Добірка наукової літератури з теми "Heterojunctions - Nanostructured Materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Heterojunctions - Nanostructured Materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Heterojunctions - Nanostructured Materials"

1

Du, Meiqi, Shengxin Cao, Xiaozhou Ye, and Jianfeng Ye. "Recent Advances in the Fabrication of All-Solid-State Nanostructured TiO2-Based Z-scheme Heterojunctions for Environmental Remediation." Journal of Nanoscience and Nanotechnology 20, no. 9 (September 1, 2020): 5861–73. http://dx.doi.org/10.1166/jnn.2020.18719.

Повний текст джерела
Анотація:
Nanostructured TiO2-based Z-scheme heterojunctions have been widely accepted to be among the most effective photocatalysts for environmental remediation owing to their broadened light absorbance, high efficiency of photogenerated charge carrier separation, and well-preserved strong oxidation and reduction capability. In this review, we will first introduce the photogenerated charge carrier transportation mechanism of three different types of Z-scheme heterojunction systems, namely, liquid-phase Z-scheme photocatalytic system, all-solid-state indirect Z-scheme photocatalytic system, and all-solid-state direct Z-scheme photocatalytic system. Subsequently, we will describe the recent advances toward the rational design and fabrication of all-solid-state nanostructured TiO2-based Z-scheme heterojunctions. The applications of the thus-constructed all-solid-state nanostructured TiO2-based Z-scheme heterojunctions in the degradation of volatile organic compounds, removal of waste water organic pollutants, and upgradation of greenhouse gas CO2 will then be presented one by one. Finally, the advantages and disadvantages of all-solid-state nanostructured TiO2-based Z-scheme heterojunction for photocatalytic environmental remediation will be briefly discussed, and the direction of future development will be prospected as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Shulin, Gui Lei, Huoxi Xu, Zhigao Lan, Zhao Wang, and Haoshuang Gu. "Metal Oxide Based Heterojunctions for Gas Sensors: A Review." Nanomaterials 11, no. 4 (April 17, 2021): 1026. http://dx.doi.org/10.3390/nano11041026.

Повний текст джерела
Анотація:
The construction of heterojunctions has been widely applied to improve the gas sensing performance of composites composed of nanostructured metal oxides. This review summarises the recent progress on assembly methods and gas sensing behaviours of sensors based on nanostructured metal oxide heterojunctions. Various methods, including the hydrothermal method, electrospinning and chemical vapour deposition, have been successfully employed to establish metal oxide heterojunctions in the sensing materials. The sensors composed with the built nanostructured heterojunctions were found to show enhanced gas sensing performance with higher sensor responses and shorter response times to the targeted reducing or oxidising gases compare with those of the pure metal oxides. Moreover, the enhanced gas sensing mechanisms of the metal oxide-based heterojunctions to the reducing or oxidising gases are also discussed, with the main emphasis on the important role of the potential barrier on the accumulation layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Jian, Pablo Jiménez-Calvo, Erwan Paineau, and Mohamed Nawfal Ghazzal. "Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution." Catalysts 10, no. 1 (January 7, 2020): 89. http://dx.doi.org/10.3390/catal10010089.

Повний текст джерела
Анотація:
The photo-conversion efficiency is a key issue in the development of new photocatalysts for solar light driven water splitting applications. In recent years, different engineering strategies have been proposed to improve the photogeneration and the lifetime of charge carriers in nanostructured photocatalysts. In particular, the rational design of heterojunctions composites to obtain peculiar physico-chemical properties has achieved more efficient charge carriers formation and separation in comparison to their individual component materials. In this review, the recent progress of sulfide-based heterojunctions and novel nanostructures such as core-shell structure, periodical structure, and hollow cylinders is summarized. Some new perspectives of opportunities and challenges in fabricating high-performance photocatalysts are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mamedov, Huseyn, Mustafa Muradov, Zoltan Konya, Akos Kukovecz, Krisztian Kordas, Syed Ismat Shah, Vusala Mamedova, Khumar Ahmedova, Elgun Tagiyev, and Vusal Mamedov. "Fabrication and characterization of c-Si/porous-Si/CdS/ZnxCd1-xO heterojunctions for applications in nanostructured solar cells." Photonics Letters of Poland 10, no. 3 (October 1, 2018): 73. http://dx.doi.org/10.4302/plp.v10i3.813.

Повний текст джерела
Анотація:
Solar cells based on c-Si/porous-Si/CdS/ZnxCd1-xO heterojunctions were synthesized by depositing CdS films on c-Si/porous-Si (PS) substrates by electrochemical deposition (ED). PS layers with systematically varied pore diameter (8-45 nm) and were fabricated on p-type c-Si wafers using electrochemical etching. The window layers of ZnxCd1-xO with several Zn concentrations(x=0.2; 0.4; 0.5 and 0.6) were also deposited on the CdS buffer layers by ED. The photoelectrical properties of heterojunctions were studied as functions of PS pore size and Zn content in ZnxCd1-xO. The optimal pore size and Zn contents were found to be 10 nm and x=0.6, respectively. These yielded a solar cell sample exhibiting an efficiency of 9.9%, the maximum observed in this study. Full Text: PDF ReferencesM.A.Green. "Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination", Progress in Photovoltaic 7, 327 (1999). CrossRef P.Papet, O. Nichiporik, A. Kaminski et al. "Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching", Solar Energy Materials and Solar Cells 90, 2319 (2006). CrossRef P. Vitanovet et al. "High-efficiency solar cell using a thin porous silicon layer", Thin Solid Films 297, 299 (1997). CrossRef L. Santinacci et al. "Electrochemical and optical characterizations of anodic porous n-InP(1 0 0) layers", Electrochim. Acta 56, 878 (2010). CrossRef V.Lehmann. "The Physics of Macropore Formation in Low Doped n‐Type Silicon", J. Electrochem. Soc. 140, 2836 (1993). CrossRef Bisi O et al. "Porous silicon: a quantum sponge structure for silicon based optoelectronics", Surface Science Reports 38, 1 (2000). CrossRef A.I. Raid et al. Applied Nanoscience 7, 9 (2016). CrossRef M.A. Naser et al. "Characteristics of Nanostructure Silicon Photodiode using Laser Assisted Etching", Procedia Engineering 53, 393 (2013). CrossRef D.H. Oh et al. J. Ceram. Process. Res. "Effects of a H2SO4 treatment on the optical properties in porous Si layers and electrical properties of diode devices fabricated with a H2SO4 treated porous Si layer", 9, 57 (2008). DirectLink H. Foll et al. "Formation and application of porous silicon", Materials Science and Engineering R 280, 1 (2002). CrossRef P. Granitzer et al. "Porous Silicon—A Versatile Host Material", Materials 3, 943 (2010). CrossRef G. Korotcenkov, Porous Silicon: From Formation to Application (Taylor and Francis Group, CRC Press, Boca Raton, USA, 2016). DirectLink V.Y. Yerokhov. "Porous silicon in solar cell structures: a review of achievements and modern directions of further use", Renewable and Sustainable Energy Rev. 3, 291 (1999). CrossRef A. Ramizy et al. "New optical features to enhance solar cell performance based on porous silicon surfaces", Appl. Surf. Science 257, 6112 (2011). CrossRef F. Ruske et al. "Large area ZnO:Al films with tailored light scattering properties for photovoltaic applications", Thin Solid Films 515, 8695 (2007). CrossRef Y. Alivov et al. "Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes", Appl. Phys. Lett. 83, 2943 (2003). CrossRef G.V. Lashkarev et al. "Properties of zinc oxide at low and moderate temperatures", Low Temp. Phys. 37, 289 (2011). CrossRef P.M. Devshette et al. "Growth and physical properties of ZnxCd1−xO thin films prepared by spray pyrolysis technique", J. of Alloys and Compunds 463, 576 (2008). CrossRef Y. Caglar et al. "Morphological, optical and electrical properties of CdZnO films prepared by sol–gel method", J. Phys. D: Appl. Phys. 42, 065421 (2009). CrossRef A. Abdinov et al. "Photosensitivity of p,n-Si/n-Cd1−xZnxS heterojunctions manufactured by a method of electrochemical deposition", Thin Solid Films 480-481, 388 (2005). CrossRef A Abdinov et al. "Investigation of electrodeposited p-Si/Cd1 − xZnxS1 − ySey heterojunction solar cells", Thin Solid Films 511-512,140 (2006) CrossRef J.B. Orhan et al. "Nano-textured superstrates for thin film silicon solar cells: Status and industrial challenges", Sol. Cells 140, 344 (2015). CrossRef H.Ch. Alan et al. "Light management of tandem solar cells on nanostructured substrates", J. Photon. Energy 7, 027001 (2017) CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Zhiping, Ying Zhou, Tetsuhiko Miyadera, Masayuki Chikamatsu, and Yuji Yoshida. "Constructing Nanostructured Donor/Acceptor Bulk Heterojunctions via Interfacial Templates for Efficient Organic Photovoltaics." ACS Applied Materials & Interfaces 9, no. 50 (December 6, 2017): 43893–901. http://dx.doi.org/10.1021/acsami.7b13989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Letertre, Laurie, Roland Roche, Olivier Douhéret, Hailu G. Kassa, Denis Mariolle, Nicolas Chevalier, Łukasz Borowik, et al. "A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications." Beilstein Journal of Nanotechnology 9 (August 1, 2018): 2087–96. http://dx.doi.org/10.3762/bjnano.9.197.

Повний текст джерела
Анотація:
The nanoscale morphology of photoactive hybrid heterojunctions plays a key role in the performances of hybrid solar cells. In this work, the heterojunctions consist of a nanocolumnar TiO2 surface covalently grafted with a monolayer of poly(3-hexylthiophene) (P3HT) functionalized with carboxylic groups (–COOH). Through a joint analysis of the photovoltaic properties at the nanoscale by photoconductive-AFM (PC-AFM) and surface photovoltage imaging, we investigated the physical mechanisms taking place locally during the photovoltaic process and the correlation to the nanoscale morphology. A down-shift of the vacuum level of the TiO2 surface upon grafting was measured by Kelvin probe force microscopy (KPFM), evidencing the formation of a dipole at the TiO2/P3HT-COOH interface. Upon in situ illumination, a positive photovoltage was observed as a result of the accumulation of photogenerated holes in the P3HT layer. A positive photocurrent was recorded in PC-AFM measurements, whose spatial mapping was interpreted consistently with the corresponding KPFM analysis, offering a correlated analysis of interest from both a theoretical and material design perspective.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oladipo, Akeem Adeyemi, and Faisal Suleiman Mustafa. "Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes." Beilstein Journal of Nanotechnology 14 (March 3, 2023): 291–321. http://dx.doi.org/10.3762/bjnano.14.26.

Повний текст джерела
Анотація:
A serious threat to human health and the environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one of the most prominent study topics compared to the commonly used semiconductors (TiO2 and ZnO). In this review, the most recent developments in the use of photocatalysts based on bismuth (e.g., BiFeO3, Bi2MoO6, BiVO4, Bi2WO6, Bi2S3) to remove dyes and antibiotics from wastewater are thoroughly covered. The creation of Z-schemes, Schottky junctions, and heterojunctions, as well as morphological modifications, doping, and other processes are highlighted regarding the fabrication of bismuth-based photocatalysts with improved photocatalytic capabilities. A discussion of general photocatalytic mechanisms is included, along with potential antibiotic and dye degradation pathways in wastewater. Finally, areas that require additional study and attention regarding the usage of photocatalysts based on bismuth for removing pharmaceuticals and textile dyes from wastewater, particularly for real-world applications, are addressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Basyooni, Mohamed A., Shrouk E. Zaki, Nada Alfryyan, Mohammed Tihtih, Yasin Ramazan Eker, Gamal F. Attia, Mücahit Yılmaz, Şule Ateş, and Mohamed Shaban. "Nanostructured MoS2 and WS2 Photoresponses under Gas Stimuli." Nanomaterials 12, no. 20 (October 13, 2022): 3585. http://dx.doi.org/10.3390/nano12203585.

Повний текст джерела
Анотація:
This study was on the optoelectronic properties of multilayered two-dimensional MoS2 and WS2 materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. For the first time, we report ultraviolet (UV) photoresponses under air, CO2, and O2 environments at different flow rates. The electrical Hall effect measurement showed the existence of MoS2 (n-type)/Si (p-type) and WS2 (P-type)/Si (p-type) heterojunctions with a higher sheet carrier concentration of 5.50 × 105 cm−2 for WS2 thin film. The IV electrical results revealed that WS2 is more reactive than MoS2 film under different gas stimuli. WS2 film showed high stability under different bias voltages, even at zero bias voltage, due to the noticeably good carrier mobility of 29.8 × 102 cm2/V. WS2 film indicated a fast rise/decay time of 0.23/0.21 s under air while a faster response of 0.190/0.10 s under a CO2 environment was observed. Additionally, the external quantum efficiency of WS2 revealed a remarkable enhancement in the CO2 environment of 1.62 × 108 compared to MoS2 film with 6.74 × 106. According to our findings, the presence of CO2 on the surface of WS2 improves such optoelectronic properties as photocurrent gain, photoresponsivity, external quantum efficiency, and detectivity. These results indicate potential applications of WS2 as a photodetector under gas stimuli for future optoelectronic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Nirmal, Stanislav Haviar, and Petr Zeman. "Three-Layer PdO/CuWO4/CuO System for Hydrogen Gas Sensing with Reduced Humidity Interference." Nanomaterials 11, no. 12 (December 20, 2021): 3456. http://dx.doi.org/10.3390/nano11123456.

Повний текст джерела
Анотація:
The growing hydrogen industry is stimulating an ongoing search for new materials not only for hydrogen production or storage but also for hydrogen sensing. These materials have to be sensitive to hydrogen, but additionally, their synthesis should be compatible with the microcircuit industry to enable seamless integration into various devices. In addition, the interference of air humidity remains an issue for hydrogen sensing materials. We approach these challenges using conventional reactive sputter deposition. Using three consequential processes, we synthesized multilayer structures. A basic two-layer system composed of a base layer of cupric oxide (CuO) overlayered with a nanostructured copper tungstate (CuWO4) exhibits higher sensitivity than individual materials. This is explained by the formation of microscopic heterojunctions. The addition of a third layer of palladium oxide (PdO) in forms of thin film and particles resulted in a reduction in humidity interference. As a result, a sensing three-layer system working at 150 °C with an equalized response in dry/humid air was developed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fu, Hang-Kuei, Cheng-Liang Cheng, Chun-Hsiung Wang, Tai-Yuan Lin, and Yang-Fang Chen. "Selective Angle Electroluminescence of Light-Emitting Diodes based on Nanostructured ZnO/GaN Heterojunctions." Advanced Functional Materials 19, no. 21 (November 9, 2009): 3471–75. http://dx.doi.org/10.1002/adfm.200900815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Heterojunctions - Nanostructured Materials"

1

Santhanakrishna, Anand Kumar. "Piezoelectric ZnO Nanowires as a Tunable Interface Material for Opto-Electronic Applications." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7926.

Повний текст джерела
Анотація:
Organic electronic devices are sustainable alternatives to the conventional electronics, due to their advantages of low cost, mechanical flexibility and wide range of applications. With the myriad list of organic materials available today, the opportunities to imagine new innovative devices are immense. Organic electronic devices such as OLEDs (organic light emitting diode), OPVs (Organic photovoltaics) and OFETs (organic field effect transistors) are among the leading device categories. Although OLED’s have been a huge commercial success, other categories are not lagging. Radical thinking is necessary to improve on the current performances of these devices. One such thinking is to combine the versatile ZnO (Zinc Oxide) material to organic semiconductors. This can be achieved by exploiting the dual nature of ZnO’s semiconducting and piezoelectric property. Many devices have used ZnO in combination with organic semiconductors for applications ranging from sensors, photovoltaics, OFET’s, memory and many others. The goal of the work is to incorporate the piezoelectric nature of hydrothermally grown ZnO nanowires for Opto-electronic applications. Although the initial research work was done on incorporating the piezo effect of bulk grown ZnO nanowires in improving the efficiency of an OPV, we discovered a unique memory effect in this device by incorporating ZnO nanowires in an inverted organic photovoltaic architecture. The device switched between a rectifying response in dark to resistive behavior under illumination with a finite transition time and was reversible. Since then we decided to explore few of the opto-electronic applications of this technology. The synthesis and characterization of crystalline ZnO nanowires, nanoforest and planar ZnO nanofilm are reported along with the application of these ZnO nanostructures in optoelectronic devices. Noncentro symmetry of crystalline ZnO nanostructures makes it an excellent candidate to be used as piezo functional material and these nanostructures are characterized using electrochemical cell containing ZnO electrode as the working electrode. ZnO nanostructures like nanowires, nanoforest and planar nanofilm are similarly characterized for piezo property using electrochemical technique. Different devices require distinguishing physical and electrical properties of ZnO nanostructures, hence morphology, effect of pre-strain, surface area, surface coverage and thickness of these nanostructures were evaluated for its piezoresponse. It is shown that it was possible to obtain similar piezoresponse among different ZnO nanostructures in addition to taking advantage of the structural benefits among various categories of nanostructures as per requirement. The presented research can be used as the proof-of-the-concept that ZnO nanostructures can be designed and fabricated with a prestrain to adjust the piezo response of the material under external forces. Therefore, the structure with the prestrain can be employed in various electronic and optical devices where the piezo voltage can be used for adjusting the energy band bending at an interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yong, Chaw Keong. "Ultrafast carrier dynamics in organic-inorganic semiconductor nanostructures." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b2efdc6a-1531-4d3f-8af1-e3094747434c.

Повний текст джерела
Анотація:
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within the inorganic semiconductors. Inorganic semiconductor nanowires and their blends with semiconducting polymers have been investigated using state-of-the-art ultrafast optical techniques to provide information on the sub-picosecond to nanosecond photoexcitation dynamics in these systems. Chapters 1 and 2 introduce the theory and background behind the work and present a literature review of previous work utilising nanowires in hybrid organic photovoltaic devices, revealing the performances to date. The experimental methods used during the thesis are detailed in Chapter 3. Chapter 4 describes the crucial roles of surface passivation on the ultrafast dynamics of exciton formation in gallium arsenide (GaAs) nanowires. By passivating the surface states of nanowires, exciton formation via the bimolecular conversion of electron-hole plasma can observed over few hundred picoseconds, in-contrast to the fast carrier trapping in 10 ps observed in the uncoated nanowires. Chapter 5 presents a novel method to passivate the surface-states of GaAs nanowires using semiconducting polymer. The carrier lifetime in the nanowires can be strongly enhanced when the ionization potential of the overcoated semiconducting polymer is smaller than the work function of the nanowires and the surface native oxide layers of nanowires are removed. Finally, Chapter 6 shows that the carrier cooling in the type-II wurtzite-zincblend InP nanowires is reduced by order-of magnitude during the spatial charge-transfer across the type-II heterojunction. The works decribed in this thesis reveals the crucial role of surface-states and bulk defects on the carrier dynamics of semiconductor nanowires. In-addition, a novel approach to passivate the surface defect states of nanowires using semiconducting polymers was developed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garchery, Laurent. "Fabrication et étude des propriétés physiques des nanostructures Si/SiGe : application aux nouveaux dispositifs." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10232.

Повний текст джерела
Анотація:
La technologie de la microelectronique silicium beneficie aujourd'hui d'investissements massifs et continus. Tout porte a croire que les excellentes proprietes du systeme si/sio#2 assureront la perennite du si pendant encore de nombreuses annees. Le developpement de nouveaux materiaux pouvant ameliorer les performances des dispositifs a base de si est donc encourage. En particulier, l'heterosysteme si/sige apparait comme le meilleur candidat pour le developpement d'une technologie a heterojonction a base de si. De tels materiaux doivent cependant etre compatibles avec les temperatures de recuit utilisees dans la technologie si. Les deux principaux dispositifs electroniques dans lesquels l'utilisation du sige est envisagee sont le transistor bipolaire et le transistor a effet de champ. Dans le cas du transistor a effet de champ, l'interet du sige est d'ameliorer les proprietes de transport parallele au plan des couches. Cette these est consacree a l'etude experimentale de ces proprietes ainsi qu'a l'analyse et a la comprehension du fonctionnement des heteronjonctions si/sige. Nous rappelons tout d'abord les proprietes de structure de bandes des heterosystemes contraints si/sige ainsi que la methode de mesure par effet hall que nous avons utilisee. Une etude de l'evolution thermique des proprietes de transport et de confinement de modulations de dopage si/sige de type p est ensuite presentee. Puis, nous analysons les proprietes de transport electronique des heterostructures si/sige elaborees sur un pseudo-substrat de sige relaxe. Le principe de fonctionnement specifique des dispositifs mos a canal enterre en sige est ensuite mis en evidence experimentalement. Nous constaterons finalement que les caracteristiques electriques des dispositifs mos a base de si peuvent etre ameliorees par l'introduction d'un canal enterre en sige
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eley, Clive William. "The rational design of photocatalytic semiconductor nanocrystals." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ee29c922-857c-432a-8316-a7e04c822b1d.

Повний текст джерела
Анотація:
This thesis reports the successful rational design of three highly active photocatalytic semiconductor nanocrystal (SNC) systems by exploiting morphology effects and the electronic properties of type II semiconductor heterojunctions. Novel architectures of colloidal SNCs are produced with the aim of suppressing exciton recombination and improving charge extraction for the successful initiation of desirable redox chemistry. Rod-shaped niobium pentoxide Nb2O5 nanocrystals (NCs) are shown to exhibit significantly enhanced activity (10-fold increase in rate constant) relative to spherical-shaped NCs of the same material. The increase is attributed to Nb5+ Lewis acid site rich (001) surfaces, present in higher proportions in the rod morphology, which bind organic substrates from solution resulting in direct interaction with photogenerated charges on the surface of the NC. Building on the insights into morphology-activity dependence, type II semiconductor heterojunctions are exploited for their ability to increase exciton lifetimes and spatially separate charges. Two novel II-VI heterostructured semiconductor nanocrystals (HSNCs) systems are investigated: a series of CdX/ZnO (X = S, Se, Te) HSNCs and ZnS/ZnO HSNCs capped with two different surface ligands. In the first case, substantial photocatalytic activity improvement is observed for HSNCs (relative to pure ZnO analogues) according to the following trend: CdTe/ZnO > CdS/ZnO > CdSe/ZnO. The observed trend is explained in terms of heterojunction structure and fundamental chalcogenide chemistry. In the second case, both ZnS/ZnO HSNCs exhibit activity enhancement over analogous pure ZnO, but the degree of enhancement is found to be a function of surface ligand chemistry. Photocatalytic activity testing of all the materials investigated in this work is performed via the photodecomposition of methylene blue dye in aerated aqueous conditions under UVA (350 nm) irradiation. The synthetic techniques employed for the synthesis of colloidal SNCs investigated in this thesis range from chemical precipitation and solvothermal techniques to several different organometallic approaches. A wide variety of analytical techniques are employed for the chemical, structural and optical characterisation of SNC photocatalysts including: XRD, XPS, TEM, UV-vis absorption, PL spectroscopy and FTIR. Atom Probe Tomography (APT) is employed for the first time in the structural characterisation of II-VI heterojunctions in colloidal HSNCs. Overall, this thesis provides a useful contribution to the growing body of knowledge pertaining to the enhancement of photocatalytic SNCs for useful applications including: solar energy conversion to chemical fuels, the photodecomposition of pollutants and light-driven synthetic chemistry.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mohan, Lokesh. "III- Nitride Thin Films and Nanostructures on Si(111) by Plasma Assisted Molecular Beam Epitaxy." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4297.

Повний текст джерела
Анотація:
This thesis focuses on studying heterostructures of GaN, Silicon and AlN. GaN nanostructures are grown on bare Si (111) with and without a GaN buffer layer and GaN film was grown on an AlN layer. Apart from the material characterization of the grown samples we have studied the carrier transport across GaN/Si and AlN/Si heterojunctions by means of the I-V-T curves from these junctions and we also studied the band alignment across GaN/AlN and AlN/Si heterojunctions by means of X-ray photoelectron spectroscopy. The thesis is divided in 7 chapters. The first chapter deals with general introduction of the field, choice of the substrate, different growth techniques and an overview of nanostructures. In the second chapter different experimental techniques used in the current study are briefly mentioned. These techniques include Growth by Plasma Assisted Molecular Beam Epitaxy (PAMBE), X-Ray Diffraction (XRD), Raman spectroscopy, Photoluminescence spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Then in the 3rd chapter the growth and characterization of GaN nanostructures on Silicon (111) is discussed. Attention has been paid to the effect of substrate temperature and V-III ratio on the morphology and optical quality of the grown structures when other growth parameters has been kept constant. However due to the complexity involved in forming proper electrical contacts from such rods and low yield of single nanowire-based devices, the need to grow compact nanorods was felt. Hence in the fourth chapter compact GaN nanorods were grown on n-Si with a buffer layer for improved quality and elimination of any possibility of electrical short with the substrate during metallization. The main focus in this chapter is the electrical characterization of GaN nanorods/Si (111) heterojunction. The temperature dependent current-voltage characteristics from GaN/n-Si (111) junctions are analyzed and explained as the result of a lateral inhomogeneity in barrier heights with Gaussian distribution and temperature dependent Gaussian parameters. The importance of AlN as a buffer layer for many III-Nitride based devices and as an active layer in many electromechanical devices drew our attention towards band off-set studies of the GaN/AlN/Si heterojunction and electrical transport across the AlN/n-Si junction, in 5th and 6th chapter respectively. The 5th chapter starts with the structural and optical characterization of AlN/Si (111) templates and overgrown GaN thin film. The rest of the 5th chapter is dedicated to the band off sets studies on GaN/AlN and AlN/Si (111) heterojunctions with X-ray photoelectron spectroscopy (XPS). A band diagram of GaN/AlN and AlN/Si is suggested based on our studies. In the 6th chapter, which happens to be the last work chapter, the temperature dependent electrical characterization of AlN/n-Si (111) heterojunction was carried out from 100K to 400K and the transport mechanism was explained with the help of the trap states at the interface. Finally, the thesis is concluded and insights for future work is presented in the seventh chapter.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bhat, Thirumaleshwara N. "Group III Nitride/p-Silicon Heterojunctions By Plasma Assisted Molecular Beam Epitaxy." Thesis, 2012. https://etd.iisc.ac.in/handle/2005/2454.

Повний текст джерела
Анотація:
The present work focuses on the growth and characterizations of GaN and InN layers and nanostructures on p-Si(100) and p-Si(111) substrates by plasma-assisted molecular beam epitaxy and the studies of GaN/p-Si and InN/p-Si heterojunctions properties. The thesis is divided in to seven different chapters. Chapter 1 gives a brief introduction on III-nitride materials, growth systems, substrates, possible device applications and technical background. Chapter 2 deals with experimental techniques including the details of PAMBE system used in the present work and characterization tools for III-nitride epitaxial layers as well as nanostructures. Chapter 3 involves the growth of GaN films on p-Si(100) and p-Si(111) substrates. Phase pure wurtzite GaN films are grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) are found to be phase mixtured, containing both cubic and hexagonal modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural and optical properties of GaN films grown with silicon nitride buffer layer grown at 800 oC, when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 oC. Core-level photoelectron spectroscopy of SixNy layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism is observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibites superior rectifying nature with reduced trap concentrations. Lowest ideality factors (~1.5) are observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. A brief comparison of the structural, optical and heterojunction properties of GaN grown on Si(100) and Si(111) has been carried out. Chapter 4 involves the growth and characterizations of InN nanostructures and thinfilms on p-Si(100) and p-Si(111) substrates. InN QDs are grown on Si(100) at different densities. The PL characteristics of InN QDs are studied. A deterioration process of InN QDs, caused by the oxygen incorporation into the InN lattice and formation of In2O3/InN composite structures was established from the results of TEM, XPS and PL studies. The results confirm the partial oxidation of the outer shell of the InN QDs, while the inner core of the QDs remains unoxidized. InN nanorods are grown on p-Si(100), structural characterizations are carried out by SEM, and TEM. InN nanodots are grown on p-Si(100), structural characterizations are performed. InN films were grown on Si(100) and Si(111) substrates and structural characterizations are carried out. Chapter 5 deals with the the heterojunction properties of InN/p-Si(100) and InN/p-Si(111).The transport behavior of the InN NDs/p-Si(100) diodes is studied at various bias voltages and temperatures. The temperature dependent ZB BH and ideality factors of the forward I-V data are observed, while it is governed through the modified Richardson’s plot. The difference in FB BH and C-V BH and the deviation of ideality factor from unity indicate the presence of inhomogeneities at the interface. The band offsets derived from C-V measurements are found to be Δ EC=1.8 eV and Δ EV =1.3 eV, which are in close agreement with Anderson’s model. The band offsets of InN/p-Si heterojunctions are estimated using XPS data. A type-III band alignment with a valence band offset of Δ EV =1.39 eV and conduction band offset of ΔEC=1.81 eV is identified. The charge neutrality level model provides a reasonable description of the band alignment of the InN/p-Si interface. The interface dipole deduced by comparison with the electron affinity model is 0.06 eV. The transport studies of InN NR/p-Si(100) heterojunctions have been carried out by conductive atomic force microscopy (CAFM) as well as conventional large area contacts. Discussion of the electrical properties has been carried out based on local current-voltage (I-V) curves, as well as on the 2D conductance maps. The comparative studies on transport properties of diodes fabricated with InN NRs and NDs grown on p-Si(100) substrates and InN thin films grown on p-Si(111) substrates have also been carried out. Chapter 6 deals with the growth and characterizations of InN/GaN heterostructures on p-Si(100) and p-Si(111) substarets and also on the InN/GaN/p-Si heterojunction properties. The X-ray diffraction (XRD), scanning electron microscopy (SEM) studies reveal a considerable variation in crystalline quality of InN with grown parameters. Deterioration in the rectifying nature is observed in the case of InN/GaN/p-Si(100) heterojunction substrate when compared to InN/GaN/p-Si (111) due to the defect mediated tunneling effect, caused by the high defect concentration in the GaN and InN films grown on Si(100) and also due to the trap centers exist in the interfaces. Reduction in ideality factor is also observed in the case of n-InN/n-GaN/p–Si(111) when compared to n-InN/n-GaN/p–Si(100) heterojunction. The sum of the ideality factors of individual diodes is consistent with experimentally observed high ideality factors of n-InN/n-GaN/p–Si double heterojunctions due to double rectifying heterojunctions and metal semiconductor junctions. Variation of effective barrier heights and ideality factors with temperature are confirmed, which indicate the inhomogeneity in barrier height, might be due to various types of defects present at the GaN/Si and InN/GaN interfaces. The dependence of forward currents on both the voltage and temperatures are explained by multi step tunneling model and the activation energis were estimated to be 25meV and 100meV for n-InN/n-GaN/p–Si(100) and n-InN/n-GaN/p–Si(111) heterojunctions, respectively. Chapter 7 gives the summary of the present study and also discusses about future research directions in this area.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bhat, Thirumaleshwara N. "Group III Nitride/p-Silicon Heterojunctions By Plasma Assisted Molecular Beam Epitaxy." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2454.

Повний текст джерела
Анотація:
The present work focuses on the growth and characterizations of GaN and InN layers and nanostructures on p-Si(100) and p-Si(111) substrates by plasma-assisted molecular beam epitaxy and the studies of GaN/p-Si and InN/p-Si heterojunctions properties. The thesis is divided in to seven different chapters. Chapter 1 gives a brief introduction on III-nitride materials, growth systems, substrates, possible device applications and technical background. Chapter 2 deals with experimental techniques including the details of PAMBE system used in the present work and characterization tools for III-nitride epitaxial layers as well as nanostructures. Chapter 3 involves the growth of GaN films on p-Si(100) and p-Si(111) substrates. Phase pure wurtzite GaN films are grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) are found to be phase mixtured, containing both cubic and hexagonal modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural and optical properties of GaN films grown with silicon nitride buffer layer grown at 800 oC, when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 oC. Core-level photoelectron spectroscopy of SixNy layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism is observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibites superior rectifying nature with reduced trap concentrations. Lowest ideality factors (~1.5) are observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. A brief comparison of the structural, optical and heterojunction properties of GaN grown on Si(100) and Si(111) has been carried out. Chapter 4 involves the growth and characterizations of InN nanostructures and thinfilms on p-Si(100) and p-Si(111) substrates. InN QDs are grown on Si(100) at different densities. The PL characteristics of InN QDs are studied. A deterioration process of InN QDs, caused by the oxygen incorporation into the InN lattice and formation of In2O3/InN composite structures was established from the results of TEM, XPS and PL studies. The results confirm the partial oxidation of the outer shell of the InN QDs, while the inner core of the QDs remains unoxidized. InN nanorods are grown on p-Si(100), structural characterizations are carried out by SEM, and TEM. InN nanodots are grown on p-Si(100), structural characterizations are performed. InN films were grown on Si(100) and Si(111) substrates and structural characterizations are carried out. Chapter 5 deals with the the heterojunction properties of InN/p-Si(100) and InN/p-Si(111).The transport behavior of the InN NDs/p-Si(100) diodes is studied at various bias voltages and temperatures. The temperature dependent ZB BH and ideality factors of the forward I-V data are observed, while it is governed through the modified Richardson’s plot. The difference in FB BH and C-V BH and the deviation of ideality factor from unity indicate the presence of inhomogeneities at the interface. The band offsets derived from C-V measurements are found to be Δ EC=1.8 eV and Δ EV =1.3 eV, which are in close agreement with Anderson’s model. The band offsets of InN/p-Si heterojunctions are estimated using XPS data. A type-III band alignment with a valence band offset of Δ EV =1.39 eV and conduction band offset of ΔEC=1.81 eV is identified. The charge neutrality level model provides a reasonable description of the band alignment of the InN/p-Si interface. The interface dipole deduced by comparison with the electron affinity model is 0.06 eV. The transport studies of InN NR/p-Si(100) heterojunctions have been carried out by conductive atomic force microscopy (CAFM) as well as conventional large area contacts. Discussion of the electrical properties has been carried out based on local current-voltage (I-V) curves, as well as on the 2D conductance maps. The comparative studies on transport properties of diodes fabricated with InN NRs and NDs grown on p-Si(100) substrates and InN thin films grown on p-Si(111) substrates have also been carried out. Chapter 6 deals with the growth and characterizations of InN/GaN heterostructures on p-Si(100) and p-Si(111) substarets and also on the InN/GaN/p-Si heterojunction properties. The X-ray diffraction (XRD), scanning electron microscopy (SEM) studies reveal a considerable variation in crystalline quality of InN with grown parameters. Deterioration in the rectifying nature is observed in the case of InN/GaN/p-Si(100) heterojunction substrate when compared to InN/GaN/p-Si (111) due to the defect mediated tunneling effect, caused by the high defect concentration in the GaN and InN films grown on Si(100) and also due to the trap centers exist in the interfaces. Reduction in ideality factor is also observed in the case of n-InN/n-GaN/p–Si(111) when compared to n-InN/n-GaN/p–Si(100) heterojunction. The sum of the ideality factors of individual diodes is consistent with experimentally observed high ideality factors of n-InN/n-GaN/p–Si double heterojunctions due to double rectifying heterojunctions and metal semiconductor junctions. Variation of effective barrier heights and ideality factors with temperature are confirmed, which indicate the inhomogeneity in barrier height, might be due to various types of defects present at the GaN/Si and InN/GaN interfaces. The dependence of forward currents on both the voltage and temperatures are explained by multi step tunneling model and the activation energis were estimated to be 25meV and 100meV for n-InN/n-GaN/p–Si(100) and n-InN/n-GaN/p–Si(111) heterojunctions, respectively. Chapter 7 gives the summary of the present study and also discusses about future research directions in this area.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Heterojunctions - Nanostructured Materials"

1

Manasreh, Omar. Semiconductor Heterojunctions and Nanostructures (Nanoscience & Technology). McGraw-Hill Professional, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Semiconductor Heterojunctions and Nanostructures (Nanoscience & Technology). McGraw-Hill Professional, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Heterojunctions - Nanostructured Materials"

1

Yang, Shulin, Zhao Wang, Gui Lei, Huoxi Xu, Yongming Hu, and Haoshuang Gu. "High-Performance Gas Sensors Based on Nanostructured Metal Oxide Heterojunctions." In Materials Horizons: From Nature to Nanomaterials, 19–70. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4810-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nair, Keerthi G., V. P. Dinesh, and P. Biji. "Metal Oxide Based Heterojunction Nanoscale Materials for Chemiresistive Gas Sensors." In Advances in Nanostructured Composites, 161–201. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nagappagari, Lakshmana Reddy, Kiyoung Lee, Ajay Rakesh, Subramanian Balakumar, and M. V. Shankar. "Nanostructured Heterojunction (1D-0D and 2D-0D) Photocatalysts for Environmental Remediation." In Nanostructured Materials for Environmental Applications, 33–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72076-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kimura, Taro. "Analysis of Topological Material Surfaces." In Heterojunctions and Nanostructures. InTech, 2018. http://dx.doi.org/10.5772/intechopen.74934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nishikitani, Yoshinori, Soichi Uchida, and Takaya Kubo. "Nanostructured Organic Bulk Heterojunction Solar Cells." In Nanostructured Materials for Solar Energy Conversion, 319–33. Elsevier, 2006. http://dx.doi.org/10.1016/b978-044452844-5/50012-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Introduction to Bioinspired Nanomaterials." In Materials Research Foundations, 1–35. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571-1.

Повний текст джерела
Анотація:
Nanomaterials (NMs) developed using biomolecules display numerous advantages which attract the science community to explore them for a wide range of applications. In this line, bio-scaffolds are studied as templates to form nano-bio heterojunctions in the nano confined materials. With the high flexibility of biomediated NMs, it is possible to develop desired size and shape selective NMs. Such bio-based NMs have great benefits in wide areas including catalysis, sensors and energy related applications particularly, electrocatalysis, supercapacitor, batteries etc. The viability of bio-scaffolds in developing metal superstructures makes them better choice in the medicinal fields. This book chapter mainly focused on the advantageous and challenges of bioinspired NMs in the medicinal field, particularly in drug delivery systems. Moreover, the synthetic methods such as enzyme catalyzed wet-chemical route, photo-irradiation and incubation methods were also discussed in detail. Also, this chapter gives a better understanding to the readers about the development of new nano-bio heterojunctions for medicine, energy and environmental fields. Moreover, the morphological features of nano-bio interactions at nanoscale level show predominant activity particularly in Surface Enhanced Raman Scattering (SERS) and sensor applications. With the knowledge gained from this chapter, in futuristic, one can go for the development of new metal nanostructures with different bio-scaffolds such as microorganisms, viruses, DNA and protein to mainstream applications for the medicinal fields.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Heterojunctions - Nanostructured Materials"

1

Ozkan, Cengiz S. "Assembly at the Nanoscale: Towards Functional Nanostructured Materials (Invited)." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17078.

Повний текст джерела
Анотація:
This paper reports the self assembly of functional nanostructured materials including multi-walled Carbon Nanotube-Quantum Dot (CNT-QD) heterojunctions using the Ethylene Carbodiimide Coupling procedure (EDC). Thiol stabilized ZnS capped CdSe quantum dots containing amine terminal groups (QD-NH2) were conjugated with acid treated Multi-Walled Carbon Nanotubes (MWCNT) ranging from 400 nm to 4μm in length. SEM, TEM, EDS and FTIR were used to characterize the conjugation process.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Chun-Hsien, Jay Shieh, Chao-Sung Lin, and Jing-Jong Shyue. "Photocatalytic Behaviors of TiO2-SrTiO3 Composite Thin Film and Nanostructure." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4956.

Повний текст джерела
Анотація:
To improve the efficiency of water splitting by photocatalysis, a semiconductor heterojunction made of titanium dioxide (TiO2) and strontium titanate (SrTiO3) is constructed to promote the separation of photo-induced electron and hole (e− /h+) pairs. The photocatalytic behaviors of the TiO2-SrTiO3 composite film and nanostructure fabricated by the sol-gel and hydrothermal methods are studied. UV-visible and ultraviolet photoelectron spectroscopies (UV-Vis & UPS) are adopted to identify the band structure of the TiO2-SrTiO3 heterojunction. For the composite film system, an approximately 0.5 eV band shift at the heterojunction improves the separation of photoinduced e−/h+ pairs. The photocurrent density of the composite film is about 2–3 times larger than that of the TiO2 or SrTiO3 film alone. For the composite nanostructure system, it is composed of an array of TiO2 nanotubes coated with SrTiO3 nanoparticles. An approximately 0.2 eV band shift at the heterojunction is determined for the composite nanostructure. It is found that the size of the SrTiO3 nanoparticles, which can be controlled by the hydrothermal temperature and time, is a key factor in influencing the photocurrent density of the TiO2-SrTiO3 composite nanostructure.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jie, Jiansheng, and Xiujuan Zhang. "Two-Dimensional Layered Materials/Silicon Heterojunctions for Energy and Optoelectronic Applications." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.ptu3c.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Isabella, O., R. Vismara, A. Ingenito, F. T. Si, and M. Zeman. "Radial heterojunction c-Si nanowire solar cells with 11.8% conversion efficiency." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.pw3c.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xia, Zhouhui, Tao Song, Jun Sun, Shuit-Tong Lee, and Baoquan Sun. "Plasmonic enhancement in hybrid organic/Si heterojunction solar cells enabled by embedded gold nanoparticles." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.pm3b.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Riaz, Muhammad, Ahmed C. Kadhim, Ahmad S. Azzahrani, and Salah A. Adnan. "Computer Analysis and Optimization of Thin Film Amorphous Silicon Heterojunction Solar Cells with AFORS-HET." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pv.2017.pw3a.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smeets, M., M. Ermes, M. Pomaska, K. Ding, U. W. Paetzold, and K. Bittkau. "Nanophotonic light management for silicon heterojunction solar cells with planar passivation layers – Implementation and material perspective." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/pv.2016.pth3a.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nadi, Samia Ahmed, Florian Lentz, Yael Augarten, Karsten Bittkau, Andreas Lambertz, Li Ding, Andrew Wrigley, Kaining Ding, and Uwe Rau. "Impact of Periodicity of Inverted Pyramids on Anti-reflection and Light-trapping Properties in Silicon Heterojunction Solar Cells." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pv.2017.pm3a.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Danielson, Eric, Zi-En Ooi, and Ananth Dodabalapur. "Effect of film nanostructure on in-plane charge transport in organic bulk heterojunction materials." In SPIE NanoScience + Engineering, edited by Natalie Banerji and Carlos Silva. SPIE, 2013. http://dx.doi.org/10.1117/12.2026547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Riaz, Muhammad, Ahmed C. Kadhim, Ahmad S. Azzahrani, and Susan K. Earles. "Variation in Efficiency with Respect to Change in Band Gap and Thickness in Thin Film Amorphous Silicon Tandem Heterojunction Solar Cells with AFORS-HET." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pv.2017.jw4c.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії