Добірка наукової літератури з теми "Hidden Markov models indexed by trees"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hidden Markov models indexed by trees".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hidden Markov models indexed by trees"
Huang, Huilin. "Strong Law of Large Numbers for Hidden Markov Chains Indexed by Cayley Trees." ISRN Probability and Statistics 2012 (September 23, 2012): 1–11. http://dx.doi.org/10.5402/2012/768657.
Повний текст джерелаMilone, Diego H., Leandro E. Di Persia, and María E. Torres. "Denoising and recognition using hidden Markov models with observation distributions modeled by hidden Markov trees." Pattern Recognition 43, no. 4 (April 2010): 1577–89. http://dx.doi.org/10.1016/j.patcog.2009.11.010.
Повний текст джерелаANIGBOGU, J. C., and A. BELAÏD. "HIDDEN MARKOV MODELS IN TEXT RECOGNITION." International Journal of Pattern Recognition and Artificial Intelligence 09, no. 06 (December 1995): 925–58. http://dx.doi.org/10.1142/s0218001495000389.
Повний текст джерелаNarayana, Pradyumna, J. Ross Beveridge, and Bruce A. Draper. "Interacting Hidden Markov Models for Video Understanding." International Journal of Pattern Recognition and Artificial Intelligence 32, no. 11 (July 24, 2018): 1855020. http://dx.doi.org/10.1142/s0218001418550200.
Повний текст джерелаFredes, Luis, and Jean-François Marckert. "Invariant measures of interacting particle systems: Algebraic aspects." ESAIM: Probability and Statistics 24 (2020): 526–80. http://dx.doi.org/10.1051/ps/2020008.
Повний текст джерелаDurand, J. B., P. Goncalves, and Y. Guedon. "Computational Methods for Hidden Markov Tree Models—An Application to Wavelet Trees." IEEE Transactions on Signal Processing 52, no. 9 (September 2004): 2551–60. http://dx.doi.org/10.1109/tsp.2004.832006.
Повний текст джерелаTso, Brandt, and Joe L. Tseng. "Multi-resolution semantic-based imagery retrieval using hidden Markov models and decision trees." Expert Systems with Applications 37, no. 6 (June 2010): 4425–34. http://dx.doi.org/10.1016/j.eswa.2009.11.086.
Повний текст джерелаDo, M. N. "Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models." IEEE Signal Processing Letters 10, no. 4 (April 2003): 115–18. http://dx.doi.org/10.1109/lsp.2003.809034.
Повний текст джерелаMaua, D. D., C. P. De Campos, A. Benavoli, and A. Antonucci. "Probabilistic Inference in Credal Networks: New Complexity Results." Journal of Artificial Intelligence Research 50 (July 28, 2014): 603–37. http://dx.doi.org/10.1613/jair.4355.
Повний текст джерелаSegers, Johan. "One- versus multi-component regular variation and extremes of Markov trees." Advances in Applied Probability 52, no. 3 (September 2020): 855–78. http://dx.doi.org/10.1017/apr.2020.22.
Повний текст джерелаДисертації з теми "Hidden Markov models indexed by trees"
Weibel, Julien. "Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1031.
Повний текст джерелаGraphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices
Lanka, Venkata Raghava Ravi Teja Lanka. "VEHICLE RESPONSE PREDICTION USING PHYSICAL AND MACHINE LEARNING MODELS." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511891682062084.
Повний текст джерелаGuo, Jia-Liang, and 郭家良. "Process Discovery using Rule-Integrated Trees Hidden Semi-Markov Models." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/456975.
Повний текст джерела國立中山大學
資訊管理學系研究所
105
To predict or to explain? With the dramatical growth of the volume of information generated from various information systems, data science has become popular and important in recent years while machine learning algorithms provide a very strong support and foundation for various data applications. Many data applications are based on black-box models. For example, a fraud detection system can predict which person will default but we cannot understand how the system consider it’s fraud. While white-box models are easy to understand but have relatively poor predictive performance. Hence, in this thesis, we propose a novel grafted tree algorithm to integrate trees of random forests. The model attempt to find a balance between a decision tree and a random forest. That is, the grafted tree have better interpretability and the performance than a single decision tree. With the decision tree is integrated from a random forest, it will be applied to Hidden semi-Markov models (HSMM) to build a Classification Tree Hidden Semi- Markov Model (CTHSMM) in order to discover underlying changes of a system. The experimental result shows that our proposed model RITHSMM is better than a simple decision tree based on Classification and Regression Trees and it can find more states/leaves so as to answer a kind of questions, “given a sequence of observable sequence, what are the most probable/relevant sequence of changes of a dynamic system?”.
Tu, Cheng-En, and 杜承恩. "Mandarin Tone Recognition based on Decision Trees and Hidden Markov Models." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/74449857537411484291.
Повний текст джерелаЧастини книг з теми "Hidden Markov models indexed by trees"
Oswald, Julie N., Christine Erbe, William L. Gannon, Shyam Madhusudhana, and Jeanette A. Thomas. "Detection and Classification Methods for Animal Sounds." In Exploring Animal Behavior Through Sound: Volume 1, 269–317. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_8.
Повний текст джерелаElakya, R., S. Surya, Abinaya G (c1edcca3-9bd8-40f6-a0f6-da223586be33, S. Shanthana, and T. Manoranjitham. "Unveiling the Depths." In Advances in Environmental Engineering and Green Technologies, 279–92. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-6670-7.ch013.
Повний текст джерелаТези доповідей конференцій з теми "Hidden Markov models indexed by trees"
Jin, Shaohua, Yongxue Wang, Huitao Liu, Ying Tian, and Hui Li. "Some Strong Limit Theorems for Hidden Markov Models Indexed by a Non-homogeneous Tree." In 2010 Third International Symposium on Intelligent Information Technology and Security Informatics (IITSI). IEEE, 2010. http://dx.doi.org/10.1109/iitsi.2010.68.
Повний текст джерелаMilone, Diego H., Diego R. Tomassi, and Leandro E. Di Persia. "Signal denoising with hidden Markov models using hidden Markov trees as observation densities." In 2008 IEEE Workshop on Signal Processing for Machine Learning. IEEE, 2008. http://dx.doi.org/10.1109/mlsp.2008.4685509.
Повний текст джерелаLacey, Arron, Jingjing Deng, and Xianghua Xie. "Protein classification using Hidden Markov models and randomised decision trees." In 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2014. http://dx.doi.org/10.1109/bmei.2014.7002856.
Повний текст джерела