Дисертації з теми "Hiden Markov model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Hiden Markov model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Devilliers, Esther. "Modélisation micro-économétrique des choix de pratiques de production et des utilisations d'intrants chimiques des agriculteurs : une approche par les fonctions de production latentes." Thesis, Rennes, Agrocampus Ouest, 2021. http://www.theses.fr/2021NSARE058.
Повний текст джерелаCropping management practices is an agronomic notion grasping the interdependence between targeted yield and input use levels. Subsequently, one can legitimately assume that different cropping management practices are associated to different production functions. To better understand pesticide dependence – a key point to encourage more sustainable practices – one have to consider modelling cropping management practices specific production functions.Because of the inherent interdependence between those practices and their associeted yield and input use levels, we need to consider endogenous regime switching models.When unobserved, the sequence of cropping management practices choices is considered as a Markovian process. From this modelling framework we can derive the cropping management choices, their dynamics, their associated yield and input use levels. When observed, we consider primal production functions to see how yield responds differently to input uses based on the different cropping management practices. Thus, we can assess jointly the effect of a public policy on input use and yield levels.In a nutshell, in this PhD we are aiming at giving some tools to evaluate the differentiated effect of agri-environmental public policies on production choies and on the associated yield and input use levels
Kotsalis, Georgios. "Model reduction for Hidden Markov models." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38255.
Повний текст джерелаIncludes bibliographical references (leaves 57-60).
The contribution of this thesis is the development of tractable computational methods for reducing the complexity of two classes of dynamical systems, finite alphabet Hidden Markov Models and Jump Linear Systems with finite parameter space. The reduction algorithms employ convex optimization and numerical linear algebra tools and do not pose any structural requirements on the systems at hand. In the Jump Linear Systems case, a distance metric based on randomization of the parametric input is introduced. The main point of the reduction algorithm lies in the formulation of two dissipation inequalities, which in conjunction with a suitably defined storage function enable the derivation of low complexity models, whose fidelity is controlled by a guaranteed upper bound on the stochastic L2 gain of the approximation error. The developed reduction procedure can be interpreted as an extension of the balanced truncation method to the broader class of Jump Linear Systems. In the Hidden Markov Model case, Hidden Markov Models are identified with appropriate Jump Linear Systems that satisfy certain constraints on the coefficients of the linear transformation. This correspondence enables the development of a two step reduction procedure.
(cont.) In the first step, the image of the high dimensional Hidden Markov Model in the space of Jump Linear Systems is simplified by means of the aforementioned balanced truncation method. Subsequently, in the second step, the constraints that reflect the Hidden Markov Model structure are imposed by solving a low dimensional non convex optimization problem. Numerical simulation results provide evidence that the proposed algorithm computes accurate reduced order Hidden Markov Models, while achieving a compression of the state space by orders of magnitude.
by Georgios Kotsalis.
Ph.D.
Kadhem, Safaa K. "Model fit diagnostics for hidden Markov models." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/9966.
Повний текст джерелаBulla, Jan. "Application of Hidden Markov and Hidden Semi-Markov Models to Financial Time Series." Doctoral thesis, [S.l. : s.n.], 2006. http://swbplus.bsz-bw.de/bsz260867136inh.pdf.
Повний текст джерелаWynne-Jones, Michael. "Model building in neural networks with hidden Markov models." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/284.
Повний текст джерелаTillman, Måns. "On-Line Market Microstructure Prediction Using Hidden Markov Models." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208312.
Повний текст джерелаUnder de senaste decennierna har det gjorts stora framsteg inom finansiell teori för kapitalmarknader. Formuleringen av arbitrageteori medförde möjligheten att konsekvent kunna prissätta finansiella instrument. Men i en tid då högfrekvenshandel numera är standard, har omsättningen av information i pris börjat ske i allt snabbare takt. För att studera dessa fenomen; prispåverkan och informationsomsättning, har mikrostrukturteorin vuxit fram. I den här uppsatsen studerar vi mikrostruktur med hjälp av en dynamisk modell. Historiskt sett har mikrostrukturteorin fokuserat på statiska modeller men med hjälp av icke-linjära dolda Markovmodeller (HMM:er) utökar vi detta till den dynamiska domänen. HMM:er kommer med en naturlig uppdelning mellan observation och dynamik, och är utformade på ett sådant sätt att vi kan dra nytta av domänspecifik kunskap. Genom att formulera lämpliga nyckelantaganden baserade på traditionell mikrostrukturteori specificerar vi en modell—med endast ett fåtal parametrar—som klarar av att beskriva de välkända säsongsbeteenden som statiska modeller inte klarar av. Tack vare nya genombrott inom Monte Carlo-metoder finns det nu kraftfulla verktyg att tillgå för att utföra optimal filtrering med HMM:er i realtid. Vi applicerar ett så kallat bootstrap filter för att sekventiellt filtrera fram tillståndet för modellen och prediktera framtida tillstånd. Tillsammans med tekniken backward smoothing estimerar vi den posteriora simultana fördelningen för varje handelsdag. Denna används sedan för statistisk inlärning av våra hyperparametrar via en sekventiell Monte Carlo Expectation Maximization-algoritm. För att formulera en modell som beskriver omsättningen av information, väljer vi att utgå ifrån volume imbalance, som ofta används för att studera prispåverkan. Vi definierar den relaterade observerbara storheten scaled volume imbalance som syftar till att bibehålla kopplingen till prispåverkan men även går att modellera med en dynamisk process som passar in i ramverket för HMM:er. Vi visar även hur man inom detta ramverk kan utvärdera HMM:er i allmänhet, samt genomför denna analys för vår modell i synnerhet. Modellen testas mot finansiell handelsdata för både terminskontrakt och aktier och visar i bägge fall god predikteringsförmåga.
Hofer, Gregor Otto. "Speech-driven animation using multi-modal hidden Markov models." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3786.
Повний текст джерелаMcKee, Bill Frederick. "Optimal hidden Markov models." Thesis, University of Plymouth, 1999. http://hdl.handle.net/10026.1/1698.
Повний текст джерелаChong, Fong Ho. "Frequency-stream-tying hidden Markov model /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20CHONG.
Повний текст джерелаIncludes bibliographical references (leaves 119-123). Also available in electronic version. Access restricted to campus users.
Schimert, James. "A high order hidden Markov model /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/8939.
Повний текст джерелаKato, Akihiro. "Hidden Markov model-based speech enhancement." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/63950/.
Повний текст джерелаLystig, Theodore C. "Evaluation of hidden Markov models /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/9597.
Повний текст джерелаVan, Gael Jurgen. "Bayesian nonparametric hidden Markov models." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610196.
Повний текст джерелаAli, Asif. "Voice query-by-example for resource-limited languages using an ergodic hidden Markov model of speech." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50363.
Повний текст джерелаLott, Paul Christian. "StochHMM| A Flexible Hidden Markov Model Framework." Thesis, University of California, Davis, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602142.
Повний текст джерелаIn the era of genomics, data analysis models and algorithms that provide the means to reduce large complex sets into meaningful information are integral to further our understanding of complex biological systems. Hidden Markov models comprise one such data analysis technique that has become the basis of many bioinformatics tools. Its relative success is primarily due to its conceptually simplicity and robust statistical foundation. Despite being one of the most popular data analysis modeling techniques for classification of linear sequences of data, researchers have few available software options to rapidly implement the necessary modeling framework and algorithms. Most tools are still hand-coded because current implementation solutions do not provide the required ease or flexibility that allows researchers to implement models in non-traditional ways. I have developed a free hidden Markov model C++ library and application, called StochHMM, that provides researchers with the flexibility to apply hidden Markov models to unique sequence analysis problems. It provides researchers the ability to rapidly implement a model using a simple text file and at the same time provide the flexibility to adapt the model in non-traditional ways. In addition, it provides many features that are not available in any current HMM implementation tools, such as stochastic sampling algorithms, ability to link user-defined functions into the HMM framework, and multiple ways to integrate additional data sources together to make better predictions. Using StochHMM, we have been able to rapidly implement models for R-loop prediction and classification of methylation domains. The R-loop predictions uncovered the epigenetic regulatory role of R-loops at CpG promoters and protein coding genes 3' transcription termination. Classification of methylation domains in multiple pluripotent tissues identified epigenetics gene tracks that will help inform our understanding of epigenetic diseases.
Yi, Kwan 1963. "Text classification using a hidden Markov model." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85214.
Повний текст джерелаStanke, Mario. "Gene prediction with a Hidden Markov model." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970841310.
Повний текст джерелаBeattie, Valerie L. "Hidden Markov Model state-based noise compensation." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259519.
Повний текст джерелаSchwardt, Ludwig. "Efficient Mixed-Order Hidden Markov Model Inference." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/709.
Повний текст джерелаSeward, D. C. (DeWitt Clinton). "Graphical analysis of hidden Markov model experiments." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36469.
Повний текст джерелаIncludes bibliographical references (leaves 60-61).
by DeWitt C. Seward IV.
Ph.D.
Wang, Yijie Dylan. "Hidden Markov model with application in cell adhesion experiment and Bayesian cubic splines in computer experiments." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49061.
Повний текст джерелаStaples, Jonathan Peter. "Hidden Markov models for credit risk." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440498.
Повний текст джерелаWebb, Alexandra. "Detecting recombination using hidden markov models." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510259.
Повний текст джерелаBallot, Johan Stephen Simeon. "Face recognition using Hidden Markov Models." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/2577.
Повний текст джерелаDurey, Adriane Swalm. "Melody spotting using hidden Markov models." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180126/unrestricted/durey%5Fadriane%5Fs%5F200312%5Fphd.pdf.
Повний текст джерелаZhang, Chun. "Hidden Markov models for admixture mapping /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.
Повний текст джерелаTanguay, Donald O. (Donald Ovila). "Hidden Markov models for gesture recognition." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/37796.
Повний текст джерелаIncludes bibliographical references (p. 41-42).
by Donald O. Tanguay, Jr.
M.Eng.
Kapadia, Sadik. "Discriminative training of hidden Markov models." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624997.
Повний текст джерелаAnderson, Michael. "Option pricing using hidden Markov models." Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/10045.
Повний текст джерелаThis work will present an option pricing model that accommodates parameters that vary over time, whilst still retaining a closed-form expression for option prices: the Hidden Markov Option Pricing Model. This is possible due to the macro-structure of this model and provides the added advantage of ensuring efficient computation of option prices. This model turns out to be a very natural extension to the Black-Scholes model, allowing for time-varying input parameters.
DESAI, PRANAY A. "SEQUENCE CLASSIFICATION USING HIDDEN MARKOV MODELS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1116250500.
Повний текст джерелаSamaria, Ferdinando Silvestro. "Face recognition using Hidden Markov Models." Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/244871.
Повний текст джерелаForeman, Lindsay Anne. "Bayesian computation for hidden Markov models." Thesis, Imperial College London, 1994. http://hdl.handle.net/10044/1/11490.
Повний текст джерелаSantos, Leonor Marques Pompeu dos. "Hidden Markov models for credit risk." Master's thesis, Instituto Superior de Economia e Gestão, 2015. http://hdl.handle.net/10400.5/11061.
Повний текст джерелаA análise do Risco de Crédito, a avaliação do risco de defafult ou de redução do valor de mercado causado por alterações na qualidade de crédito, tem sido um tema vastamente estudado ao longo dos últimos trinta anos e é hoje mais relevante que nunca, com o mundo ainda a recuperar das consequências de uma crise financeira, na sua génese induzida por uma observação imperfeita deste tipo de risco. Tal como alguns dos modelos apresentados anteriormente, o modelo apresentado nesta dissertação assume que os eventos de default estão directamente ligados a uma variável associada ao risco, partindo de um modelo simples que assume que o default segue um Modelo Oculto de Markov Binomial de dois estados, ou seja, um modelo que considera apenas dois "estados de risco" possíveis para explicar na totalidade a ocorrência de default, e aproximando-o a um Modelo Oculto de Markov Poisson, com todas as simplificações computacionais associadas a esta aproximação, tentando, ao mesmo tempo, traduzir o modelo para um cenário menos extremo, com a inclusão de um nível de risco intermédio.
Credit Risk measurement, the evaluation of the risk of default or reduction in market value caused by changes in credit quality, has been a broadly studied subject over the last thirty years and is now more relevant than ever, when the world is still suffering the consequences of the break of a financial crisis in its genesis induced by a false observation of this kind of risk. Just like some of the previous studies, the model presented in this dissertation assumes that default events are directly connected to risk state variables, starting from a very simple model that assumes defaults to follow a two-state Binomial Hidden Markov Model, considering only two different risk categories to fully explain default occurrence, and approximating it to a Poisson Hidden Markov Model, with all the computational simplifications brought by this approximation, trying, at the same time, to translate the model into a less extreme framework, with the addition of an intermediate risk level, a "normal" risk state.
Marklund, Emil. "Bayesian inference in aggregated hidden Markov models." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243090.
Повний текст джерелаDannemann, Jörn. "Inference for hidden Markov models and related models." Göttingen Cuvillier, 2009. http://d-nb.info/1000750442/04.
Повний текст джерелаChou, Lin-Yi. "Improving the performance of Hierarchical Hidden Markov Models on Information Extraction tasks." The University of Waikato, 2006. http://adt.waikato.ac.nz/public/adt-uow20070212.152608/index.html.
Повний текст джерелаThe, Yu-Kai. "Analysis of ion channels with hidden Markov models." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976048744.
Повний текст джерелаFarges, Eric P. "An analysis-synthesis hidden Markov model of speech." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/14775.
Повний текст джерелаLe, Riche Pierre (Pierre Jacques). "Handwritten signature verification : a hidden Markov model approach." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51784.
Повний текст джерелаENGLISH ABSTRACT: Handwritten signature verification (HSV) is the process through which handwritten signatures are analysed in an attempt to determine whether the person who made the signature is who he claims to be. Banks and other financial institutions lose billions of rands annually to cheque fraud and other crimes that are preventable with the aid of good signature verification techniques. Unfortunately, the volume of cheques that are processed precludes a thorough HSV process done in the traditional manner by human operators. It is the aim of this research to investigate new methods to compare signatures automatically, to eventually speed up the HSV process and improve on the accuracy of existing systems. The new technology that is investigated is the use of the so-called hidden Markov models (HMMs). It is only quite recently that the computing power has become commonly available to make the real-time use of HMMs in pattern recognition a possibility. Two demonstration programs, SigGrab and Securitlheque, have been developed that make use of this technology, and show excellent improvements over other techniques and competing products. HSV accuracies in excess of99% can be attained.
AFRIKAANSE OPSOMMING: Handgeskrewe handtekening verifikasie (HHV) is die proses waardeur handgeskrewe handtekeninge ondersoek word in 'n poging om te bevestig of die persoon wat die handtekening gemaak het werklik is wie hy voorgee om te wees. Banke en ander finansiele instansies verloor jaarliks biljoene rande aan tjekbedrog en ander misdrywe wat voorkom sou kon word indien goeie metodes van handtekening verifikasie daargestel kon word. Ongelukkig is die volume van tjeks wat hanteer word so groot, dat tradisionele HHV deur menslike operateurs 'n onbegonne taak is. Dit is die doel van hierdie navorsmg om nuwe metodes te ondersoek om handtekeninge outomaties te kan vergelyk en so die HHV proses te bespoedig en ook te verbeter op die akkuraatheid van bestaande stelsels. Die nuwe tegnologie wat ondersoek is is die gebruik van die sogenaamde verskuilde Markov modelle (VMMs). Dit is eers redelik onlangs dat die rekenaar verwerkingskrag algemeen beskikbaar geraak het om die intydse gebruik van VMMs in patroonherkenning prakties moontlik te maak. Twee demonstrasieprogramme, SigGrab en SecuriCheque, is ontwikkel wat gebruik maak van hierdie tegnologie en toon uitstekende verbeterings teenoor ander tegnieke en kompeterende produkte. 'n Akkuraatheid van 99% of hoer word tipies verkry.
Dey, Arkajit. "Hidden Markov model analysis of subcellular particle trajectories." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66307.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 71-73).
How do proteins, vesicles, or other particles within a cell move? Do they diffuse randomly or ow in a particular direction? Understanding how subcellular particles move in a cell will reveal fundamental principles of cell biology and biochemistry, and is a necessary prerequisite to synthetically engineering such processes. We investigate the application of several variants of hidden Markov models (HMMs) to analyzing the trajectories of such particles. And we compare the performance of our proposed algorithms with traditional approaches that involve fitting a mean square displacement (MSD) curve calculated from the particle trajectories. Our HMM algorithms are shown to be more accurate than existing MSD algorithms for heterogeneous trajectories which switch between multiple phases of motion.
by Arkajit Dey.
M.Eng.
Liu, Nianjun. "Hand gesture recognition by Hidden Markov Models /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18158.pdf.
Повний текст джерелаFlorez-Larrahondo, German. "Incremental learning of discrete hidden Markov models." Diss., Mississippi State : Mississippi State University, 2005. http://library.msstate.edu/etd/show.asp?etd=etd-05312005-141645.
Повний текст джерелаLancaster, Joseph Paul Jr. "Toward autism recognition using hidden Markov models." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/777.
Повний текст джерелаKeys, Kevin Lawrence. "Hidden Markov Models in Genetics and Linguistics." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146860.
Повний текст джерелаLarson, Jessica. "Hidden Markov Models Predict Epigenetic Chromatin Domains." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10105.
Повний текст джерелаSindle, Colin. "Handwritten signature verification using hidden Markov models." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53445.
Повний текст джерелаENGLISH ABSTRACT: Handwritten signatures are provided extensively to verify identity for all types of transactions and documents. However, they are very rarely actually verified. This is because of the high cost of training and employing enough human operators (who are still fallible) to cope with the demand. They are a very well known, yet under-utilised biometric currently performing far below their potential. We present an on-line/dynamic handwritten signature verification system based on Hidden Markov Models, that far out performs human operators in both accuracy and speed. It uses only the local signature features-sampled from an electronic writing tablet-after some novel preprocessing steps, and is a fully automated system in that there are no parameters that need to be manually fine-tuned for different users. Novel verifiers are investigated which attain best equal error rates of between 2% and 5% for different types of high quality deliberate forgeries, and take a fraction of a second to accept or reject an identity claim on a 700 MHz computer.
AFRIKAANSE OPSOMMING: Geskrewe handtekeninge word gereeld gebruik om die identiteit van dokumente en transaksies te bevestig. Aangesien dit duur is in terme van menslike hulpbronne, word die integrit eit daarvan selde nagegaan. Om handtekeninge deur menslike operateurs te verifieër. is ook feilbaar-lOO% akkurate identifikasie is onrealisties. Handtekeninge is uiters akkurate en unieke identifikasie patrone wat in die praktyk nie naastenby tot hul volle potensiaal gebruik word nie. In hierdie navorsing gebruik ons verskuilde Markov modelle om dinamiese handtekeningherkenningstelsels te ontwikkel wat, in terme van spoed en akkuraatheid heelwat meer effektief as operateurs is. Die stelsel maak gebruik van slegs lokale handtekening eienskappe (en verwerkings daarvan) soos wat dit verkry word vanaf 'n elektroniese skryftablet. Die stelsel is ten volle outomaties en geen parameters hoef aangepas te word vir verskillende gebruikers nie. 'n Paar tipes nuwe handtekeningverifieërders word ondersoek en die resulterende gelykbreekpunt vir vals-aanvaardings- en vals-verwerpingsfoute lê tussen 2% en 5% vir verskillende tipes hoë kwaliteit vervalsde handtekeninge. Op 'n tipiese 700 MHz verwerker word die identiteit van 'n persoon ill minder as i sekonde bevestig.
Kordi, Kamran. "Intelligent character recognition using hidden Markov models." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/13786.
Повний текст джерелаRyan, Matthew Stephen. "Dynamic character recognition using Hidden Markov Models." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263326.
Повний текст джерелаAustin, Stephen Christopher. "Hidden Markov models for automatic speech recognition." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292913.
Повний текст джерелаVan, der Merwe Hugo Jacobus. "Bird song recognition with Hidden Markov Models /." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/914.
Повний текст джерела