quantum well structures as absorber materials for hot carrier solar cells." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10474.

Повний текст джерела
Анотація:
In this thesis, five intrinsic loss mechanisms which fundamentally limit solar energy conversion efficiency are identified. The three dominant mechanisms are thermalisation loss, below Eg loss and Boltzmann loss. Targeting these three losses through alternative device design is the only way substantial efficiency enhancement might be achieved. The hot carrier solar cell targets these dominant mechanisms and hence has a theoretical limiting efficiency, under maximum solar concentration, in excess of 80%. Despite clear efficiency advantages, a hot carrier solar cell has never been experimentally demonstrated because two key development challenges remain: energy selective contacts and absorber materials which maintain a hot carrier distribution under realistic levels of incident solar irradiation. In this study, strain-balanced InGaAs/GaAsP QW structures with a range of QW parameters were characterised spectroscopically in order to determine the suitability of this material system as a hot carrier absorber. In a deep, wide well sample, a temperature gradient between the carrier distribution and the surrounding lattice of 150 K was demonstrated using continuous wave photoluminescence spectroscopy. This technique was also used to calculate a thermalisation coefficient for each sample, allowing for comparison with other hot carrier studies. Time resolved photoluminescence measurements were used to identify cooling pathways occurring in this material system. Bi-exponential cooling behaviour was observed, indicating that two different mechanisms with different characteristic cooling lifetimes were dominating carrier cooling. In the deep, wide well sample it was determined that peak LO phonon distribution temperatures of at least 500 K above that of the surrounding lattice would be required to produce the observed carrier cooling.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Le, bris Arthur. "Etude de faisabilité d'un dispositif photovoltaïque à porteurs chauds." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00646713.

Повний текст джерела
Анотація:
La cellule photovoltaïque à porteurs chauds se caractérise par une population électronique hors équilibre thermique avec le réseau, ce qui se traduit par une température électronique supérieure à la température du matériau. Il devient alors possible de récupérer non seulement l'énergie potentielle des porteurs, mais également leur énergie cinétique, et donc d'extraire un surcroît de puissance qui n'est pas exploitée dans des cellules conventionnelles. Cela permet d'atteindre des rendements potentiels proches de la limite thermodynamique. L'extraction des porteurs hors équilibre se fait au moyen de membranes sélectives en énergie afin de limiter les pertes thermiques. Dans cette thèse, l'influence de la sélectivité des contacts sur les performances de la cellule est analysée par des simulations de rendement. Il apparaît que ce paramètre est moins critique qu'annoncé dans la littérature, et que des rendements élevés sont possibles avec des contacts semi-sélectifs, permettant l'extraction de porteurs au dessus d'un seuil d'énergie. De tels contacts sont non seulement beaucoup plus facilement réalisables en pratique que des contacts sélectifs, mais sont également plus compatibles avec les densités de courant élevées qui sont attendues dans de tels dispositifs. Une méthodologie expérimentale est également proposée pour analyser la vitesse de thermalisation des porteurs hors équilibre. Des porteurs sont photogénérés par un laser continu et leur température en régime stationnaire est sondée par photoluminescence en fonction de la densité de puissance excitatrice. Un modèle empirique est obtenu reliant la puissance dissipée par thermalisation à la température électronique. Ce modèle est ensuite utilisé pour simuler le rendement de cellules présentant une thermalisation partielle des porteurs. Enfin, un rendement de cellule réaliste présentant une absorption non idéale, une vitesse de thermalisation mesurée sur des matériaux réels et des contacts semi-sélectifs est calculé. Il ressort qu'une augmentation substantielle de rendement est possible en comparaison d'une simple jonction ayant le même seuil d'absorption, mais que la vitesse de thermalisation observée est néanmoins trop élevée pour permettre de dépasser les records de rendement actuels. Des idées sont proposées afin d'améliorer les performances des structures étudiées.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ho, Carr Hoi Yi. "Toward better performing organic solar cells: impact of charge carrier transport and electronic interactions in bulk heterojunction blends /Ho Hoi Yi, Carr." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/359.

Повний текст джерела
Анотація:
Organic photovoltaic (OPV) is an exciting energy harvesting technique. Although its power conversion efficiency (PCE) now exceeds 10% in a research laboratory, the processing window of an OPV cell is still narrow. A fundamental understanding of the OPV materials is desired. This thesis presents the charge carrier transport properties and electronic interactions in the bulk heterojunction (BHJ) active layer of OPV cells. They were found to be well correlated with OPV device performances. Space-charge-limited current (SCLC) measurements and admittance spectroscopy (AS) were employed to study the charge transports, while photothermal deflection spectroscopy (PDS) was used to probe the trap densities inside the materials. Beneficial effects of a common solvent additive, 1,8-diiodooctance (DIO), on PTB7:PC71BM OPV cells have been investigated. With DIO present in the casting solution, the resulting BHJ films have much enhanced electron mobilities, whereas the impact on the hole mobility is negligible. The origin of increased electron mobility is the reduced average electron hopping distance for those films prepared with DIO solvent additive. A balance of hole-electron mobility by tuning the DIO concentration was demonstrated to be the way to optimize the OPV device performance. In light of carrier transport measurement results, a "polymer-rich" strategy with preserved device performance was demonstrated. After understanding the importance of balanced hole-electron mobility, the impact of donor-acceptor weight ratio on the performance of PTB7 : PC71BM based OPV cells was explored. Early stage electronic donor-acceptor interactions were revealed using ultra-low dosages of fullerenes. Before electron transport pathways percolate, the unconnected fullerene domains act as traps and hinder electron transport. From PDS, the trap density observed inside BHJ films was found to be anti-correlated with the fill factor of OPV devices. The origin of low FFs is mainly due to electron traps and localized states from fullerenes. Based on the observations, it is proposed that PC71BM tends to intercalate with PTB7 backbone instead of forming self-aggregates before the electron pathway percolation. Apart from investigating the fundamentals in OPV devices, a solution to improve its processing window was proposed in this thesis. Thermally stable polymer : fullerene OPV cells were fabricated by employing fluorenone-based solid additives. A charge transfer interaction between the additives and donor moiety of polymer formed a locked network which freezes the BHJ morphology under thermal stress. The most promising result retains 90% of the origin efficiency, upon thermal aging at 100 °C for more than 20 hours in PTB7:PC71BM solar cells. Besides fullerene-based OPV, all-polymer photovoltaic solar cells (all-PSCs) were also investigated. Two new difluorobenzene-naphthalene diimide based polymer electron acceptors, one random (P1) and one regioregular (P2) structure, were compared. P2 exhibited a much better molecular packing, a higher electron mobility and more balanced hole-electron mobilities in its composite film with polymer donor, PTB7-Th. An optimized PTB7-Th:P2 device can achieve a respectably high PCE over 5% for all-PSC devices. These all-PSCs should open a new avenue for next generation OPVs.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hot carrier solar cell"

1

United States. National Aeronautics and Space Administration., ed. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell: Annual status report for NASA grant #NAG 3-1490. [Washington, DC: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hot carrier solar cell"

1

Takeda, Yasuhiko. "Requisites for Highly Efficient Hot-Carrier Solar Cells." In Lecture Notes in Nanoscale Science and Technology, 187–232. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8148-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kita, Takashi, Yukihiro Harada, and Shigeo Asahi. "Influences of Carrier Generation and Recombination on the Solar Cell Conversion Efficiency." In Energy Conversion Efficiency of Solar Cells, 43–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9089-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sah, Santosh Prasad, and Atsushi Nishikata. "Enhancing Corrosion Resistance of Stainless Steel by Hot-Dip Aluminizing for High-Temperature Solar Thermal Application." In CO2 Free Ammonia as an Energy Carrier, 99–118. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4767-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vitanov, P., K. Ivanova, D. Velkov, Y. G. Kuddan, and N. Tyutyundzhiev. "The Behavior Of Pv Module Parameters As A Function Of Solar Cell Temperature In Hot Climates." In Photovoltaic and Photoactive Materials — Properties, Technology and Applications, 325–28. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0632-3_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gibelli, François, Laurent Lombez, and Jean-François Guillemoles. "Hot-Carrier Solar Cells: Modeling Carrier Transport." In Advanced Micro- and Nanomaterials for Photovoltaics, 53–92. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814501-2.00004-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Igor, Vurgaftman. "Solar Cells, Thermophotovoltaics, and Nonlinear Devices Based on Quantum Wells." In Bands and Photons in III-V Semiconductor Quantum Structures, 585–616. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198767275.003.0015.

Повний текст джерела
Анотація:
This chapter describes the basic principles behind the solar-cell operation using both an empirical picture and fundamental thermodynamic relationships. It considers how semiconductor materials are selected for use in solar cells and why materials with different gaps need to be stacked to improve the conversion efficiency. It also discusses advanced solar-cell concepts such as quantum-well, intermediate-band, and hot-carrier solar cells. Thermophotovoltaic devices that are similar to solar cells, but designed for emission peaks at much lower effective temperatures than the surface of the sun (and narrower gaps), are also discussed, and multistage thermophotovoltaic devices are described in detail. The chapter concludes by presenting the basic nonlinear physics of intersubband transitions in quantum wells, and how to take advantage of these physical principles for second-harmonic generation and difference-frequency mixing. The important application of generating THz emission from mid-IR quantum cascade lasers using difference-frequency mixing is emphasized.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ghasemzadeh, Farzaneh, and Mostafa Esmaeili Shayan. "Nanotechnology in the Service of Solar Energy Systems." In Nanotechnology and the Environment. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93014.

Повний текст джерела
Анотація:
Nanotechnology can help to address the existing efficiency hurdles and greatly increase the generation and storage of solar energy. A variety of physical processes have been established at the nanoscale that can improve the processing and transmission of solar energy. The application of nanotechnology in solar cells has opened the path to the development of a new generation of high-performance products. When competition for clean energy options is growing, a variety of potential approaches have been discussed in order to expand the prospects. New principles have been explored in the area of solar cell generation, multi-generation, spectrum modulation, thermo-photoelectric cells, hot carrier, the middle band, and many other techniques. Nanoparticles and nanostructures have been shown to enhance the absorption of light, increase the conversion of light to energy, and have improved thermal storage and transport.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aïssa, Brahim, Fahhad Alharbi, and Nouar Tabet. "Solar cell fundamentals." In Photovoltaic Technology for Hot and Arid Environments, 23–38. Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/pbpo144e_ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aïssa, Brahim, Marie Buffiere, and Mohammad I. Hossain. "Solar cell technologies." In Photovoltaic Technology for Hot and Arid Environments, 59–109. Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/pbpo144e_ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shrestha, Santosh, Gavin Conibeer, and Shujuan Huang. "Solar Cells Based on Hot Carriers and Quantum Dots." In Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, 175–213. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-813647-8.00006-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hot carrier solar cell"

1

Legrand, Marie, Maxime Giteau, Daniel Suchet, Jean-Francois Guillemoles, Meita Asami, Kentaroh Watanabe, Takaya Kubo, Hiroshi Segawa, and Yoshitaka Okada. "Bridging the Gap Between Steady-State and Transient Characterization of Carrier Cooling for Hot-Carrier Solar Cells." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 1270–72. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10748812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cavassilas, Nicolas, Fabienne Michelini, Marc Bescond, and Thibault Joie. "Hot-carrier solar cell NEGF-based simulations." In SPIE OPTO, edited by Alexandre Freundlich, Laurent Lombez, and Masakazu Sugiyama. SPIE, 2016. http://dx.doi.org/10.1117/12.2212612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Conibeer, Gavin, Santosh Shrestha, Shujuan Huang, Robert Patterson, Hongze Xia, Yu Feng, Pengfei Zhang, et al. "Hot carrier solar cell absorbers: materials, mechanisms and nanostructures." In SPIE Solar Energy + Technology, edited by Oleg V. Sulima and Gavin Conibeer. SPIE, 2014. http://dx.doi.org/10.1117/12.2067926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hanna, Mark C., Zhenghao Lu, and Arthur J. Nozik. "Hot carrier solar cells." In Future generation photovoltaic technologies. AIP, 1997. http://dx.doi.org/10.1063/1.53477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hirst, Louise C., Matthew P. Lumb, Raymond Hoheisel, Simon P. Philipps, Andreas W. Bett, and Robert J. Walters. "Hot-carrier solar cell spectral insensitivity: Why develop the hot-carrier solar cell when we have multi-junction devices?" In SPIE OPTO, edited by Alexandre Freundlich and Jean-François Guillemoles. SPIE, 2014. http://dx.doi.org/10.1117/12.2040698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Basu, Indranil, Amit Kumar Mandali, Pijus Kanti Samanta, Vishal Kumar, Md Afsar Hussain, Abhilash, Akshay Kumar, Shivam Shashank, Suraj Kumar Singh, and Kumar Anubhav. "Hot carrier solar cell (HCSC): A new generation nano-structured solar cell." In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). IEEE, 2017. http://dx.doi.org/10.1109/iemecon.2017.8079608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pusch, Andreas, Milos Dubajic, Nicholas J. Ekins-Daukes, and Stephen Bremner. "Fundamental Aspects of Hot Carrier Solar Cell Operation." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Liu, Mengzhu Hu, and Sailing He. "Hot-carrier solar cell based on plasmonic nanofocusing." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taylor, P. C., J. D. Fields, and R. T. Collins. "On the road toward a hot carrier solar cell." In SPIE Optics + Photonics for Sustainable Energy, edited by Oleg V. Sulima and Gavin Conibeer. SPIE, 2015. http://dx.doi.org/10.1117/12.2190910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Conibeer, Gavin, Milos Dubajic, Santosh Shrestha, Stephen Bremner, Robert Patterson, and Bharat Thapa. "Investigation of materials for hot carrier solar cell absorbers." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hot carrier solar cell"

1

Hardin, Brian, Craig Peters, and Edward Barnard. Three-dimensional minority carrier lifetime mapping of thin film semiconductors for solar cell applications. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1411710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії