Добірка наукової літератури з теми "Horizontal convection"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Horizontal convection".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Horizontal convection"

1

Hughes, Graham O., and Ross W. Griffiths. "Horizontal Convection." Annual Review of Fluid Mechanics 40, no. 1 (January 2008): 185–208. http://dx.doi.org/10.1146/annurev.fluid.40.111406.102148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hazewinkel, J., F. Paparella, and W. R. Young. "Stressed horizontal convection." Journal of Fluid Mechanics 692 (January 5, 2012): 317–31. http://dx.doi.org/10.1017/jfm.2011.514.

Повний текст джерела
Анотація:
AbstractWe consider the problem of a Boussinesq fluid forced by applying both non-uniform temperature and stress at the top surface. On the other boundaries the conditions are thermally insulating and either no-slip or stress-free. The interesting case is when the direction of the steady applied surface stress opposes the sense of the buoyancy driven flow. We obtain two-dimensional numerical solutions showing a regime in which there is an upper cell with thermally indirect circulation (buoyant fluid is pushed downwards by the applied stress and heavy fluid is elevated), and a second deep cell with thermally direct circulation. In this two-cell regime the driving mechanisms are competitive in the sense that neither dominates the flow. A scaling argument shows that this balance requires that surface stress vary as the horizontal Rayleigh number to the three-fifths power.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barkan, Roy, Kraig B. Winters, and Stefan G. Llewellyn Smith. "Rotating horizontal convection." Journal of Fluid Mechanics 723 (April 16, 2013): 556–86. http://dx.doi.org/10.1017/jfm.2013.136.

Повний текст джерела
Анотація:
Abstract‘Horizontal convection’ (HC) is the generic name for the flow resulting from a buoyancy variation imposed along a horizontal boundary of a fluid. We study the effects of rotation on three-dimensional HC numerically in two stages: first, when baroclinic instability is suppressed and, second, when it ensues and baroclinic eddies are formed. We concentrate on changes to the thickness of the near-surface boundary layer, the stratification at depth, the overturning circulation and the flow energetics during each of these stages. Our results show that, for moderate flux Rayleigh numbers ($O(1{0}^{11} )$), rapid rotation greatly alters the steady-state solution of HC. When the flow is constrained to be uniform in the transverse direction, rapidly rotating solutions do not support a boundary layer, exhibit weaker overturning circulation and greater stratification at all depths. In this case, diffusion is the dominant mechanism for lateral buoyancy flux and the consequent buildup of available potential energy leads to baroclinically unstable solutions. When these rapidly rotating flows are perturbed, baroclinic instability develops and baroclinic eddies dominate both the lateral and vertical buoyancy fluxes. The resulting statistically steady solution supports a boundary layer, larger values of deep stratification and multiple overturning cells compared with non-rotating HC. A transformed Eulerian-mean approach shows that the residual circulation is dominated by the quasi-geostrophic eddy streamfunction and that the eddy buoyancy flux has a non-negligible interior diabatic component. The kinetic and available potential energies are greater than in the non-rotating case and the mixing efficiency drops from ${\sim }0. 7$ to ${\sim }0. 17$. The eddies play an important role in the formation of the thermal boundary layer and, together with the negatively buoyant plume, help establish deep stratification. These baroclinically active solutions have characteristics of geostrophic turbulence.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Feng, Tao, Jia-Yuh Yu, Xiu-Qun Yang, and Ronghui Huang. "Convective Coupling in Tropical-Depression-Type Waves. Part II: Moisture and Moist Static Energy Budgets." Journal of the Atmospheric Sciences 77, no. 10 (October 1, 2020): 3423–40. http://dx.doi.org/10.1175/jas-d-19-0173.1.

Повний текст джерела
Анотація:
AbstractThe companion of this paper, Part I, discovered the characteristics of the rainfall progression in tropical-depression (TD)-type waves over the western North Pacific. In Part II, the large-scale controls on the convective rainfall progression have been investigated using the ERA-Interim data and the TRMM 3B42 precipitation-rate data during June–October from 1998 to 2013 through budgets of moist static energy (MSE) and moisture. A buildup of column-integrated MSE occurs in advance of deep convection, and an export of MSE occurs following deep convection, which is consistent with the MSE recharge–discharge paradigm. The MSE recharge–discharge is controlled by horizontal processes, whereby horizontal moisture advection causes net MSE import prior to deep convection. Such moistening by horizontal advection creates a moist midtroposphere, which helps destabilize the atmospheric column, leading to the development of deep convective rainfall. Following the heaviest rainfall, negative horizontal moisture advection dries the troposphere, inhibiting convection. Such moistening and drying processes explain why deep convection can develop without preceding shallow convection. The advection of moisture anomalies by the mean horizontal flow controls the tropospheric moistening and drying processes. As the TD-type waves propagate northwestward in coincidence with the northwestward environmental flow, the moisture, or convective rainfall, is phase locked to the waves. The critical role of the MSE import by horizontal advection in modulating the rainfall progression is supported by the anomalous gross moist stability (AGMS), where the lowest AGMS corresponds to the quickest increase in the precipitation rate prior to the rainfall maximum.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Straughan, B. "Horizontally isotropic double porosity convection." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2221 (January 2019): 20180672. http://dx.doi.org/10.1098/rspa.2018.0672.

Повний текст джерела
Анотація:
We analyse instability and nonlinear stability in a layer of saturated double porosity medium. In a double porosity or bidisperse porous medium, there are normal pores which give rise to a macroporosity. But, there are also cracks or fissures in the solid skeleton and these give arise to another porosity known as micro porosity. In this paper, the macropermeability is horizontally isotropic, in the sense that the vertical component of permeability is different to the horizontal one which is the same in all horizontal directions. Thus, the permeability is transversely isotropic with the isotropy axis in the vertical direction of gravity. We also allow the micro permeability to be horizontally isotropic, but the permeability ratios of vertical to horizontal are different in the macro- and micro-phases. The effect of the difference of ratios is examined in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Nan, Yan Wang, and Xiaomeng Lin. "Mesoscale Observational Analysis of Isolated Convection Associated with the Interaction of the Sea Breeze Front and the Gust Front in the Context of the Urban Heat Humid Island Effect." Atmosphere 13, no. 4 (April 9, 2022): 603. http://dx.doi.org/10.3390/atmos13040603.

Повний текст джерела
Анотація:
An isolated convection was unexpectedly initiated in the evening of 1 August 2019 around the Tianjin urban region (TUR), which happened at some distance from the shear line at lower level and the preexisting convection to the South, analyzed by using ERA5 reanalysis data and observations from surface weather stations, and a S-band radar. The results show that, 42 min before the initiation of the convection, the atmospheric thermodynamic conditions around TUR were favorable for the initiation of the isolated convection, although the southerly and vertical shear of the horizontal wind at the lower level was weak. A sea-breeze front approached the TUR and continued to move West, leading to the triggering of the isolated convection in the context of the urban humid heat island (UHHI) effect. Subsequently, the gust front, which was formed between the cold pool away from the TUR and the warm and humid air of the UHHI, moved northward, approached the convection, and collided with sea breeze front, resulting in five reflectivity centers of isolated convection being merged and the convection’s development. Finally, the isolated convection split into two convections that moved away from the TUR and disappeared at 20:36 Beijing Time. The isolated convection was initiated and developed by the interaction of the sea breeze front and gust front in the context of the UHHI effect. The sea breeze front triggered the isolated convection around TUR in the context of the UHHI effect, and the gust front produced by the early convective storms to the south played a vital role in the development of the isolated convection.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SIGGERS, J. H., R. R. KERSWELL, and N. J. BALMFORTH. "Bounds on horizontal convection." Journal of Fluid Mechanics 517 (October 25, 2004): 55–70. http://dx.doi.org/10.1017/s0022112004000497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simpkins, P. G., and K. S. Chen. "Convection in horizontal cavities." Journal of Fluid Mechanics 166, no. -1 (May 1986): 21. http://dx.doi.org/10.1017/s0022112086000022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

CHIU-WEBSTER, S., E. J. HINCH, and J. R. LISTER. "Very viscous horizontal convection." Journal of Fluid Mechanics 611 (September 25, 2008): 395–426. http://dx.doi.org/10.1017/s0022112008002942.

Повний текст джерела
Анотація:
‘Horizontal convection’ arises when a temperature variation is imposed along a horizontal boundary of a finite fluid volume. Here we study the infinite-Prandtl-number limit relevant to very viscous fluids, motivated by the study of convection in glass furnaces. We consider a rectangular domain with insulating conditions on the sides and bottom, and a linear temperature gradient on the top. We describe steady states for a large range of aspect ratio A and Rayleigh number Ra, and find universal scalings for the transition from small to large Rayleigh numbers. At large Rayleigh number, the top boundary-layer thickness scales as Ra−1/5, with the circulation and heat flux scaling as Ra1/5. These scalings hold for both rigid and shear-free boundary conditions on the top or on the other boundaries, which is initially surprising, but is because the return flow is dominated by a horizontal intrusion immediately beneath the top boundary layer. A downwelling plume also forms on one side, but because of strong stratification in the interior, the volume flux it carries is much smaller than that of the horizontal intrusion, decaying as the inverse of the depth below the top boundary. The fluid in the plume detrains into the interior and then returns to the top boundary, thus forming a ‘filling box’. We find analytic solutions for the interior temperature and streamfunction and match them to a similarity solution for the plume. At depths comparable to the length of the top boundary the streamfunction has O(1) values and the temperature variations scale as 1/Ra. Transient calculations with a large, but finite, Prandtl number, show how the steady state is reached from hot and cold initial conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Takemi, Tetsuya. "Importance of the Numerical Representation of Shallow and Deep Convection for Simulations of Dust Transport over a Desert Region." Advances in Meteorology 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/413584.

Повний текст джерела
Анотація:
This study examines the representations of shallow and deep convection under two distinct stability conditions over a desert region with the use of the numerical outputs from large-eddy simulations at the 100 m horizontal resolution. The numerical experiments were set up under idealized conditions of a horizontally uniform basic state over a homogeneous and flat surface, which was aimed at representing fair-weather convective situations over the Gobi Desert. Spatial spectra were used in order to examine how small scales are reproduced and how representative scales appear at various heights. From the results of the spectral analyses, a grid scale required to properly represent shallow and deep convection in convection-resolving simulations is identified. It is indicated that the adequate representations of shallow and deep convection are critically important in simulating the transport of dust aerosols under convective conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Horizontal convection"

1

Chiu-Webster, Sunny. "Horizontal convection and glass furnaces." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kerr, O. S. "Horizontal effects in double-diffusive convection." Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jansen, Adrian J. "Natural convection above a horizontal heat source." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from the National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA267212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hort, Matthew C. "Transient natural convection within horizontal cylindrical enclosures." Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grine, K. "Free convection problems from a semi-infinite horizontal plate." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ali, Hafiz-Muhummad. "Free-convection condensation on single horizontal pin-fin tubes." Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/2322.

Повний текст джерела
Анотація:
New experimental data are reported for free-convection condensation of ethylene glycol and R-113 on three-dimensional pin-fin tubes. Effects of pin geometry and tube thermal conductivity (for copper, brass and bronze giving a mean range of 400, 120 and 80 W/m K over the range of temperature of interest) were investigated. All tests were performed at near atmospheric pressure with downward flowing vapour at low velocity. Heat-transfer enhancement was found to be approximately twice the corresponding active surface area of the tubes, i.e. the surface area of the parts of the tube and pin surface not covered by condensate retained by surface tension. For ethylene glycol, the best performing pin-fin tube gave a heat-transfer enhancement of 5.8, about 24 % higher than the ‘equivalent’ two-dimensional integral-fin tube (i.e. with the same finroot diameter, longitudinal fin spacing and thickness and fin height). For R-113, the best enhancement was 5.9, about 10 % higher than the equivalent integral-fin tube. For both fluids tested, vapour-side, heat-transfer enhancement was found to increase with decreasing circumferential pin spacing and increasing pin height. Circumferential pin thickness had little effect on heat-transfer enhancement. Effects of tube thermal conductivity were found to be more significant for ethylene glycol than R-113. Retention angle measurements were made under static conditions (without condensation) and were found to be larger than for equivalent integral-fin tubes. An expression for condensate retention angle on pin-fin tubes was proposed and found to agree with the measured retention angles to ±15%. A semi-empirical model for condensation heat transfer on horizontal pin-fin tubes has been developed which accounts for the combined effect of gravity and surface tension. The model predicts the majority of available data to ±20 %.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dyko, Mark P. "Three-dimensional buoyancy-driven convection in horizontal cylindrical annuli /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402288261566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Straneo, Fiammetta. "Dynamics of rotating convection including a horizontal stratification and wind /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/10996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lagana, Anthony. "Mixed convection heat transfer in vertical, horizontal, and inclined pipes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq29607.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lagana, Anthony. "Mixed convection heat transfer in vertical, horizontal, and inclined pipes." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27234.

Повний текст джерела
Анотація:
An experimental apparatus was designed and constructed for the study of laminar mixed convection heat transfer in vertical, horizontal and inclined tubes. The working fluid was distilled water, with bulk temperatures in the range of 8$ sp circ$C to 31$ sp circ$C.
An innovative design allows, for the first time, flow visualization over the entire heated portion of the test section. The key element of this design is a thin, electrically conductive gold-film heater suitably attached to the outside surface of a plexiglas pipe: the gold film is approximately 80% transparent to electromagnetic radiation in the visible wavelength band. This test section was mounted inside a transparent vacuum chamber to insulate it from the environment. A dye injection technique was used to visualize the mixed-convection flow patterns. The apparatus was also designed and instrumented to allow the measurement of both circumferential and axial temperature variations over the heated tube.
The flow-visualization results revealed the following: (i) a steady recirculating flow pattern, followed by laminar flow instability in vertical tubes; (ii) steady spiralling flow patterns in inclined and horizontal tubes, that confirmed earlier numerical predictions. The temperature results agreed qualitatively with earlier published experimental and numerical data. Local and overall Nusselt numbers can be calculated using the data presented, but this is not within the scope of this thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Horizontal convection"

1

Hickey, Christopher N. Natural convection from a horizontal heater in response to steady and pulsatile input powers. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Adams, Vance Hiro. Theoretical study of laminar film condensation on horizontal elliptical tubes under conditions of free and forced convection. Monterey, Calif: Naval Postgraduate School, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oosthuizen, Patrick H., and Abdulrahim Y. Kalendar. Natural Convective Heat Transfer from Horizontal and Near Horizontal Surfaces. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78750-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oosthuizen, Patrick H., and Abdulrahim Y. Kalendar. Natural Convective Heat Transfer from Horizontal and Near Horizontal Surfaces. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McCoy, Timothy J. Natural convection from a horizontal cylinder parallel to a heated vertical wall. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Entrainment, Detrainment and Large-Scale Horizontal Gradients in Oceanic Deep Convection. Storming Media, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kristovich, David A. R. Reflectivity profiles and core characteristics along horizontal roll convection in lake-effect snowstorms. 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khalil, Hesham. Natural Convection from a Horizontal Heat Sink: Numerical Simulation Using Fluent 19. 2. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Horizontal convective condensation of alternative refrigerants within a micro-fin tube. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nihad, Dukhan, and United States. National Aeronautics and Space Administration., eds. Convective heat transfer from castings of ice roughened surfaces in horizontal flight. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Horizontal convection"

1

Boetcher, Sandra K. S. "Natural Convection Heat Transfer From Horizontal Cylinders." In Natural Convection from Circular Cylinders, 3–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08132-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Noshadi, V. "Magnetic Stirring in Horizontal Continuous Casting." In Interactive Dynamics of Convection and Solidification, 137–44. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9807-1_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shishkina, Olga. "Heat Transport in Horizontal and Inclined Convection." In Springer Proceedings in Physics, 245–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57934-4_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gervasio, Camille, Alessandro Bottaro, Mohamed Afrid, and Abdelfattah Zebib. "Oscillatory Natural Convection in a Long Horizontal Cavity." In Numerical Simulation of Oscillatory Convection on Low-Pr Fluids, 136–43. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-87877-9_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Paparella, Francesco. "Turbulence, Horizontal Convection, and the Ocean’s Meridional Overturning Circulation." In Mathematical Paradigms of Climate Science, 15–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39092-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mobedi, M., H. Yüncü, and B. Yücel. "Natural Convection Heat Transfer from Horizontal Rectangular Fin Arrays." In Cooling of Electronic Systems, 189–202. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1090-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, L., and D. J. Sun. "Numerical Simulation of Partial-Penetrating Flow in Horizontal Convection." In New Trends in Fluid Mechanics Research, 391–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Amghar, K., M. A. Louhibi, H. Bouali, N. Salhi, and M. Salhi. "Turbulent Forced Convection Heat Transfer in a Horizontal Partitioned Channel." In Lecture Notes in Electrical Engineering, 746–54. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1405-6_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Belabid, Jabrane, Karam Allali, and Mohamed Belhaq. "Convection in a Horizontal Porous Annulus with Quasi-Periodic Gravitational Modulation." In Springer Proceedings in Physics, 277–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9463-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sarma, Gabbita Sundara Rama. "Interfacial Effects on the Onset of Convection in Horizontal Liquid Layers." In NATO ASI Series, 271–89. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0707-5_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Horizontal convection"

1

Tsai, Tzekih, and Gregory J. Sheard. "Onset of Horizontal Convection." In 22nd Australasian Fluid Mechanics Conference AFMC2020. Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/8de0a02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anwer, Syed, and Nadeem Hassan. "Natural Convection in Horizontal Cylinder." In 36th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Grigull, Ulrich, and Werner Hauf. "NATURAL CONVECTION IN HORIZONTAL CYLINDRICAL ANNULI." In International Heat Transfer Conference 3. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/ihtc3.990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gorman, Ian M. O., Darina B. Murray, Gerard Byrne, and Tim Persoons. "Natural Convection From Isothermal Horizontal Cylinders." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11213.

Повний текст джерела
Анотація:
The research described here is concerned with natural convection from isothermal cylinders, with a particular focus on the interaction between a pair of vertically aligned cylinders. Prime attention was focused on how the local heat transfer characteristics of the upper cylinder are affected due to buoyancy induced fluid flow from the lower cylinder. Tests were performed using internally heated copper cylinders with an outside diameter 30mm and a vertical separation distance between the cylinders ranging from two to three cylinder diameters. Plume interaction between the heated cylinders was investigated within a Rayleigh number range of 2×106 to 6×106. Spectral analysis of the associated heat transfer interaction is presented showing that interaction between the cylinders causes oscillation of the thermal plume. The effect of this oscillation is considered as a possible enhancement mechanism of the heat transfer performance of the upper cylinder.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Al-Ahmadi, Hamed, and Ahmad Fakheri. "Natural Convection From Horizontal Helicoidal Pipes." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1289.

Повний текст джерела
Анотація:
Abstract Natural convection heat transfer from a horizontal helicoidal pipe is experimentally investigated for different coil-pitches. A modified characteristic length incorporating the tube diameter, the coil diameter, and the coil spacing, is proposed as the relevant scale for defining Nusselt and Rayleigh numbers. Using the proposed characteristic length, it is shown that the Nusselt number for horizontal helicoidal pipes can be determined using the available Nusselt versus Rayleigh number correlation for straight horizontal cylinders with high degree of accuracy over the range of the experimental data.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chu, T. Y. "DEVELOPING CONVECTION ABOVE A FINITE HORIZONTAL SURFACE." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.2980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pan, C., and F. Lai. "Natural convection in horizontal layered porous annuli." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Braga, Edimilson J., and Marcelo J. S. de Lemos. "Turbulent Natural Convection in Horizontal Composite Cavities." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41456.

Повний текст джерела
Анотація:
Turbulent natural convection in a two-dimensional horizontal composite square cavity, isothermally heated at the left side and cooled from the opposing surface, is numerically analyzed using the finite volume method. The composite square cavity is formed by three distinct regions, namely, clear, porous and solid region. Accordingly, the development of a numerical tool able to treat all these regions as one computational domain is of advantage for engineering design of thermal systems. Governing equations are written in terms of primitive variables and are recast into a general form. It was found that the fluid begins to permeate the porous medium for values of Ra greater than 106. Nusselt number values show that for the range of Ra analyzed there are no significant variation between the laminar and turbulent model solution..
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sillekens, J. J. M., Camilo C. M. Rindt, and Anton A. van Steenhoven. "MIXED CONVECTION IN A 90° HORIZONTAL BEND." In International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.3420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mota, Jose Paulo Barbosa, J. F. Le Prevost, E. Puons, and Esteban Saatdjian. "Natural Convection In Porous, Horizontal Eccentric Annuli." In International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.3200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Horizontal convection"

1

Canaan, R. E. Natural convection heat transfer within horizontal spent nuclear fuel assemblies. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/573364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hata, K., M. Shiotsu, and Y. Takeuchi. Natural convection heat transfer on two horizontal cylinders in liquid sodium. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

N.D. Francis, Jr, M.T. Itamura, S.W. Webb, and D.L. James. CFD Calculation of Internal Natural Convection in the Annulus between Horizontal Concentric Cylinders. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/808039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Triplett, C. E. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/658136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kedzierski, Mark A., and J. M. Goncalves. Horizontal convective condensation of alternative refrigerants within a micro-fin tube. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hamilton, L. J., M. A. Kedzierski, and M. P. Kaul. Horizontal convective boiling of refrigerants and refrigerant mixtures within a micro-fin tube. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kedzierski, Mark A. A Simple Correlation for Horizontal Micro-Fin Tube Convective Boiling; with Example Calculation. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.tn.2224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kedzierski, Mark A., and Lingnan Lin. Update of Legacy NIST Horizontal Micro-Fin Tube Convective Boiling Measurements and Model with Current Fluid Property Values. National Institute of Standards and Technology, November 2021. http://dx.doi.org/10.6028/nist.tn.2179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kedzierski, Mark A., and Donggyu Kang. Horizontal Convective Boiling of R448A, R449A, and R452B within a Micro-Fin Tube with Extensive Measurement and Analysis Details. National Institute of Standards and Technology, May 2016. http://dx.doi.org/10.6028/nist.tn.1915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kedzierski, Mark A., and Ki-Jung Park. Horizontal Convective Boiling of R134a, R1234yf/R134a, and R1234ze(E) within a Micro-Fin Tube with Extensive Measurement and Analysis Details. National Institute of Standards and Technology, August 2013. http://dx.doi.org/10.6028/nist.tn.1807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії