Статті в журналах з теми "High-Pressure stabilization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: High-Pressure stabilization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "High-Pressure stabilization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kurzydłowski, Dominik, and Patryk Zaleski-Ejgierd. "High-pressure stabilization of argon fluorides." Physical Chemistry Chemical Physics 18, no. 4 (2016): 2309–13. http://dx.doi.org/10.1039/c5cp05725f.

Повний текст джерела
Анотація:
Argon forms isolated molecules stable solely in low temperature matrices or supersonic jet streams. We present hybrid DFT theoretical investigations into a new high-pressure reaction pathway, which enables synthesis of argon difluoride (ArF2) in bulk and at room temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Potekhin, S. A., A. A. Senin, N. N. Abdurakhmanov, and E. I. Tiktopulo. "High pressure stabilization of collagen structure." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1794, no. 8 (August 2009): 1151–58. http://dx.doi.org/10.1016/j.bbapap.2009.04.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ruiz-González, M. L., C. Prieto, J. Alonso, J. Ramírez-Castellanos, and J. M. González-Calbet. "Stabilization of CuIIIunder High Pressure in Sr2CuGaO5." Chemistry of Materials 14, no. 5 (May 2002): 2055–62. http://dx.doi.org/10.1021/cm0111884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Castellari, M., G. Arfelli, C. Riponi, G. Carpi, and A. Amati. "High Hydrostatic Pressure Treatments for Beer Stabilization." Journal of Food Science 65, no. 6 (September 2000): 974–77. http://dx.doi.org/10.1111/j.1365-2621.2000.tb09402.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ershov-Pavlov, E. A., L. E. Krat'ko, N. I. Chubruk, and V. D. Shimanovich. "Stabilization of a high-pressure arc in hydrogen." Journal of Applied Spectroscopy 46, no. 3 (March 1987): 317–21. http://dx.doi.org/10.1007/bf00660224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yegorov, A. Y., and S. A. Potekhin. "Lysozyme Stabilization under High Pressure: Differential Scanning Microcalorimetry." Molecular Biology 52, no. 1 (January 2018): 30–35. http://dx.doi.org/10.1134/s0026893318010028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Norrby, N., H. Lind, G. Parakhonskiy, M. P. Johansson, F. Tasnádi, L. S. Dubrovinsky, N. Dubrovinskaia, I. A. Abrikosov, and M. Odén. "High pressure and high temperature stabilization of cubic AlN in Ti0.60Al0.40N." Journal of Applied Physics 113, no. 5 (February 7, 2013): 053515. http://dx.doi.org/10.1063/1.4790800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sena, Hadi. "Stabilization of High-Pressure Phase Semiconductors by Plastic Strain." Journal of the Society of Powder Technology, Japan 58, no. 2 (February 10, 2021): 66–72. http://dx.doi.org/10.4164/sptj.58.66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Capjack, C. E., A. H. Labun, H. J. J. Seguin, and W. D. Bilida. "Magnetic laser discharge stabilization scaling to high‐pressure systems." Journal of Applied Physics 70, no. 11 (December 1991): 6761–65. http://dx.doi.org/10.1063/1.349850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zaleski-Ejgierd, Patryk. "High-pressure formation and stabilization of binary iridium hydrides." Physical Chemistry Chemical Physics 16, no. 7 (2014): 3220. http://dx.doi.org/10.1039/c3cp54300e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Goodner, J. K., R. J. Braddock, M. E. Parish, and C. A. Sims. "Cloud Stabilization of Orange Juice by High Pressure Processing." Journal of Food Science 64, no. 4 (July 1999): 699–700. http://dx.doi.org/10.1111/j.1365-2621.1999.tb15113.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Heffernan, Sinead P., Alan L. Kelly, and Daniel M. Mulvihill. "High-pressure-homogenised cream liqueurs: Emulsification and stabilization efficiency." Journal of Food Engineering 95, no. 3 (December 2009): 525–31. http://dx.doi.org/10.1016/j.jfoodeng.2009.06.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lang, Maik, Fuxiang Zhang, Jie Lian, Christina Trautmann, Reinhard Neumann, and Rodney C. Ewing. "Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure." Earth and Planetary Science Letters 269, no. 1-2 (May 2008): 291–95. http://dx.doi.org/10.1016/j.epsl.2008.02.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Eberius, H., and Th Kick. "Stabilization of Premixed, Conical Methane Flames at High Pressure." Berichte der Bunsengesellschaft für physikalische Chemie 96, no. 10 (October 1992): 1416–19. http://dx.doi.org/10.1002/bbpc.19920961013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Varyukhin, V. N., V. P. Pilyugin, L. I. Stefanovich, and B. M. Efros. "Stabilization of high-pressure phases in nanocrystalline metals and alloys." Bulletin of the Russian Academy of Sciences: Physics 73, no. 9 (September 2009): 1193–98. http://dx.doi.org/10.3103/s1062873809090044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Singla, G., P. Scouflaire, J. C. Rolon, and S. Candel. "Flame stabilization in high pressure LOx/GH2 and GCH4 combustion." Proceedings of the Combustion Institute 31, no. 2 (January 2007): 2215–22. http://dx.doi.org/10.1016/j.proci.2006.07.094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ruiz-Gonzalez, M. L., C. Prieto, J. Alonso, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet. "ChemInform Abstract: Stabilization of CuIII under High Pressure in Sr2CuGaO5." ChemInform 33, no. 32 (May 20, 2010): no. http://dx.doi.org/10.1002/chin.200232024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Shi, Zujin. "Stabilization of metastable structures from high pressure or high temperature to ambient conditions." National Science Review 6, no. 5 (June 11, 2019): 857–58. http://dx.doi.org/10.1093/nsr/nwz072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Inshakov, A. P., S. V. Kryuchkov, and R. O. Soloviov. "Stabilization of diesel fuel supply." Traktory i sel hozmashiny 79, no. 10 (October 15, 2012): 18–20. http://dx.doi.org/10.17816/0321-4443-65981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gilioli, Edmondo, and Lars Ehm. "High pressure and multiferroics materials: a happy marriage." IUCrJ 1, no. 6 (October 31, 2014): 590–603. http://dx.doi.org/10.1107/s2052252514020569.

Повний текст джерела
Анотація:
The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Thein situinvestigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bykov, Maxim, Elena Bykova, Alena V. Ponomareva, Igor A. Abrikosov, Stella Chariton, Vitali B. Prakapenka, Mohammad F. Mahmood, Leonid Dubrovinsky, and Alexander F. Goncharov. "Stabilization of Polynitrogen Anions in Tantalum–Nitrogen Compounds at High Pressure." Angewandte Chemie 133, no. 16 (March 10, 2021): 9085–90. http://dx.doi.org/10.1002/ange.202100283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Bykov, Maxim, Elena Bykova, Alena V. Ponomareva, Igor A. Abrikosov, Stella Chariton, Vitali B. Prakapenka, Mohammad F. Mahmood, Leonid Dubrovinsky, and Alexander F. Goncharov. "Stabilization of Polynitrogen Anions in Tantalum–Nitrogen Compounds at High Pressure." Angewandte Chemie International Edition 60, no. 16 (March 10, 2021): 9003–8. http://dx.doi.org/10.1002/anie.202100283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Lux, Johannes, and Oskar Haidn. "Flame Stabilization in High-Pressure Liquid Oxygen/Methane Rocket Engine Combustion." Journal of Propulsion and Power 25, no. 1 (January 2009): 15–23. http://dx.doi.org/10.2514/1.36852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Shirage, P. M., K. Kihou, C. H. Lee, H. Kito, Y. Tanaka, H. Eisaki, and A. Iyo. "Stabilization of ErFeAsO-based superconductor by hydrogen doping under high pressure." Physica C: Superconductivity and its Applications 471, no. 21-22 (November 2011): 597–99. http://dx.doi.org/10.1016/j.physc.2011.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Mizuguchi, Yoshikazu, Takafumi Hiroi, Joe Kajitani, Hiroshi Takatsu, Hiroaki Kadowaki, and Osuke Miura. "Stabilization of High-Tc Phase of BiS2-Based Superconductor LaO0.5F0.5BiS2 Using High-Pressure Synthesis." Journal of the Physical Society of Japan 83, no. 5 (May 15, 2014): 053704. http://dx.doi.org/10.7566/jpsj.83.053704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Tytiuk, V., D. Mikhieiev, S. Tolmachov, and O. Danyleiko. "APPLICATION OF THE GENERALIZED ELECTROMECHANICAL CONVERTER THEORY TO ANALYSIS OF THE STATIC CHARACTERISTICS OF AN INDUCTION MOTOR." Electromechanical and energy saving systems 4, no. 56 (December 2021): 25–33. http://dx.doi.org/10.30929/2072-2052.2021.4.56.25-33.

Повний текст джерела
Анотація:
Purpose. The work is devoted to the development of a closed-loop control system of hydraulic transport system with pressure stabilization and its research on a mathematical model. Originality. The expediency of application of a closed-loop control system of electric water transport system with pressure stabilization as the most promising way of resource saving in the operation of pumping complexes is substantiated. The realization of the closed-loop pressure stabilization system using a discrete program regulator is proposed. The studies of parametric sensitivity of the closedloop pressure stabilization system have confirmed the high robustness of the proposed solution. Methodology. General methods of physics, hydraulics, mathematical analysis and computational mathematics were used to solve the tasks. Numerical solution of mathematical model equations and visualization of obtained results were performed in MATLAB®/Simulink environment. Results. The expediency of using closed-loop control systems of pumping units with pressure stabilization as the most promising way of resource saving in the operation of pumping complexes is substantiated. The impossibility of implementing the pressure stabilization system based on the classical PID controller is shown, which is caused by the influence of wave processes in the pipeline system with distributed parameters. The closed-loop pressure stabilization system with the use of a discrete program regulator is realized, its stability and robustness in a wide range of changes in the regulator parameters is shown. Practical value. The possibility of implementing a closed-loop pressure stabilization system of electric hydrotransport system has been substantiated; a method of calculating the discrete program pressure regulator based on the regression analysis of the results of mathematical modeling has been proposed. Figures 12, tables 2, references 9.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, Mingyang, Huifen Zhu, Guangjun Gao, Chen Jiang, and G. R. Liu. "A semi-implicit characteristic-based polynomial pressure projection for FEM to solve incompressible flows." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 5 (February 11, 2021): 1710–31. http://dx.doi.org/10.1108/hff-04-2020-0184.

Повний текст джерела
Анотація:
Purpose The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by finite element method (FEM). Design/methodology/approach The semi-implicit stabilization scheme, characteristic-based polynomial pressure projection (CBP3) consists of the Characteristic-Galerkin method and polynomial pressure projection. Theoretically, the proposed scheme works for any type of element using equal-order approximation for velocity and pressure. In this work, linear 3-node triangular and 4-node tetrahedral elements are the focus, which are the simplest but most difficult elements for pressure stabilizations. Findings The present paper proposes a new scheme, which can stabilize FEM solution for flows of both low and relatively high Reynolds numbers. And the influence of stabilization parameters of the CBP3 scheme has also been investigated. Research limitations/implications The research in this work is limited to the laminar incompressible flow. Practical implications The verification and validation of the CBP3 scheme are conducted by several 2 D and 3 D numerical examples. The scheme could be used to deal with more practical fluid problems. Social implications The application of scheme to study complex hemodynamics of patient-specific abdominal aortic aneurysm is also presented, which demonstrates its potential to solve bio-flows. Originality/value The paper simulated 2 D and 3 D numerical examples with superior results compared to existing results and experiments. The novel CBP3 scheme is verified to be very effective in handling convection and pressure oscillation.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Szczepańska, Justyna, Sylwia Skąpska, and Krystian Marszałek. "Continuous High-pressure Cooling-Assisted Homogenization Process for Stabilization of Apple Juice." Food and Bioprocess Technology 14, no. 6 (March 24, 2021): 1101–17. http://dx.doi.org/10.1007/s11947-021-02611-4.

Повний текст джерела
Анотація:
AbstractThe effect of high-pressure homogenization (HPH) at 100–200 MPa (with up to 5 passes) on the quality and storage stability of apple juice was investigated. The microbiological quality, polyphenol oxidase (PPO), peroxidase (POD), polygalacturonase (PG) and pectinmethylesterase (PME) activity, particle size distribution (PSD), apparent viscosity, turbidity, concentration of vitamin C, individual polyphenols and their total content (TPC), antioxidant activity, and colour of fresh, HPH-treated apple juice were all evaluated. The highest reduction in microorganisms (1.4 log) and oxidoreductase activity (~20%) was observed at 200 MPa, while hydrolases did not change significantly. HPH led to significant disintegration of the tissue and a decrease in viscosity. Vitamin C decreased by 62%, while TPC increased by 20% after HPH. Significant correlations were observed between antioxidant activity, TPC, and individual polyphenols. Chlorogenic, ferulic, and gallic acid were most stable at 200 MPa. The optimal shelf-life of the juice was estimated as 7 days.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Carpi, G., P. Rovere, A. Maggi, R. Bazzarini, and F. Bressa. "STUDY OF CHEMICAL AND MICROBIOLOGICAL STABILIZATION OF KIWIFRUIT BY HIGH PRESSURE TREATMENTS." Acta Horticulturae, no. 444 (May 1997): 671–78. http://dx.doi.org/10.17660/actahortic.1997.444.103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Srinivasarao, B., A. P. Zhilyaev, I. Gutiérrez-Urrutia, and M. T. Pérez-Prado. "Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion." Scripta Materialia 68, no. 8 (April 2013): 583–86. http://dx.doi.org/10.1016/j.scriptamat.2012.12.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

PAOLONE, A., A. SACCHETTI, P. POSTORINO, R. CANTELLI, A. CONGEDUTI, G. ROUSSE, and C. MASQUELIER. "Stabilization of an orthorhombic phase in LiMnO by means of high pressure." Solid State Ionics 176, no. 5-6 (February 14, 2005): 635–39. http://dx.doi.org/10.1016/j.ssi.2004.10.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Mukherjee, D., B. D. Sahoo, K. D. Joshi, and Satish C. Gupta. "Stabilization of tetragonal phase in LaN under high pressure via Peierls distortion." High Pressure Research 33, no. 3 (June 21, 2013): 563–71. http://dx.doi.org/10.1080/08957959.2013.809716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Santos, Poliana de Jesus, Marta Silva Santos, Alan Bruno Silva Vasconcelos, and Marzo Edir Da Silva Grigoletto. "High and low volume core stabilization training in chronic low back pain: randomized crossover study." Revista Brasileira de Fisiologia do exerc&iacute cio 21, no. 2 (August 6, 2022): 101–12. http://dx.doi.org/10.33233/rbfex.v21i2.5102.

Повний текст джерела
Анотація:
Introduction: Core stabilization training is pointed as an effective option for pain relief chronic non-specific low back pain (CNLBP), however, the adequate training volume to induce analgesia is still unknown. Objective: To evaluate the effect of one session of high and low volume core stabilization training protocols on endogenous pain modulation in women with CNLBP. Methods: This is an evaluator-blinded randomized crossover trial. Eighteen volunteers participated of the study, whom performed two core stabilization training sessions: high and low training volume. The variables evaluated were the pressure pain thresholds (PPT) and temporal summation (TS) by digital pressure algometer, in addition to the conditioned pain modulation (CPM) using a pressure algometer and ischemic compression with sphygmomanometer as conditioned stimulus. A 2x2 repeated measures ANOVA was performed to compare training and time, Bonferroni's post hoc test for pairwise comparison from interactions (time and training). Data were expressed as mean ± standard deviation and the significance level established in 5%. Results: When comparing pre and post intragroup, low volume core stabilization training showed significant increase at the PPT in L5 (p < 0.05) and tibialis anterior (p < 0.01). High volume training not showed a significant increase in none of the PPT measures. However, none of the investigated protocols changed TS and CPM in women with CNLBP. Conclusion: Low volume core stabilization training produces local analgesia and remote hypoalgesia, demonstrated by increased PPT in L5 and tibialis anterior. However, none of the investigated protocols were effective to reduce the central sensitization assessed by CPM and TS.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Saleh, Gabriele, Xiao Dong, Artem Oganov, Carlo Gatti, Guang-rui Qian, Qiang Zhu, Xiang-Feng Zhou, and Hiu-tian Wang. "Stable Compound of Helium and Sodium at High Pressure." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C617. http://dx.doi.org/10.1107/s2053273314093826.

Повний текст джерела
Анотація:
Helium (He) is, on par with Neon, the most inert element in the Periodic Table. Indeed, no conclusive proofs about stable compounds containing chemical bonds with He at ambient conditions have been reported so far. However, pressure significantly affects chemical properties of elements. By using USPEX [1], a software which has been successfully used in the past to predict unexpected high pressure crystal structure [1], we found that above 160 GPa He and Sodium exothermically combine to form the compound Na2He, whose structure is reported in Fig. 1. Quasiharmonic free energy calculations based on computed phonon spectra indicate that the free energy of formation of Na2He is negative and that the latter is barely affected by the temperature (0-800 K range was considered). In order to understand the cause of stability of Na2He, we carried out a thorough study of its electronic structure at various pressures by means of several different approaches including the examination of the band structure and the analysis of real-space descriptors such as the electron density in the framework of the Quantum Theory of Atoms in Molecules [2], the Electron Localization Function [3] and the deformation density. By examining the band structure, we found that such compound is an insulator whose band-gap increases with pressure. Regarding real-space descriptors, two remarkable features of Na2He are the negative charge on He (obtained both using Mulliken and Bader partitioning) and the presence of interstitially localized electrons (i.e. Non-Nuclear Attractors), the latter being detectable in all the analyses above mentioned. In the range 160-350 GPa, the exothermicity associated to the formation of Na2He is mainly due to the volume reduction, while at higher pressures the electronic energy plays a prominent role in the stabilization of this compound. In this contribution we present the results of our study with particular emphasis on the role played by He in the stabilization of Na2He.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Turkevych, V. Z., Yu Yu Rumiantseva, I. О. Hnatenko, I. O. Hladkyi, and Yu I. Sadova. "Thermodynamic Calculation of Fe–N and Fe–Ga Melting Diagrams at Pressures from 0.1 MPa to 7 GPa." Uspehi Fiziki Metallov 22, no. 4 (December 2021): 531–38. http://dx.doi.org/10.15407/ufm.22.04.531.

Повний текст джерела
Анотація:
This paper presents results of melting-diagrams’ calculations for the Fe–N and Fe–Ga systems at atmospheric pressure (0.1 MPa) and at high pressures (3, 5, and 7 GPa). Thermodynamic calculations are performed within the models of phenomenological thermodynamics. As shown, the increase of pressure results in destabilization of high-temperature b.c.c.-Fe modification in Fe–N system and stabilization of Fe4N equilibrium with the liquid phase. In Fe–Ga system, the intermetallic compounds Fe3Ga, Fe6Ga5, Fe3Ga4, and FeGa3 retain their stability up to pressure of 7 GPa. The stabilization of Fe4N equilibrium with the liquid phase at high pressures indicates that the Fe4N can be a competing phase in the gallium-nitride crystallization from the Fe–Ga–N system melt.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Baranov, Andrei N., Petr S. Sokolov, and Vladimir L. Solozhenko. "ZnO under Pressure: From Nanoparticles to Single Crystals." Crystals 12, no. 5 (May 23, 2022): 744. http://dx.doi.org/10.3390/cryst12050744.

Повний текст джерела
Анотація:
In the present review, new approaches for the stabilization of metastable phases of zinc oxide and the growth of ZnO single crystals under high pressures and high temperatures are considered. The problems of the stabilization of the cubic modification of ZnO as well as solid solutions on its basis are discussed. A thermodynamic approach to the description of zinc oxide melting at high pressures is described which opens up new possibilities for the growth of both undoped and doped (for example, with elements of group V) single crystals of zinc oxide. The possibilities of using high pressure to vary phase and elemental composition in order to create ZnO-based materials are demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Eguia, Iñaki, Juan San José, Mykhaylo Knyazyev, and Yaroslav Zhovnovatyuk. "Pressure Field Stabilization in High-Voltage Underwater Pulsed Metal Forming Using Wire-Initiated Discharges." Key Engineering Materials 473 (March 2011): 965–72. http://dx.doi.org/10.4028/www.scientific.net/kem.473.965.

Повний текст джерела
Анотація:
Electrohydraulic forming of sheet metals is characterized by the usage of large transient hydraulic pressure generated in underwater current discharges. Pulsed power underwater discharges are often categorized as being non-repeatable in terms of pressure map replication. The work described here presents the improvements made in terms of pressure stabilization based on process parameter optimization pertaining to impact electrohydraulic forming. The work consists of a comparative study showing the differences obtained in terms of pressure fields, when discharges initiated by high-voltage breakdown (wireless discharges) and initiated by copper and aluminium wires at otherwise equal test conditions are compared, for a conical discharge chamber. Characteristic pressure maps belonging to the three analyzed discharge conditions are presented and the criteria for a quantitative comparison are set: maximum pressure value, relative pressure scatter and arithmetic mean deviation for a test pressure field. The maximum pressure value characterises the limitation in the sheet material thickness that could be formed at this pressure. For all 3 types of tests the obtained maximum pressure value is nearly equal with a little bit higher level for discharges initiated by aluminium wire. The relative pressure scatter provides information about uniformity of the pressure distribution along loaded area. While wireless tests showed low uniformity with average relative pressure scatter of 33 %, the application of copper and aluminium wire reduced non-uniformity down to 28 and 24 % respectively. The most important effect of the wire introduction has to do with the great increase of stability (repeatability) of pressure fields observed, characterised by a decrease of the arithmetic mean deviation of pressure along a pressure loaded area.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Tiwary, C. S., D. Vishnu, A. K. Kole, J. Brahmanandam, D. R. Mahapatra, P. Kumbhakar, and K. Chattopadhyay. "Stabilization of the high-temperature and high-pressure cubic phase of ZnO by temperature-controlled milling." Journal of Materials Science 51, no. 1 (September 15, 2015): 126–37. http://dx.doi.org/10.1007/s10853-015-9394-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

El Moueffak, Abdelhamid, Christian Cruz, Monique Antoine, Michel Montury, Gérard Demazeau, Alain Largeteau, Bernadette Roy, and François Zuber. "Stabilization of duck fatty liver by high pressure treatment. Inactivation of Enterococcus faecalis." Sciences des Aliments 21, no. 1 (February 28, 2001): 71–76. http://dx.doi.org/10.3166/sda.21.71-76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mao, W. L., L. Wang, Y. Ding, W. Yang, W. Liu, D. Y. Kim, W. Luo, et al. "Distortions and stabilization of simple-cubic calcium at high pressure and low temperature." Proceedings of the National Academy of Sciences 107, no. 22 (May 17, 2010): 9965–68. http://dx.doi.org/10.1073/pnas.1005279107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ding, Yang, Wendy L. Mao, Rajeev Ahuja, and Ho-kwang Mao. "Distortions and stabilization of simple primitive calcium at high pressure and low temperature." Acta Crystallographica Section A Foundations of Crystallography 66, a1 (August 29, 2010): s49. http://dx.doi.org/10.1107/s0108767310098910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Saldaña, Marleny DA, Jane Selia dos Reis Coimbra, and Lucio Cardozo-Filho. "Recovery, encapsulation and stabilization of bioactives from food residues using high pressure techniques." Current Opinion in Food Science 5 (October 2015): 76–85. http://dx.doi.org/10.1016/j.cofs.2015.09.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Halalipour, Ali, Michael R. Duff, Elizabeth E. Howell, and José I. Reyes-De-Corcuera. "Catalytic activity and stabilization of phenyl-modified glucose oxidase at high hydrostatic pressure." Enzyme and Microbial Technology 137 (June 2020): 109538. http://dx.doi.org/10.1016/j.enzmictec.2020.109538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Gelloz, B., T. Shibata, and N. Koshida. "Stabilization of nano-crystalline porous silicon electroluminescence by high pressure water vapor annealing." physica status solidi (c) 4, no. 6 (May 2007): 2141–44. http://dx.doi.org/10.1002/pssc.200674406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Faulkner, Douglas L. "Aging of polypropylene using high oxygen pressure: Influence of sample thickness and stabilization." Journal of Applied Polymer Science 31, no. 7 (May 20, 1986): 2129–38. http://dx.doi.org/10.1002/app.1986.070310716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Halalipour, Ali, Michael R. Duff, Elizabeth E. Howell, and José I. Reyes-De-Corcuera. "Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification." Biotechnology and Bioengineering 114, no. 3 (September 27, 2016): 516–25. http://dx.doi.org/10.1002/bit.26185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wei, Chen, and Xu Meng. "Study on Adaptive Fuzzy-PID Grouting Pressure Stabilization Control System." Advanced Materials Research 201-203 (February 2011): 2033–38. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.2033.

Повний текст джерела
Анотація:
To solve the self-control problem of grouting pressure stabilization in grouting engineering, a grouting pressure stabilization control system based on adaptive Fuzzy-PID control was studied. Grouting pressure was dynamically measured and controlled by this system with sensor technology, microcomputer technology and control technology, the interface between the sensor and the host computer was designed. Based on 80C196 chip microcomputer,KP,KI and KD of PID control are automatically adjusted by fuzzy control rule,and electric control valve was controlled to keep grouting pressure precise and stable by adaptive Fuzzy-PID Control. Simulation experiments results show that: the system is able to adapt to changes of object parameter, and achieves the desired targets with good control quality, high accuracy and fine stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

GARNIER, D. T., A. C. BOXER, J. L. ELLSWORTH, A. K. HANSEN, I. KARIM, J. KESNER, M. E. MAUEL, E. E. ORTIZ, and A. ROACH. "Stabilization of a low-frequency instability in a dipole plasma." Journal of Plasma Physics 74, no. 6 (December 2008): 733–40. http://dx.doi.org/10.1017/s0022377808007071.

Повний текст джерела
Анотація:
AbstractLow-frequency fluctuations are observed in a plasma confined by a strong dipole magnet and containing an energetic high-pressure population of trapped electrons. The quasi-coherent fluctuations have frequencies characteristic of drift frequencies of the lower temperature background plasma and have large toroidal and radial extent. They are excited throughout a wide range of plasma conditions determined by the level of neutral gas pressure. However, for a sufficiently high rate of neutral gas fueling, the plasma density profile flattens and the fluctuations disappear.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Prangé, Thierry, Philippe Carpentier, Anne-Claire Dhaussy, Peter van der Linden, Eric Girard, and Nathalie Colloc'h. "Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization." Acta Crystallographica Section D Structural Biology 78, no. 2 (January 21, 2022): 162–73. http://dx.doi.org/10.1107/s2059798321012134.

Повний текст джерела
Анотація:
The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein–ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Cava, R. J., W. F. Peck, J. J. Krajewski, S.-W. Cheong, and H. Y. Hwang. "Electrochemical and high pressure superoxygenation of YCuO2+x and LaCuO2+x delafossites." Journal of Materials Research 9, no. 2 (February 1994): 314–17. http://dx.doi.org/10.1557/jmr.1994.0314.

Повний текст джерела
Анотація:
Electrochemical and high pressure oxygenation experiments are described which extend the range of intercalated oxygen content beyond that accessible in 1 atm O2 treatments for the triangular planar cuprate delafossites YCuO2+x and LaCuO2+x, with the intention of increasing the hole doping, and filling vacancies in the intercalated oxygen lattice to decrease electrical resistivities. Stabilization of the 2H polytype of YCuO2 through 1% Ca substitution for Y and oxidation conditions for obtaining the pure orthorhombic intercalated oxygen superlattice form of YCuO2.50 are also described. Temperature dependent resistivities for some of the superoxygenated compositions are reported; metallic behavior was not observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії