Добірка наукової літератури з теми "High resolution melting analysi"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "High resolution melting analysi".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "High resolution melting analysi"
Carillo, Serge, Laurent Henry, Eric Lippert, François Girodon, Isabelle Guiraud, Céline Richard, Frédérique Dubois Galopin, et al. "Nested High-Resolution Melting Curve Analysis." Journal of Molecular Diagnostics 13, no. 3 (May 2011): 263–70. http://dx.doi.org/10.1016/j.jmoldx.2010.12.002.
Повний текст джерелаRo, Na Young, On Sook Hur, Ho Cheol Ko, Sang Gyu Kim, Ju Hee Rhee, Jae-Gyun Gwag, Jin-Kyung Kwon, and Byoung-Cheorl Kang. "Evaluation of Resistance in Pepper Germplasm to Cucumber mosaic virus by High Resolution Melting Analysis." Research in Plant Disease 18, no. 4 (December 30, 2012): 290–97. http://dx.doi.org/10.5423/rpd.2012.18.4.290.
Повний текст джерелаZambounis, Antonios, Eleni Stefanidou, Panagiotis Madesis, Jovana Hrustić, Milica Mihajlović, and Brankica Tanović. "Genotypic differentiation of Monilinia spp. populations in Serbia using a high-resolution melting (HRM) analysis." Plant Protection Science 57, No. 1 (December 3, 2020): 38–46. http://dx.doi.org/10.17221/35/2020-pps.
Повний текст джерелаErali, Maria, and Carl T. Wittwer. "High resolution melting analysis for gene scanning." Methods 50, no. 4 (April 2010): 250–61. http://dx.doi.org/10.1016/j.ymeth.2010.01.013.
Повний текст джерелаTong, S. Y. C., and P. M. Giffard. "Microbiological Applications of High-Resolution Melting Analysis." Journal of Clinical Microbiology 50, no. 11 (August 8, 2012): 3418–21. http://dx.doi.org/10.1128/jcm.01709-12.
Повний текст джерелаZumaraga, Mark Pretzel, Marietta Rodriguez, Vanessa Joy Timoteo, and Celeste Tanchoco. "Method Validation of a High Resolution Melting Analysis of a Candidate Genetic Marker of Hypertension." Journal of the ASEAN Federation of Endocrine Societies 30, no. 1 (May 31, 2015): 18–24. http://dx.doi.org/10.15605/jafes.030.01.01.
Повний текст джерелаWittwer, Carl T., Gudrun H. Reed, Cameron N. Gundry, Joshua G. Vandersteen, and Robert J. Pryor. "High-Resolution Genotyping by Amplicon Melting Analysis Using LCGreen." Clinical Chemistry 49, no. 6 (June 1, 2003): 853–60. http://dx.doi.org/10.1373/49.6.853.
Повний текст джерелаAntonios, Zambounis, Samaras Anastasios, Xanthopoulou Aliki, Osathanunkul Maslin, Schena Leonardo, Tsaftaris Athanasios, and Madesis Panagiotis. "Identification of Phytophthora species by a high resolution melting analysis: an innovative tool for rapid differentiation." Plant Protection Science 52, No. 3 (May 26, 2016): 176–81. http://dx.doi.org/10.17221/179/2015-pps.
Повний текст джерелаSimko, Ivan. "High-Resolution DNA Melting Analysis in Plant Research." Trends in Plant Science 21, no. 6 (June 2016): 528–37. http://dx.doi.org/10.1016/j.tplants.2016.01.004.
Повний текст джерелаMader, Eduard, Joana Ruzicka, Corinna Schmiderer, and Johannes Novak. "Quantitative high-resolution melting analysis for detecting adulterations." Analytical Biochemistry 409, no. 1 (February 2011): 153–55. http://dx.doi.org/10.1016/j.ab.2010.10.009.
Повний текст джерелаДисертації з теми "High resolution melting analysi"
Dempsey, Nunez Laura. "Spectrum of mutations in MMAA identified by high resolution melting analysis." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110535.
Повний текст джерелаLe produit génique du MMAA est nécessaire pour le métabolisme de la cobalamine intracellulaire (Cbl). Des mutations dans ce gène conduisent à la classe de maladies cblA, caractérisé par l'acidurie méthylmalonique isolée. Nous avons été concernés que les méthodes de diagnostic de cellules somatiques peuvent manquer les patients atteints phénotypes cellulaires moins sévère. Une teste de fusion à haute résolution a été développé pour balayer rapidement les exons codantes et les régions introniques adjacentes du gène MMAA pour des variantes. Nous avons testé l'ADN à partir de 96 personnes de référence qui ne sont pas touchés, 72 patients atteints de cblA confirmé par complémentation et 181 patients présentant une élévation de l'acide méthylmalonique isolée, qui ne pouvaient pas être diagnostiquée à l'aide d'analyse de complémentation. Les variantes suspectes ont été confirmées à l'aide de séquençage Sanger. Dans la cohorte cblA, l'analyse de fusion à haute résolution a correctement identifié toutes les mutations connues antérieurement, ainsi que 22 autres variantes, dont 10 n'avaient pas été signalés précédemment. Nouveaux variantes inclus une duplication (C.551dupG, p.C187LfsX3), une délétion (c.387delC, p.Y129YfsX13), une mutation du site d'épissage (c.440-2A> G, site d'épissage), 4 mutations faux-sens (c. 748G> A, p.E520K; c.820G> A, p.G274S; c.627G> T, p.R209S; c.826A> G, p.K276E), et 3 mutations non-sens (c.960G> A, p.W320X; c.1075C> T, p.E359X; c.1084C> T, p.Q362X). Toutes les variantes faux-sens nouveaux, énumérés ci-dessus, affectent des résidus hautement conservés et sont prévus pour être endommageant. L'analyse de MMAA dans les 181 échantillons non diagnostiqués a révélé un seul changement faux-sens hétérozygote (c.821G> A, p.G274D).
Illson, Margaret. "Spectrum of mutations in MMAB identified by high resolution melting analysis." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110564.
Повний текст джерелаDes variantes pathogéniques dans le gène MMAB (OMIM 607958) sont responsables de la classe cblB d'acidurie méthylmalonique (AMM) respondant à la cobalamine (OMIM 251110). MMAB encode cobalamine adénosyltranférase, une enzyme mitochondriale responsable de la formation de l'adénosylcobalamine (AdoCbl). AdoCbl fonctionne par la suite en tant que cofacteur pour méthylmalonyl-CoA mutase (MCM) durant l'isomérisation de L-méthylmalonyl-CoA vers succinyl-CoA. Des analyses sur des cellules somatiques ont été utilisées pour évaluer des échantillons de patients pour des troubles reliés à la cobalamine. En raison de niveaux de base élevés d'incorporation de propionate, certains patients présentant des phénotypes biochimiques bénins d'AMM ne peuvent être diagnostiqués par analyse de complémentation. Une analyse de fusion à haute résolution (AFHR) a été développée pour balayer rapidement les exons codants et les régions introniques avoisinnantes pour des variantes dans le gène MMAB.Trois cohortes d'échantillons ont été balayées par AFHR : une population de référence non-affectée, 42 échantillons assignés au groupe cblB par analyse de complémentation et 181 patients avec une AMM isolée sans diagnostique. L'AFHR a correctement identifié toutes les mutations précédemment rapportées dans la cohorte cblB ainsi que sept variantes additionelles, incluant une nouvelle variante non-sens (c.12C>A, p.C4X). Le balayage de la cohorte avec de l'AMM isolée a identifié six échantillons contenant des variantes dans MMAB. Deux échantillons, WG3948 et WG4034, étaient des porteurs de variantes hétérozygotes composés. Ils partageaient la mutation c.572G>A (p.R191Q). WG3948, le cas index pour cette étude, était porteur du c.398C>T (p.S133F) pour la deuxième mutation et WG4034, le deuxième patient, contenait une nouvel variante c.394C>T (p.C132R). Les échantillons provenant de quatre autres patients atteints contenait une seule variante. Le c.572G>A (p.R191Q) a été trouvé dans WG3546 et WG4090. WG3759 contenait une substitution c.52C>T (p.S174L), et WG4029 contenait une nouvelle substitution c.185C>T (p.T62M).L'identification de deux patients avec des variantes hétérozygotes composées dans le gène MMAB suggère l'existence d'un phénotype rare mais distinct de cblB. Cette sous-classe est charactérisée par des niveaux d'incorporation de propionate et de synthèse d'AdoCbl dans les valeurs normales, empêchant le diagnostique par analyse des cellules somatiques.
Souza, Roberto Antonio de. "Genotipagem de linhagens de Yersinia spp. por high-resolution melting analysis." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/60/60135/tde-27062013-151724/.
Повний текст джерелаThe genus Yersinia belongs to the family Enterobacteriaceae and comprises 17 species. Y. pestis, Y. pseudotuberculosis and Y. enterocolitica are well recognized human and animal pathogens. Y. pestis causes plague. Y. pseudotuberculosis and Y. enterocolitica are, usually, causative agents of food-waterborne gastroenteritis. The other 14 Yersinia species are considered to be non-pathogenic, with the exception of Y. ruckeri serogroup O:1 which causes infections in fishes. In the last few decades, molecular typing has become an important tool in phylogenetic studies of several microorganisms and the development of fast and inexpensive typing systems can facilitate epidemiological studies of bacterial infections. The present study aimed to develop a method of Yersinia spp. genotyping based on high-resolution melting analysis (HRMA) in order to differentiate the single-nucleotide polymorphisms (SNPs) present in the 16S rRNA, glnA, gyrB, hsp60 and recA sequences and apply it in the typing of 40 Y. pseudotuberculosis strains and 50 Y. enterocolitica strains, as well as, to separate by HRMA the Y. pseudotuberculosis and Y. enterocolitica species. The SNPs were determined in the sequences of the aforementioned loci using a set of 119 Yersinia strains deposited in the GenBank/EMBL/DDBJ database. It were found in the gene sequences analyzed of Y. pseudotuberculosis, Y. enterocolitica, Y. bercovieri, Y. rohdei, Y. intermedia, Y. mollaretii and Y. ruckeri 10, 10, 9, 6, 4, 1 and 1 SNPs, respectively. No SNPs was found in the analyzed sequences of Y. pestis and a large number of SNPs were found in the analyzed sequences of Y. frederiksenii, Y. kristensenii and Y. massiliensis what prevented their genotyping by HRMA. The remaining Yersinia species were not analyzed. It was designed primer pairs to flank the SNPs found in each Yersinia species tested. Using a specie-specific set of primers, the genetic diversity of each Yersinia species used was determined by HRMA and the phylogenetic analysis was based on the concatenated sequence composed by the nucleotides identified in each fragment analyzed. Clustering was performed with the software package BioNumerics using UPGMA method and 1,000 bootstrap replicates. The phylogenetic tree constructed for Y. pseudotuberculosis grouped the strains into bio-serogroups specific clusters. The strains of 1/O:1 bio-serogroup were grouped into one cluster and the strains of 2/O:3 bio-serogroup into iv other cluster. The phylogenetic tree constructed for Y. enterocolitica grouped the strains in three clusters. The highly pathogenic strains, of biotype 1B, were grouped into one cluster, the moderate pathogenic strains, of biotypes 2, 3, 4 and 5, were grouped into a second cluster and, the non-pathogenic strains, of biotype 1A, were grouped into a third cluster. The clusterization of Y. pseudotuberculosis and Y. enterocolitica were consistent with the pathogenic profile characteristic of these two Yersinia species. No significant epidemiological correlation was found in the grouping of Y. bercovieri, Y. rohdei, Y. intermedia Y. mollaretii and Y. ruckeri according to HRMA results. Moreover, the HRMA-based method develop here was able to separate the Y. pseudotuberculosis and Y. enterocolitica species. The HRMA assay developed in this study can be used as an alternative for the genotyping and the differentiation of Y. pseudotuberculosis and Y. enterocolitica. This method can also complement sequence-based methods and facilitate epidemiological studies of these two Yersinia species.
Darbandy, Ashna. "Optimization of High Resolution Melting Analysis for Detection of KRAS Gene Mutations." Thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-130751.
Повний текст джерелаBackground: Mutations of the KRAS oncogene occur in a variety types of human tumors. By assessing the mutation status of KRAS, clinicians can predict patient response to anti-EGFR therapy such as cetuximab (Erbitux®) or panitumumab (Vectibix®) in patients with metastatic colorectal cancer. The aim of this study was to optimize a real-time PCR method followed by high resolution melting analysis (HRM) in a single step for detection of most common mutations within the KRAS gene. Methods: Seven DNA samples with predefined KRAS mutations and 19 tumor samples from patients with metastatic colorectal cancer were used. KRAS mutation detection was performed by direct sequencing as well as HRM. Optimization was performed using touchdown PCR and co-amplification at lower denaturation-temperature PCR. Results: All DNA samples were successfully analyzed with direct sequencing and HRM. Moreover, the improved amplification efficiency and sensitivity was achieved using optimized PCR run protocol. Conclusion: HRM is a simple, inexpensive and reliable method for mutation detection within KRAS. By applying HRM as prescreening method would help reduce labour, time and costs.
Burrows, Adria Michelle. "A comparative ancestry analysis of Y-chromosome DNA haplogroups using high resolution melting." University of the Western Cape, 2018. http://hdl.handle.net/11394/6536.
Повний текст джерелаThe objective of this study is to deduce paternal ancestry using ancestry informative single nucleotide polymorphisms (SNPs) by means of High Resolution Melting (HRM). This was completed by producing a multiplex system that was designed in a hierarchical manner according to the YSNP tree. This project mainly focused on African ancestry and was used to infer paternal ancestral lineages on the Johannesburg Coloured population. South Africa has a diverse population that has ancestral history from across the globe. The South African Coloured population is the most admixed population as it is derived from at least five different population groups: these being Khoisan, Bantu, Europeans, Indians and Southeast Asians. There have been studies done on the Western Cape/ Cape Town Coloured populations before but this study focused on the Johannesburg Coloured population.
Michelle, Burrows Adria. "A comparative ancestry analysis of Y-chromosome DNA haplogroups using high resolution melting." University of the Western Cape, 2018. http://hdl.handle.net/11394/6489.
Повний текст джерелаThe objective of this study is to deduce paternal ancestry using ancestry informative single nucleotide polymorphisms (SNPs) by means of High Resolution Melting (HRM). This was completed by producing a multiplex system that was designed in a hierarchical manner according to the YSNP tree. This project mainly focused on African ancestry and was used to infer paternal ancestral lineages on the Johannesburg Coloured population. South Africa has a diverse population that has ancestral history from across the globe. The South African Coloured population is the most admixed population as it is derived from at least five different population groups: these being Khoisan, Bantu, Europeans, Indians and Southeast Asians. There have been studies done on the Western Cape/ Cape Town Coloured populations before but this study focused on the Johannesburg Coloured population. The first step was to design the multiplex system. This was done by using inhouse SNPs. A total of seven multiplexes were designed and optimised, each consisting of two, three or four different SNPs respectively. A total of 143 saliva and buccal samples were collected from male Johannesburg Coloureds. DNA was extracted from the saliva samples using an optimised organic method. DNA was extracted from the buccal samples using an optimised salting out method. DNA was successfully extracted from 77 of the male samples. A total of 69 samples were screened using Multiplex 1; of the 69 samples 56 samples were successfully screened to infer the paternal lineage of the samples. The results show that the most frequent haplogroup of the Johannesburg male samples was haplogroup CF (39%). The second most frequent haplogroup was haplogroup DE (38%). Under further analysis of haplogroup DE it was seen that 37% of those samples were derived for the haplogroup E1b1b.
PIMENTEL, ROMERO CESAR HUGO. ""INNOVATIVE SIGNAL PROCESSING TECHNIQUES IN BIOENGINEERING: COMPRESSED SENSING AND HIGH RESOLUTION DNA MELTING ANALYSIS"." Doctoral thesis, Università degli studi di Ferrara, 2021. http://hdl.handle.net/11392/2487913.
Повний текст джерелаLa prima parte inizia con un'introduzione alla teoria del Compressed Sensing (CS). Successivamente, viene presentata una panoramica dello stato dell'arte di alcuni adattamenti CS utilizzando nelle diverse fasi, questo per spiegare il nuovo adattamento CS proposto in questo lavoro. Alcuni degli adattamenti CS esaminati vengono confrontati utilizzando segnali sintetici, segnali di elettrocardiografo sintetico (ECG) e segnali elettroencefalografici (EEG). La seconda parte fornisce concetti generali di biologia e sviluppi attuali della bioinformatica per leggere e analizzare il DNA. Domande come Cosa fa un sequencer? Che tipo di dati produce? e Come possono essere analizzati questi dati? sono destinati a ricevere una risposta. Un'altra tecnica affidabile utilizzata nell'analisi del DNA senza sequenziamento è l'analisi High Resolution Melting (HRM) curves, questa tecnica viene utilizzata per trovare differenze tra due filamenti di DNA. Si studia anche le HRM curves per progettare finalmente un software di analisi.
Tsang, Ho-yin, and 曾皓言. "Detection of clinically silent beta-globin gene mutations in Chinese using high resolution melting analysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48334182.
Повний текст джерелаpublished_or_final_version
Pathology
Master
Master of Medical Sciences
Ho, Sophia KW, and 何廣慧. "Detection of clinically silent alpha-globin gene mutations in Chinese using high resolution melting analysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206558.
Повний текст джерелаpublished_or_final_version
Pathology
Master
Master of Medical Sciences
Ozbak, Hani. "The application of High Resolution Melting Analysis (HRMA) for rapid detection of bacteria responsible for bloodstream infections." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/the-application-of-high-resolution-melting-analysis-hrma-for-rapid-detection-of-bacteria-responsible-for-bloodstream-infections(b3d5c15b-9541-44c2-873c-f7a32fc60282).html.
Повний текст джерелаКниги з теми "High resolution melting analysi"
Kaushik, Sanket, and Nagendra Singh, eds. Current Developments in the Detection and Control of Multi Drug Resistance. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150498791220101.
Повний текст джерелаЧастини книг з теми "High resolution melting analysi"
Tucker, Elise J., and Bao Lam Huynh. "Genotyping by High-Resolution Melting Analysis." In Methods in Molecular Biology, 59–66. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0446-4_5.
Повний текст джерелаBruzzone, Carol M., and Clifford J. Steer. "High-Resolution Melting Analysis of Single Nucleotide Polymorphisms." In Molecular Typing of Blood Cell Antigens, 5–27. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2690-9_2.
Повний текст джерелаVossen, Rolf H. A. M. "Genotyping DNA Variants with High-Resolution Melting Analysis." In Methods in Molecular Biology, 17–28. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6442-0_2.
Повний текст джерелаŁukasik, Ewa, Kazimiera Waśniowska, Magdalena Grodecka, Edyta Majorczyk, and Marcin Czerwiński. "High-Resolution Melting Analysis for Genotyping Duffy Blood Group Antigens." In Molecular Typing of Blood Cell Antigens, 83–95. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2690-9_7.
Повний текст джерелаGrazina, Liliana, Joana Costa, Joana S. Amaral, and Isabel Mafra. "High-Resolution Melting Analysis as a Tool for Plant Species Authentication." In Methods in Molecular Biology, 55–73. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1201-9_5.
Повний текст джерелаDay, Robert, and Richard Macknight. "Screening for Imprinted Genes Using High-Resolution Melting Analysis of PCR Amplicons." In Methods in Molecular Biology, 71–83. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-773-0_5.
Повний текст джерелаDerzelle, Sylviane. "Single-Nucleotide Polymorphism Discrimination Using High-Resolution Melting Analysis for the Genotyping of Bacillus anthracis." In Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies, 361–71. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2004-4_26.
Повний текст джерелаOzkok, Fatma Ozge, and Mete Celik. "Classification of High Resolution Melting Curves Using Recurrence Quantification Analysis and Data Mining Algorithms." In Engineering Cyber-Physical Systems and Critical Infrastructures, 641–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-09753-9_49.
Повний текст джерелаFerro, Marta, Hada C. Macher, Pilar Noguerol, Pilar Jimenez-Arriscado, Patrocinio Molinero, Juan M. Guerrero, and Amalia Rubio. "Non-invasive Prenatal Diagnosis of Feto-Maternal Platelet Incompatibility by Cold High Resolution Melting Analysis." In Advances in Experimental Medicine and Biology, 67–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42044-8_13.
Повний текст джерелаNhan, B. T., N. T. T. Lan, N. T. N. Thanh, T. V. Thiep, and N. T. Hue. "Primary Study of SNP rs2046210 in Vietnamese Breast Cancer Population by High-Resolution Melting Analysis (HRMA)." In 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6), 229–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4361-1_38.
Повний текст джерелаТези доповідей конференцій з теми "High resolution melting analysi"
Bel’kovich, Y. I., E. V. Snitkov, and B. A. Tonkonogov. "ALGORITHMS FOR RESULTS’ CLUSTERING OF MELTING CURVES’ ANALYSIS WITH HIGH RESOLUTION." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-416-419.
Повний текст джерелаBoulton, J., E. Masiero, and T. Sgamma. "Barcode High Resolution Melting (Bar-HRM) analysis for authentication of Echinacea products." In GA – 69th Annual Meeting 2021, Virtual conference. Georg Thieme Verlag, 2021. http://dx.doi.org/10.1055/s-0041-1736809.
Повний текст джерелаDaugaard, Iben L., Lasse S. Kristensen, Tina Kjeldsen, Stephen Hamilton Dutoit, Henrik Hager, and Lise Lotte Hansen. "Abstract 2115: Increased sensitivity ofKRASmutation detection by High-Resolution Melting analysis of COLD-PCR products." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2115.
Повний текст джерелаHussein, Rusul Muzher, Alaa Shawqi Abdulbari, and Mohammed A. B. Al-Ayash. "Detection of hepatitis B virus for genotype B and C by using high resolution melting analysis." In PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN PURE AND APPLIED SCIENCE (ICARPAS2021): Third Annual Conference of Al-Muthanna University/College of Science. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0093406.
Повний текст джерелаDeschoolmeester, Vanessa, Christophe Deben, Marc Baay, An Wouters, Marc Peeters, Filip Lardon, and Patrick Pauwels. "Abstract 2103: High resolution melting analysis: a sensitive screening method for the detection of MDM2 promotor SNP309." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2103.
Повний текст джерелаDeschoolmeester, Vanessa, Carolien Boeckx, Wim Wuyts, Eric Van Marck, Peter Vermeulen, Patrick Pauwels, Marc Peeters, Filip Lardon, Jan B. Vermorken, and Marc Baay. "Abstract 2122:KRASmutation detection using high resolution melting analysis and its prognostic value in archival colorectal cancer tissues." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2122.
Повний текст джерелаSharma, Kusum, Aman Sharma, and Mandeep Dhillon. "SAT0471 HIGH-RESOLUTION MELTING CURVE ANALYSIS: A RAPID AND PRAGMATIC APPROACH FOR SCREENING OF MULTIDRUG RESISTANT OSTEOARTICULAR TUBERCULOSIS (OATB)." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.6941.
Повний текст джерелаSchiza, Christina, Sofia Farkona, Maria Chimonidou, Panos Vorkas, Nikos Malamos, Vasilis Georgoulias, and Evi S. Lianidou. "Abstract 2088: Detection ofPIK3CAsomatic mutations in cell-free DNA of breast cancer patients by high-resolution melting curve analysis." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2088.
Повний текст джерелаHashida, Shinsuke, Junichi Soh, Shinichi Toyooka, Ryuhei Tada, Kazuhiko Shien, Masashi Furukawa, Hiromasa Yamamoto, Hiroaki Asano, Kazunori Tsukuda, and Shinichiro Miyoshi. "Abstract 4219: A novel high-sensitive assay for detection of EGFR T790M mutation using high resolution melting analysis with mutant-enriched COLD PCR." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4219.
Повний текст джерелаVillinger, Jandouwe. "Unraveling host-vector-arbovirus interactions by two-gene high resolution melting mosquito bloodmeal analysis in a Kenyan wildlife-livestock interface." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.114306.
Повний текст джерелаЗвіти організацій з теми "High resolution melting analysi"
Lever, James, Susan Taylor, Arnold Song, Zoe Courville, Ross Lieblappen, and Jason Weale. The mechanics of snow friction as revealed by micro-scale interface observations. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42761.
Повний текст джерела