Добірка наукової літератури з теми "Heterogenous scheduling"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Heterogenous scheduling".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Heterogenous scheduling"
Patil, Shailesh. "Measurement-Based Opportunistic Scheduling for Heterogenous Wireless Systems." IEEE Transactions on Communications 57, no. 9 (September 2009): 2745–53. http://dx.doi.org/10.1109/tcomm.2009.09.0800902.
Повний текст джерелаAl-Saqabi, Khaled, Syed Sarwar, and Kassem Saleh. "Distributed gang scheduling in networks of heterogenous workstations." Computer Communications 20, no. 5 (July 1997): 338–48. http://dx.doi.org/10.1016/s0140-3664(97)00020-0.
Повний текст джерелаSun, Donglai, Yang Liu, Jianhua Li, and Yue Wu. "Collaborative Opportunistic Scheduling in Heterogeneous Networks: A Distributed Approach." Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/414689.
Повний текст джерелаPonsy. "Balanced Scheduling of Independent File-Sharing Tasks in Heterogenous Environment." Journal of Computer Science 7, no. 12 (December 1, 2011): 1793–97. http://dx.doi.org/10.3844/jcssp.2011.1793.1797.
Повний текст джерелаLai, Shouwen, Binoy Ravindran, and Hyeonjoong Cho. "Heterogenous Quorum-Based Wake-Up Scheduling in Wireless Sensor Networks." IEEE Transactions on Computers 59, no. 11 (November 2010): 1562–75. http://dx.doi.org/10.1109/tc.2010.20.
Повний текст джерелаChraibi, Amine, Said Ben Alla, and Abdellah Ezzati. "An efficient cloudlet scheduling via bin packing in cloud computing." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (June 1, 2022): 3226. http://dx.doi.org/10.11591/ijece.v12i3.pp3226-3237.
Повний текст джерелаIncrocci, Luca, Paolo Marzialetti, Giorgio Incrocci, Andrea Di Vita, Jos Balendonck, Carlo Bibbiani, Serafino Spagnol, and Alberto Pardossi. "Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops." Agricultural Water Management 131 (January 2014): 30–40. http://dx.doi.org/10.1016/j.agwat.2013.09.004.
Повний текст джерелаHamdi, S., E. Bouazizi, and S. Faiz. "QOS MANAGEMENT IN REAL-TIME SPATIAL BIG DATA USING FEEDBACK CONTROL SCHEDULING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5 (August 19, 2015): 243–48. http://dx.doi.org/10.5194/isprsannals-ii-3-w5-243-2015.
Повний текст джерелаKaur, Sumanpreet, and Mr Navtej Singh Ghumman. "ALLOCATION OF HETEROGENOUS CLOUDLETS ON PRIORITY BASIS IN CLOUD ENVIRONMENT." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 16, no. 3 (June 5, 2017): 6240–46. http://dx.doi.org/10.24297/ijct.v16i3.6177.
Повний текст джерелаLin, Na, Huimin Yang, Ya Li, and Xuping Wang. "Scheduling multi-pattern precooling service resources for post-harvest fruits and vegetables using the adaptive large neighborhood search." Journal of Physics: Conference Series 2425, no. 1 (February 1, 2023): 012006. http://dx.doi.org/10.1088/1742-6596/2425/1/012006.
Повний текст джерелаДисертації з теми "Heterogenous scheduling"
Durdak, Yavuz. "The Air Cargo Scheduling Problem With Heterogenous Fleet." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615358/index.pdf.
Повний текст джерелаHernandez, Jesus Israel. "Reactive scheduling of DAG applications on heterogeneous and dynamic distributed computing systems." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/2336.
Повний текст джерелаBinotto, Alécio Pedro Delazari. "A dynamic scheduling runtime and tuning system for heterogeneous multi and many-core desktop platforms." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/34768.
Повний текст джерелаA modern personal computer can be now considered as a one-node heterogeneous cluster that simultaneously processes several applications’ tasks. It can be composed by asymmetric Processing Units (PUs), like the multi-core Central Processing Unit (CPU), the many-core Graphics Processing Units (GPUs) - which have become one of the main co-processors that contributed towards high performance computing - and other PUs. This way, a powerful heterogeneous execution platform is built on a desktop for data intensive calculations. In the perspective of this thesis, to improve the performance of applications and explore such heterogeneity, a workload distribution over the PUs plays a key role in such systems. This issue presents challenges since the execution cost of a task at a PU is non-deterministic and can be affected by a number of parameters not known a priori, like the problem size domain and the precision of the solution, among others. Within this scope, this doctoral research introduces a context-aware runtime and performance tuning system based on a compromise between reducing the execution time of the applications - due to appropriate dynamic scheduling of high-level tasks - and the cost of computing such scheduling applied on a platform composed of CPU and GPUs. This approach combines a model for a first scheduling based on an off-line task performance profile benchmark with a runtime model that keeps track of the tasks’ real execution time and efficiently schedules new instances of the high-level tasks dynamically over the CPU/GPU execution platform. For that, it is proposed a set of heuristics to schedule tasks over one CPU and one GPU and a generic and efficient scheduling strategy that considers several processing units. The proposed approach is applied in a case study using a CPU-GPU execution platform for computing iterative solvers for Systems of Linear Equations using a stencil code specially designed to explore the characteristics of modern GPUs. The solution uses the number of unknowns as the main parameter for assignment decision. By scheduling tasks to the CPU and to the GPU, it is achieved a performance gain of 21.77% in comparison to the static assignment of all tasks to the GPU (which is done by current programming models, such as OpenCL and CUDA for Nvidia) with a scheduling error of only 0.25% compared to exhaustive search.
Neeracher, Matthias. "Scheduling for heterogeneous opportunistic workstation clusters /." [S.l.] : [s.n.], 1998. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=12906.
Повний текст джерелаWen, Yuan. "Multi-tasking scheduling for heterogeneous systems." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23469.
Повний текст джерелаKreaseck, Barbara. "Dynamic autonomous scheduling on heterogeneous systmes /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3102539.
Повний текст джерелаTzeng, Stanley. "Scheduling on Manycore and Heterogeneous Graphics Processors." Thesis, University of California, Davis, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602240.
Повний текст джерелаThrough custom software schedulers that distribute work differently than built-in hardware schedulers, data-parallel and heterogenous architectures can be retargeted towards irregular task-parallel graphics workloads. This dissertation examines the role of a GPU scheduler and how it may schedule complicated workloads onto the GPU for efficient parallel processing. This dissertation examines the scheduler through three different properties of workloads: granularity, irregularity, and dependency. Then it moves onto heterogenous architectures and examine how scheduling decisions differ when scheduling for discrete versus heterogeneous chips. The dissertation conclues with future work in scheduling for both discrete and heterogeneous architectures.
Lee, Young Choon. "Problem-centric scheduling for heterogeneous computing systems." Thesis, The University of Sydney, 2007. http://hdl.handle.net/2123/9321.
Повний текст джерелаOkolo, Benjamin Uchenna. "Joint Routing and Scheduling in Heterogeneous Wireless Network." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Знайти повний текст джерелаPlanas, Carbonell Judit. "Programming models and scheduling techniques for heterogeneous architectures." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/327036.
Повний текст джерелаActualment, hi ha una clara tendència per l'ús de sistemes heterogenis d'alt rendiment, ja que ofereixen una major potència de càlcul que els sistemes homogenis amb CPUs tradicionals. L'addició d'unitats especialitzades (acceleradors com ara GPGPUs) als sistemes amb CPUs s'ha convertit en una revolució en el món de la computació d'alt rendiment. Els sistemes heterogenis poden adaptar-se millor a les diferents necessitats de les aplicacions, ja que cada tipus d'arquitectura ofereix diferents característiques. Per tant, per maximitzar el rendiment, les aplicacions s'han de dividir en diverses parts d'acord amb els seus requeriments computacionals. Llavors, aquestes parts s'han d'executar al dispositiu que s'adapti millor a les seves necessitats. Per tant, l'heterogeneïtat introdueix una complexitat addicional en el desenvolupament d'aplicacions: d'una banda, els codis font s'han d'adaptar a les noves arquitectures i, de l'altra, la gestió de recursos es fa més complicada. Per exemple, múltiples espais de memòria que requereixen moviments explícits de dades o sincronitzacions addicionals entre diferents parts de codi que s'executen en diferents unitats. Per això, la programació i el manteniment del codi en sistemes heterogenis són extremadament complexos i cars. Tot i que hi ha diverses propostes per a la programació d'acceleradors, com CUDA o OpenCL, aquests models no resolen els reptes de programació descrits anteriorment, ja que exposen les característiques de baix nivell del hardware al programador. Per tant, els models de programació han de poder ocultar les complexitats dels acceleradors de cara al programador, proporcionant un entorn de desenvolupament homogeni. En aquest context, la tesi contribueix en dos aspectes fonamentals: primer, proposa un disseny per a gestionar de manera eficient l'execució d'aplicacions heterogènies i, segon, presenta diversos mecanismes de planificació per dividir l'execució d'aplicacions entre totes les unitats del sistema, per tal de maximitzar el rendiment i la utilització de recursos. La primera contribució proposa un disseny d'execució asíncron per gestionar els moviments de dades i sincronitzacions en acceleradors. Aquest enfocament s'ha desenvolupat en dos passos: primer, una proposta semi-asíncrona i després, una proposta totalment asíncrona per tal d'adaptar-se a les restriccions del hardware contemporani. Els resultats en sistemes multi-accelerador mostren que aquests enfocaments poden assolir el màxim rendiment esperat. Fins i tot, en determinats casos, poden superar el rendiment de codis nadius altament optimitzats. La segona contribució presenta quatre mecanismes de planificació diferents, enfocats a la programació heterogènia, per minimitzar el temps d'execució de les aplicacions. Per exemple, minimitzar la quantitat de dades compartides entre espais de memòria, o maximitzar la utilització de recursos mitjançant l'execució de cada porció de codi a la unitat que s'adapta millor. Els experiments s'han realitzat en diferents plataformes heterogènies, incloent CPUs, GPGPUs i dispositius Intel Xeon Phi. És particularment interessant analitzar com totes aquestes estratègies de planificació poden afectar el rendiment de l'aplicació. Com a resultat, es poden extreure tres conclusions generals: en primer lloc, el rendiment de l'aplicació no està garantit en les noves generacions de hardware. Per tant, els codis s'han d'actualitzar periòdicament a mesura que el hardware evoluciona. En segon lloc, la forma més eficient d'executar una aplicació en una plataforma heterogènia és dividir-la en porcions més petites i escollir la unitat que millor s'adapta per executar cada porció. Finalment, i probablement la conclusió més important, és que les exigències derivades de les dues primeres conclusions poden ser implementades dins de llibreries de sistema, de manera que la complexitat de programació d'arquitectures heterogènies quedi completament oculta per al programador.
Книги з теми "Heterogenous scheduling"
Neeracher, Matthias. Scheduling for heterogeneous opportunistic workstation clusters. Konstanz: Hartung-Gorre, 1998.
Знайти повний текст джерелаXie, Guoqi, Gang Zeng, Renfa Li, and Keqin Li. Scheduling Parallel Applications on Heterogeneous Distributed Systems. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6557-7.
Повний текст джерелаPop, Traian. Scheduling and optimisation of heterogeneous time/event-triggered distributed embedded systems. Linko ping: Univ., 2003.
Знайти повний текст джерелаPop, Traian. Analysis and optimisation of distributed embedded systems with heterogeneous scheduling policies. Linköping: Department of Computer and Information Science, Linköpings universitet, 2007.
Знайти повний текст джерелаSystematic Methodology for Real-Time Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on Heterogenous Platforms. Springer, 2007.
Знайти повний текст джерелаLi, Keqin, Gang Zeng, Guoqi Xie, and Renfa Li. Scheduling Parallel Applications on Heterogeneous Distributed Systems. Springer Singapore Pte. Limited, 2020.
Знайти повний текст джерелаLi, Keqin, Gang Zeng, Guoqi Xie, and Renfa Li. Scheduling Parallel Applications on Heterogeneous Distributed Systems. Springer, 2019.
Знайти повний текст джерелаParallel job scheduling on heterogeneous networks of multiprocessor workstations. Ottawa: National Library of Canada, 1999.
Знайти повний текст джерелаBeisel, Tobias. Management and Scheduling of Accelerators for Heterogeneous High-Performance Computing. Logos Verlag Berlin, 2015.
Знайти повний текст джерелаJacob, Joseph. Automatic scheduling and dynamic load sharing of parallel computations on heterogeneous workstation clusters. 1995.
Знайти повний текст джерелаЧастини книг з теми "Heterogenous scheduling"
He, Shiming, Kun Xie, and Dafang Zhang. "Completion Time-Aware Flow Scheduling in Heterogenous Networks." In Algorithms and Architectures for Parallel Processing, 492–507. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27119-4_34.
Повний текст джерелаKale, Vivek, and William D. Gropp. "Composing Low-Overhead Scheduling Strategies for Improving Performance of Scientific Applications." In OpenMP: Heterogenous Execution and Data Movements, 18–29. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24595-9_2.
Повний текст джерелаYang, Fudong, Xiaodong Ji, and Lei Li. "An Enhanced Cost Efficient Resource Scheduling Algorithm for Dense Heterogenous Networks." In Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49831-6_1.
Повний текст джерелаLiao, Qun, Shuangshuang Jiang, Qiaoxiang Hei, Tao Li, and Yulu Yang. "Scheduling Stochastic Tasks with Precedence Constrain on Cluster Systems with Heterogenous Communication Architecture." In Algorithms and Architectures for Parallel Processing, 85–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27161-3_8.
Повний текст джерелаAkkaya, Selen Burçak, and Mahmut Ali Gökçe. "Intelligent Scheduling and Routing of a Heterogenous Fleet of Automated Guided Vehicles (AGVs) in a Production Environment with Partial Recharge." In Lecture Notes in Networks and Systems, 568–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09176-6_65.
Повний текст джерелаSuter, Frédéric, Frédéric Desprez, and Henri Casanova. "From Heterogeneous Task Scheduling to Heterogeneous Mixed Parallel Scheduling." In Lecture Notes in Computer Science, 230–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27866-5_30.
Повний текст джерелаSjöland, Thomas, Per Kreuger, and Martin Aronsson. "Heterogeneous Scheduling and Rotation." In Computational Logic: Logic Programming and Beyond, 655–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45628-7_24.
Повний текст джерелаLi, Kenli, Xiaoyong Tang, Jing Mei, Longxin Zhang, Wangdong Yang, and Keqin Li. "Scheduling Stochastic Tasks on Heterogeneous Cluster Systems." In Workflow Scheduling on Computing Systems, 53–72. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b23006-4.
Повний текст джерелаGupta, Anupam, Ravishankar Krishnaswamy, and Kirk Pruhs. "Scalably Scheduling Power-Heterogeneous Processors." In Automata, Languages and Programming, 312–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14165-2_27.
Повний текст джерелаAlbers, Susanne, Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli, and Richard Stotz. "Scheduling on Power-Heterogeneous Processors." In LATIN 2016: Theoretical Informatics, 41–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49529-2_4.
Повний текст джерелаТези доповідей конференцій з теми "Heterogenous scheduling"
Schildt, Sebastian, Felix Busching, Enrico Jorns, and Lars Wolf. "CANDIS: Heterogenous Mobile Cloud Framework and Energy Cost-Aware Scheduling." In 2013 IEEE International Conference on Green Computing and Communications (GreenCom) and IEEE Internet of Things(iThings) and IEEE Cyber, Physical and Social Computing(CPSCom). IEEE, 2013. http://dx.doi.org/10.1109/greencom-ithings-cpscom.2013.372.
Повний текст джерелаLi, Na, Bo Gao, Zongfu Xie, Jinjin Liu, Yawei ji, and Xiaolong Shen. "Load balancing scheduling algorithm based on edge clustering in heterogenous systems." In 2nd International Conference on Internet of Things and Smart City (IoTSC 2022), edited by Xuexia Ye, Francisco Falcone, and Heming Cui. SPIE, 2022. http://dx.doi.org/10.1117/12.2636691.
Повний текст джерелаMahmoud, Hadeer, Mostafa Thabet, Mohamed H. Khafagy, and Fatma A. Omara. "A Comparative Study of Heterogenous Task-based Scheduling Techniques in a Cloud Environment." In 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). IEEE, 2020. http://dx.doi.org/10.1109/itce48509.2020.9047806.
Повний текст джерелаDeng, Xiangjun, Jing Huang, and Renfa Li. "A Locality-aware Task Scheduling Algorithm for Video Transcoding over Heterogenous MapReduce Cluster." In the 3rd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3220162.3220191.
Повний текст джерелаHossain, M. J., M. S. Alouini, and V. K. Bhargava. "Two-User Opportunistic Scheduling Using Hierarchical Modulations in Wireless Networks with Heterogenous Average Link Gains." In 2008 IEEE International Conference on Communications. IEEE, 2008. http://dx.doi.org/10.1109/icc.2008.214.
Повний текст джерелаFan, Wei, Jie Zhu, and Kexin Ding. "An Improved Task Duplication based Clustering Algorithm for DAG Task Scheduling in Heterogenous and Distributed Systems." In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2022. http://dx.doi.org/10.1109/smc53654.2022.9945255.
Повний текст джерелаYu, Han. "A Hybrid GA-based Scheduling Algorithm for Heterogeneous Computing Environments." In 2007 IEEE Symposium on Computational Intelligence in Scheduling. IEEE, 2007. http://dx.doi.org/10.1109/scis.2007.367674.
Повний текст джерелаLi, Feng, Lin Zhang, and Yuanjun Laili. "Multi-Task Scheduling Based on QoS Evaluation in Cloud Manufacturing System." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2839.
Повний текст джерелаKashansky, V., R. Prodan, and G. Radchenko. "SOME ASPECTS OF THE WORKFLOW SCHEDULING IN THE COMPUTING CONTINUUM SYSTEMS." In 9th International Conference "Distributed Computing and Grid Technologies in Science and Education". Crossref, 2021. http://dx.doi.org/10.54546/mlit.2021.29.45.001.
Повний текст джерелаKitajima, J. P. W., and S. C. S. Porto. "Estimated and Observed Performance of Heuristic Algorithrns for Task Scheduling on Heterogeneous Processors." In Simpósio Brasileiro de Arquitetura de Computadores e Processamento de Alto Desempenho. Sociedade Brasileira de Computação, 1997. http://dx.doi.org/10.5753/sbac-pad.1997.22629.
Повний текст джерелаЗвіти організацій з теми "Heterogenous scheduling"
Oliker, Leonid, Rupak Biswas, Hongzhang Shan, and Warren Smith. Job scheduling in a heterogenous grid environment. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/860301.
Повний текст джерелаAndersson, Bjorn A., and Gurulingesh Raravi. Scheduling Constrained-Deadline Parallel Tasks on Two-type Heterogeneous Multiprocessors. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada614630.
Повний текст джерела