Дисертації з теми "Heterogenous programming"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Heterogenous programming".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sodsong, Wasuwee. "Parallelization Techniques for Heterogeneous Multicores with Applications." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17987.
Повний текст джерелаKainth, Haresh S. "A data dependency recovery system for a heterogeneous multicore processor." Thesis, University of Derby, 2014. http://hdl.handle.net/10545/313343.
Повний текст джерелаDiarra, Rokiatou. "Automatic Parallelization for Heterogeneous Embedded Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS485.
Повний текст джерелаRecent years have seen an increase of heterogeneous architectures combining multi-core CPUs with accelerators such as GPU, FPGA, and Intel Xeon Phi. GPU can achieve significant performance for certain categories of application. Nevertheless, achieving this performance with low-level APIs (e.g. CUDA, OpenCL) requires to rewrite the sequential code, to have a good knowledge of GPU architecture, and to apply complex optimizations that are sometimes not portable. On the other hand, directive-based programming models (e.g. OpenACC, OpenMP) offer a high-level abstraction of the underlying hardware, thus simplifying the code maintenance and improving productivity. They allow users to accelerate their sequential codes on GPU by simply inserting directives. OpenACC/OpenMP compilers have the daunting task of applying the necessary optimizations from the user-provided directives and generating efficient codes that take advantage of the GPU architecture. Although the OpenACC / OpenMP compilers are mature and able to apply some optimizations automatically, the generated code may not achieve the expected speedup as the compilers do not have a full view of the whole application. Thus, there is generally a significant performance gap between the codes accelerated with OpenACC/OpenMP and those hand-optimized with CUDA/OpenCL. To help programmers for speeding up efficiently their legacy sequential codes on GPU with directive-based models and broaden OpenMP/OpenACC impact in both academia and industry, several research issues are discussed in this dissertation. We investigated OpenACC and OpenMP programming models and proposed an effective application parallelization methodology with directive-based programming approaches. Our application porting experience revealed that it is insufficient to simply insert OpenMP/OpenACC offloading directives to inform the compiler that a particular code region must be compiled for GPU execution. It is highly essential to combine offloading directives with loop parallelization constructs. Although current compilers are mature and perform several optimizations, the user may provide them more information through loop parallelization constructs clauses in order to get an optimized code. We have also revealed the challenge of choosing good loop schedules. The default loop schedule chosen by the compiler may not produce the best performance, so the user has to manually try different loop schedules to improve the performance. We demonstrate that OpenMP and OpenACC programming models can achieve best performance with lesser programming effort, but OpenMP/OpenACC compilers quickly reach their limit when the offloaded region code is computed/memory bound and contain several nested loops. In such cases, low-level languages may be used. We also discuss pointers aliasing problem in GPU codes and propose two static analysis tools that perform automatically at source level type qualifier insertion and scalar promotion to solve aliasing issues
Bhatia, Vishal. "Remote programming for heterogeneous sensor networks." Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1091.
Повний текст джерелаDi, Domenico Daniel. "HPSM: uma API em linguagem c++ para programas com laços paralelos com suporte a multi-CPUs e Multi-GPUs." Universidade Federal de Santa Maria, 2016. http://repositorio.ufsm.br/handle/1/12171.
Повний текст джерелаParallel architectures has been ubiquitous for some time now. However, the word ubiquitous can’t be applied to parallel programs, because there is a greater complexity to code them comparing to ordinary programs. This fact is aggravated when the programming also involves accelerators, like GPUs, which demand the use of tools with scpecific resources. Considering this setting, there are programming models that make easier the codification of parallel applications to explore accelerators, nevertheless, we don’t know APIs that allow implementing programs with parallel loops that can be processed simultaneously by multiple CPUs and multiple GPUs. This works presents a high-level C++ API called HPSM aiming to make easier and more efficient the codification of parallel programs intended to explore multi-CPU and multi-GPU architectures. Following this idea, the desire is to improve performance through the sum of resources. HPSM uses parallel loops and reductions implemented by three parallel back-ends, being Serial, OpenMP and StarPU. Our hypothesis estimates that scientific applications can explore heterogeneous processing in multi-CPU and multi-GPU to achieve a better performance than exploring just accelerators. Comparisons with other parallel programming interfaces demonstrated that HPSM can reduce a multi-CPU and multi-GPU code in more than 50%. The use of the new API can introduce impact to program performance, where experiments showed a variable overhead for each application, that can achieve a maximum value of 16,4%. The experimental results confirmed the hypothesis, because the N-Body, Hotspot e CFD applications achieved gains using just CPUs and just GPUs, as well as overcame the performance achieved by just accelerators (GPUs) through the combination of multi-CPU and multi-GPU.
Arquiteturas paralelas são consideradas ubíquas atualmente. No entanto, o mesmo termo não pode ser aplicado aos programas paralelos, pois existe uma complexidade maior para codificálos em relação aos programas convencionais. Este fato é agravado quando a programação envolve também aceleradores, como GPUs, que demandam o uso de ferramentas com recursos muito específicos. Neste cenário, apesar de existirem modelos de programação que facilitam a codificação de aplicações paralelas para explorar aceleradores, desconhece-se a existência de APIs que permitam a construção de programas com laços paralelos que possam ser processados simultaneamente em múltiplas CPUs e múltiplas GPUs. Este trabalho apresenta uma API C++ de alto nível, denominada HPSM, visando facilitar e tornar mais eficiente a codificação de programas paralelos voltados a explorar arquiteturas com multi-CPU e multi-GPU. Seguindo esta ideia, deseja-se ganhar desempenho através da soma dos recursos. A HPSM é baseada em laços e reduções paralelas implementadas por meio de três diferentes back-ends paralelos, sendo Serial, OpenMP e StarPU. A hipótese deste estudo é que aplicações científicas podem valer-se do processamento heterogêneo em multi-CPU e multi-GPU para alcançar um desempenho superior em relação ao uso de apenas aceleradores. Comparações com outras interfaces de programação paralela demonstraram que o uso da HPSM pode reduzir em mais de 50% o tamanho de um programa multi-CPU e multi-GPU. O uso da nova API pode trazer impacto no desempenho do programa, sendo que experimentos demonstraram que seu sobrecusto é variável de acordo com a aplicação, chegando até 16,4%. Os resultados experimentais confirmaram a hipótese, pois as aplicações N-Body, Hotspot e CFD, além de alcançarem ganhos ao utilizar somente CPUs e somente GPUs, também superaram o desempenho obtido por somente aceleradores (GPUs) através da combinação de multi-CPU e multi-GPU.
Dastgeer, Usman. "Skeleton Programming for Heterogeneous GPU-based Systems." Licentiate thesis, Linköpings universitet, PELAB - Laboratoriet för programmeringsomgivningar, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70234.
Повний текст джерелаPlanas, Carbonell Judit. "Programming models and scheduling techniques for heterogeneous architectures." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/327036.
Повний текст джерелаActualment, hi ha una clara tendència per l'ús de sistemes heterogenis d'alt rendiment, ja que ofereixen una major potència de càlcul que els sistemes homogenis amb CPUs tradicionals. L'addició d'unitats especialitzades (acceleradors com ara GPGPUs) als sistemes amb CPUs s'ha convertit en una revolució en el món de la computació d'alt rendiment. Els sistemes heterogenis poden adaptar-se millor a les diferents necessitats de les aplicacions, ja que cada tipus d'arquitectura ofereix diferents característiques. Per tant, per maximitzar el rendiment, les aplicacions s'han de dividir en diverses parts d'acord amb els seus requeriments computacionals. Llavors, aquestes parts s'han d'executar al dispositiu que s'adapti millor a les seves necessitats. Per tant, l'heterogeneïtat introdueix una complexitat addicional en el desenvolupament d'aplicacions: d'una banda, els codis font s'han d'adaptar a les noves arquitectures i, de l'altra, la gestió de recursos es fa més complicada. Per exemple, múltiples espais de memòria que requereixen moviments explícits de dades o sincronitzacions addicionals entre diferents parts de codi que s'executen en diferents unitats. Per això, la programació i el manteniment del codi en sistemes heterogenis són extremadament complexos i cars. Tot i que hi ha diverses propostes per a la programació d'acceleradors, com CUDA o OpenCL, aquests models no resolen els reptes de programació descrits anteriorment, ja que exposen les característiques de baix nivell del hardware al programador. Per tant, els models de programació han de poder ocultar les complexitats dels acceleradors de cara al programador, proporcionant un entorn de desenvolupament homogeni. En aquest context, la tesi contribueix en dos aspectes fonamentals: primer, proposa un disseny per a gestionar de manera eficient l'execució d'aplicacions heterogènies i, segon, presenta diversos mecanismes de planificació per dividir l'execució d'aplicacions entre totes les unitats del sistema, per tal de maximitzar el rendiment i la utilització de recursos. La primera contribució proposa un disseny d'execució asíncron per gestionar els moviments de dades i sincronitzacions en acceleradors. Aquest enfocament s'ha desenvolupat en dos passos: primer, una proposta semi-asíncrona i després, una proposta totalment asíncrona per tal d'adaptar-se a les restriccions del hardware contemporani. Els resultats en sistemes multi-accelerador mostren que aquests enfocaments poden assolir el màxim rendiment esperat. Fins i tot, en determinats casos, poden superar el rendiment de codis nadius altament optimitzats. La segona contribució presenta quatre mecanismes de planificació diferents, enfocats a la programació heterogènia, per minimitzar el temps d'execució de les aplicacions. Per exemple, minimitzar la quantitat de dades compartides entre espais de memòria, o maximitzar la utilització de recursos mitjançant l'execució de cada porció de codi a la unitat que s'adapta millor. Els experiments s'han realitzat en diferents plataformes heterogènies, incloent CPUs, GPGPUs i dispositius Intel Xeon Phi. És particularment interessant analitzar com totes aquestes estratègies de planificació poden afectar el rendiment de l'aplicació. Com a resultat, es poden extreure tres conclusions generals: en primer lloc, el rendiment de l'aplicació no està garantit en les noves generacions de hardware. Per tant, els codis s'han d'actualitzar periòdicament a mesura que el hardware evoluciona. En segon lloc, la forma més eficient d'executar una aplicació en una plataforma heterogènia és dividir-la en porcions més petites i escollir la unitat que millor s'adapta per executar cada porció. Finalment, i probablement la conclusió més important, és que les exigències derivades de les dues primeres conclusions poden ser implementades dins de llibreries de sistema, de manera que la complexitat de programació d'arquitectures heterogènies quedi completament oculta per al programador.
VILLALOBOS, CRISTIAN ENRIQUE MUNOZ. "HETEROGENEOUS PARALLELIZATION OF QUANTUM-INSPIRED LINEAR GENETIC PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27791@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Um dos principais desafios da ciência da computação é conseguir que um computador execute uma tarefa que precisa ser feita, sem dizer-lhe como fazê-la. A Programação Genética (PG) aborda este desafio a partir de uma declaração de alto nível sobre o que é necessário ser feito e cria um programa de computador para resolver o problema automaticamente. Nesta dissertação, é desenvolvida uma extensão do modelo de Programação Genética Linear com Inspiração Quântica (PGLIQ) com melhorias na eficiência e eficácia na busca de soluções. Para tal, primeiro o algoritmo é estruturado em um sistema de paralelização heterogênea visando à aceleração por Unidades de Processamento Gráfico e a execução em múltiplos processadores CPU, maximizando a velocidade dos processos, além de utilizar técnicas otimizadas para reduzir os tempos de transferências de dados. Segundo, utilizam-se as técnicas de Visualização Gráfica que interpretam a estrutura e os processos que o algoritmo evolui para entender o efeito da paralelização do modelo e o comportamento da PGLIQ. Na implementação da paralelização heterogênea, são utilizados os recursos de computação paralela como Message Passing Interface (MPI) e Open Multi-Processing (OpenMP), que são de vital importância quando se trabalha com multi-processos. Além de representar graficamente os parametros da PGLIQ, visualizando-se o comportamento ao longo das gerações, uma visualização 3D para casos de robôtica evolutiva é apresentada, na qual as ferramentas de simulação dinâmica como Bullet SDK e o motor gráfico OGRE para a renderização são utilizadas.
One of the main challenges of computer science is to get a computer execute a task that must be done, without telling it how to do it. Genetic Programming (GP) deals with this challenge from a high level statement of what is needed to be done and creates a computer program to solve the problem automatically. In this dissertation we developed an extension of Quantum-Inspired Linear Genetic Programming Model (QILGP), aiming to improve its efficiency and effectiveness in the search for solutions. For this, first the algorithm is structured in a Heterogeneous Parallelism System, Aiming to accelerated using Graphics Processing Units GPU and multiple CPU processors, reducing the timing of data transfers while maximizing the speed of the processes. Second, using the techniques of Graphic Visualization which interpret the structure and the processes that the algorithm evolves, understanding the behavior of QILGP. We used the highperformance features such as Message Passing Interface (MPI) and Open Multi- Processing (OpenMP), which are of vital importance when working with multiprocesses, as it is necessary to design a topology that has multiple levels of parallelism to avoid delaying the process for transferring the data to a local computer where the visualization is projected. In addition to graphically represent the parameters of PGLIQ devising the behavior over generations, a 3D visualization for cases of evolutionary robotics is presented, in which the tools of dynamic simulation as Bullet SDK and graphics engine OGRE for rendering are used . This visualization is used as a tool for a case study in this dissertation.
Aji, Ashwin M. "Programming High-Performance Clusters with Heterogeneous Computing Devices." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/52366.
Повний текст джерелаPh. D.
Guerreiro, Pedro Miguel Rito. "Visual programming in a heterogeneous multi-core environment." Master's thesis, Universidade de Évora, 2009. http://hdl.handle.net/10174/18505.
Повний текст джерелаFANFARILLO, ALESSANDRO. "Parallel programming techniques for heterogeneous exascale computing platforms." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2014. http://hdl.handle.net/2108/202339.
Повний текст джерелаPodobas, Artur, Mats Brorsson, and Vladimir Vlassov. "Exploring heterogeneous scheduling using the task-centric programming model." KTH, Programvaru- och datorsystem, SCS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120436.
Повний текст джерелаQC 20130429
ENCORE
Dekkiche, Djamila. "Programming methodologies for ADAS applications in parallel heterogeneous architectures." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS388/document.
Повний текст джерелаComputer Vision (CV) is crucial for understanding and analyzing the driving scene to build more intelligent Advanced Driver Assistance Systems (ADAS). However, implementing CV-based ADAS in a real automotive environment is not straightforward. Indeed, CV algorithms combine the challenges of high computing performance and algorithm accuracy. To respond to these requirements, new heterogeneous circuits are developed. They consist of several processing units with different parallel computing technologies as GPU, dedicated accelerators, etc. To better exploit the performances of such architectures, different languages are required depending on the underlying parallel execution model. In this work, we investigate various parallel programming methodologies based on a complex case study of stereo vision. We introduce the relevant features and limitations of each approach. We evaluate the employed programming tools mainly in terms of computation performances and programming productivity. The feedback of this research is crucial for the development of future CV algorithms in adequacy with parallel architectures with a best compromise between computing performance, algorithm accuracy and programming efforts
Schneider, Scott. "Shared Memory Abstractions for Heterogeneous Multicore Processors." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/30240.
Повний текст джерелаPh. D.
Fagg, Graham Edward. "Enabling technologies for parallel heterogeneous computing." Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266150.
Повний текст джерелаPotter, Ralph. "Programming models for heterogeneous systems with application to computer graphics." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760928.
Повний текст джерелаLinderman, Michael David. "A programming model and processor architecture for heterogeneous multicore computers /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Повний текст джерелаAnthony, Patricia. "Bidding agents for multiple heterogeneous online auctions." Thesis, University of Southampton, 2003. https://eprints.soton.ac.uk/257838/.
Повний текст джерелаXu, Lihui. "On the integration of heterogeneous deductive databases." Thesis, King's College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321953.
Повний текст джерелаLopes, Fernanda LiÂgia Rodrigues. "Access to data from Ontology Using Mappings Heterogeneous and Logic Programming." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14156.
Повний текст джерелаOntologies have been used in different areas, including Data Integration and Semantic Web, to provide formal descriptions to data sources as well as to associate semantics to them and to make information easier to discover and to recover. In this context, one of the most relevant issues is the Ontology-Based Data Access â OBDA, which is the problem of accessing one or more data sources by means of a conceptual representation expressed in terms of an ontology. The independence between the ontology layer and the data layer, and the ability of answering more expressive queries than the ones defined using description logics are some of the main distinguished issues of the ODBA. In this work, we specify an environment for OBDA, which deals with this problem considering a set of independent tasks. Our main contribution concerns the definition and implementation of a query rewriting process between ontologies structurally heterogeneous. In the proposed query rewriting approach, we combine the semantics and expressiveness of SPARQL with logic programming and we adopt a rulebased formalism to represent mappings between ontologies. We also deal with some relevant questions, including: the structural heterogeneity, the prune of irrelevant parts of the rewritten query and the representation of query results according to the target ontology. It is important to note that, although in this work we discuss the use of the proposed solution considering just two ontologies, it can also be extended and applied for data distributions cenarios with multiple ontologies.
Em vÃrias Ãreas, tais como IntegraÃÃo de Dados e Web SemÃntica, ontologias tÃm sido adotadas para descrever formalmente a semÃntica das fontes de dados, com o intuito de facilitar a descoberta e a recuperaÃÃo de informaÃÃes. Dentro desse contexto, o Acesso a Dados Baseado em Ontologias (Ontology-Based Data Access - OBDA) à um problema decorrente da necessidade de acessar tais fontes a partir das ontologias que representam seus modelos conceituais. Dentre as principais caracterÃsticas do OBDA, destacamos a independÃncia entre as ontologias e a camada de dados e a possibilidade de responder a consultas que sejam mais expressivas que as geralmente realizadas utilizando LÃgica Descritiva. Neste trabalho, especificamos um ambiente de OBDA no qual este problema à dividido em uma sÃrie de passos que podem ser tratados de maneira independente. Dentre cada um destes passos especificados, nossa principal contribuiÃÃo reside na definiÃÃo e implementaÃÃo de um processo para reescrita de consultas entre ontologias estruturalmente distintas. Em nossa abordagem de reescrita, manipulamos a consulta de entrada combinando a semÃntica e a expressividade da linguagem SPARQL com um mÃtodo baseado em noÃÃes de ProgramaÃÃo em LÃgica, uma vez que utilizamos mapeamentos heterogÃneos expressos atravÃs de regras. AlÃm disso, tratamos aspectos referentes Ãs diferenÃas estruturais entre as ontologias, possibilitamos que partes da consulta reescrita possam ser descartadas durante o processo, caso seja constatado que tais partes seriam desnecessÃrias, e permitimos que os resultados sejam reestruturados e apresentados conforme a ontologia alvo. Por fim, à vÃlido destacar que, embora a soluÃÃo apresentada tenha como foco duas ontologias, esta pode ser estendida para considerar aspectos especÃficos de distribuiÃÃo.
Ernstsson, August. "Designing a Modern Skeleton Programming Framework for Parallel and Heterogeneous Systems." Licentiate thesis, Linköpings universitet, Programvara och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170194.
Повний текст джерелаYtterligare forskningsfinansiärer: EU H2020 project EXA2PRO (801015); SeRC.
Peisert, Sean Philip. "A programming model for automated decomposition on heterogeneous clusters of multiprocessors /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p1398091.
Повний текст джерелаMüller, Georg. "Traffic profiles and performance modelling of heterogeneous networks." Thesis, University of Plymouth, 2000. http://hdl.handle.net/10026.1/2364.
Повний текст джерелаTuffen, John Anthony. "Load distribution within a heterogeneous multiprocessor computer music system." Thesis, University of York, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242117.
Повний текст джерелаMetwly, Nevin. "Common application programming interface architecture bridge for connecting heterogeneous home computing middleware." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28492.
Повний текст джерелаRodrigues, Tabajara Krausburg. "Constrained coalition formation among heterogeneous agents for the multi-agent programming contest." Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2018. http://tede2.pucrs.br/tede2/handle/tede/8102.
Повний текст джерелаApproved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-06-06T13:05:51Z (GMT) No. of bitstreams: 1 TABAJARA_KRAUSBURG_RODRIGUES_DIS.pdf: 4049392 bytes, checksum: 154302eff9df959cfa74d6c0faec5d4e (MD5)
Made available in DSpace on 2018-06-06T13:35:29Z (GMT). No. of bitstreams: 1 TABAJARA_KRAUSBURG_RODRIGUES_DIS.pdf: 4049392 bytes, checksum: 154302eff9df959cfa74d6c0faec5d4e (MD5) Previous issue date: 2018-03-26
Esta disserta??o apresenta um estudo sobre forma??o de coaliz?es entre agentes heterog?neos para a competi??o de programa??o multiagente de 2017. Foi investigado e aplicado a forma??o de estruturas de coaliz?es entre agentes para resolver problemas log?sticos simulados sobre o mapa de uma cidade real. A fim de atingir o objetivo deste trabalho, foram integrados algoritmos formadores de coaliz?es na plataforma JaCaMo por meio de um artefato CArtAgO chamado CFArtefact. Foi utilizada a implementa??o provida pelo time SMART-JaCaMo (time participante da competi??o multiagente), para experimentar a forma??o de coaliz?es na competi??o. Tr?s abordagens foram avaliadas no dom?nio da competi??o em diferentes configura??es. A primeira abordagem utiliza somente aloca??o de tarefas para resolver o problema. A segunda e a terceira abordagem utilizam a t?cnica de forma??o de coaliz?es anteriormente ? aloca??o de tarefas; dentre estas abordagens, uma utiliza um algor?timo ?timo para resolver o problema e a outra um heur?stico. As an?lises dos experimentos realizados mostram que algor?timos formadores de coaliz?es podem melhorar a performance do time participante da competi??o quando a taxa de trabalhos gerados pelo simulador ? baixa. Entretanto, conforme a taxa de trabalhos aumenta, a abordagem que realiza somente aloca??o de tarefas obt?m um desempenho melhor quando comparada as demais. Mesmo a abordagem heur?stica tem desempenho pr?ximo ? abordagem ?tima para coaliz?es. Desta forma, ? poss?vel concluir que forma??o de coaliz?es possui grande valia para balancear os agentes para um conjunto de trabalhos que precisa ser completado.
This work focuses on coalition formation among heterogeneous agents for the 2017 multiagent programming contest. An agent is a computer system that is capable of independent action to achieve its goals. In order to increase the effectiveness of the agents, we can organise them into coalitions, in which the agents collaborate with each other to achieve individual or common goals. We investigate and apply coalition structure generation (the first activity of the coalition formation process) in simulated scenarios, specifically the 2017 contest scenario, where the agents forming a competing team cooperate to solve logistic problems simulated on the map of a real city. In order to achieve our goal, we integrate coalition formation algorithms into the JaCaMo platform by means of a CArtAgO artefact, named CFArtefact. We use the implementation of the SMART JaCaMo team for experimenting with the coalition formation approach in the contest scenario. We experiment on three approaches in the contest domain with different configurations. In the first, we use only a taskallocation mechanism, while the other approaches use an optimal coalition formation algorithm and a heuristic coalition formation algorithm. We conducted several experiments to compare the advantages of each approach. Our results show that coalition formation algorithms can improve the performance of a participating team when dealing with low job rates (i.e., how quickly new jobs are created by the simulation). However, as we increase the job rate, the approach using only task allocation has better performance. Even a heuristic coalition formation approach has close performance to the optimal one in that case. Coalition formation can play an important role when we aim to balance each group of agents to accomplish some particular goal given a larger team of cooperating agents.
Harvey, Paul. "A linguistic approach to concurrent, distributed, and adaptive programming across heterogeneous platforms." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6749/.
Повний текст джерелаVella, Kevin J. "Seamless parallel computing on heterogeneous networks of multiprocessor workstations." Thesis, University of Kent, 1998. https://kar.kent.ac.uk/21580/.
Повний текст джерелаMathaikutty, Deepak Abraham. "Functional Programming and Metamodeling frameworks for System Design." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32639.
Повний текст джерелаMaster of Science
Saà-Garriga, Albert. "Automatic source code adaptation for heterogeneous platforms." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399986.
Повний текст джерелаElteir, Marwa Khamis. "A MapReduce Framework for Heterogeneous Computing Architectures." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28786.
Повний текст джерелаPh. D.
Hrabcová, Petra. "Propojení simulační knihovny SIMLIB s jazykem Prolog." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2007. http://www.nusl.cz/ntk/nusl-412786.
Повний текст джерелаSai, Ranga Prashanth C. "Algorithms for task scheduling in heterogeneous computing environments." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/SAI_RANGA_58.pdf.
Повний текст джерелаSajjapongse, Kittisak. "Hierarchical scheduling and uniform access programming frameworks for heterogeneous CPU-GPU computing clusters." Thesis, University of Missouri - Columbia, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10178997.
Повний текст джерелаThe advance of the GPU hardware architecture has made GPUs attractive devices for general-purpose computing. Modern GPUs are equipped with an increasing number of cores, a flexible memory hierarchy, and a large memory capacity. While the computational power of modern GPU devices has allowed their introduction in high-performance computing (HPC) clusters and the efficient processing of ever larger workloads, existing software components for HPC clusters still offer basic support for hardware heterogeneity and often cause performance limitations in the presence of GPU devices. In particular, two kinds of limitations are associated with these software components: runtime support and programmability. We found that these limitations are due to the fact that existing software frameworks for heterogeneous clusters treat GPUs as dedicated coprocessor devices.
In this dissertation, we propose two software frameworks for addressing the performance and hardware underutilization issues found in heterogeneous CPU-GPU clusters as well as increasing their programmability. Our frameworks provide a uniform view of compute resources and treat CPUs and GPUs equally as first-class resources, allowing efficient management of heterogeneous compute resources. First, we propose a hierarchical scheduling framework consisting of a node-level runtime and a cluster-level scheduler that provides abstraction of heterogeneous compute resources at different granularities. This hierarchical framework targets existing applications and does not require their modification. In the node-level runtime, we identify and design mechanisms, such as virtual GPUs, GPU virtual memory, dynamic load balancing and pre-emption, which are necessary to support efficient sharing and load balancing schemes for GPUs within a compute node. In the cluster-level scheduler, we introduce mechanisms to abstract compute nodes and perform load balancing in concert with the node-level runtime. Our hierarchical scheduling framework allows supporting different load balancing policies and does not require additional inputs (such as profiling information) from users. Second, we propose a programming framework based on a novel memory and execution model. Our memory model hides disjoint addressing spaces (corresponding to different CPUs, GPUs and compute nodes) and provides a view of a single virtual memory space that can be accessed by all compute resources in a heterogeneous cluster. Our execution model provides uniform access to compute resources and allows our framework to treat all CPUs and GPUs equally and to access data in the virtual memory space.
Krommydas, Konstantinos. "Towards Enhancing Performance, Programmability, and Portability in Heterogeneous Computing." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77582.
Повний текст джерелаPh. D.
Smith, Graham Leslie. "A distributed Linda server on a network of heterogeneous processors." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1004890.
Повний текст джерелаRibeiro, Tiago Filipe Rodrigues. "Developing and evaluating clopencl applications for heterogeneous clusters." Master's thesis, Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão, 2012. http://hdl.handle.net/10198/7948.
Повний текст джерелаBarfoursh, Ahmad Abdollahzadeh. "The design and implementation of distributed information systems based on heterogeneous data bases." Thesis, University of Bristol, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314511.
Повний текст джерелаCastrillon, Mazo Jeronimo [Verfasser]. "Programming heterogeneous MPSoCs : tool flows to close the software productivity gap / Jeronimo Castrillon Mazo." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1035622904/34.
Повний текст джерелаReiche, Oliver [Verfasser]. "A Domain-Specific Language Approach for Designing and Programming Heterogeneous Image Systems / Oliver Reiche." München : Verlag Dr. Hut, 2018. http://d-nb.info/1168534674/34.
Повний текст джерелаInuani, Maurice Kilavuka. "Technology mapping of heterogeneous lookup table based field programmable gate arrays." Thesis, University of Oxford, 1998. http://ora.ox.ac.uk/objects/uuid:8ec8745f-c0b2-43c0-994f-bd949d9fdefa.
Повний текст джерелаAwoyemi, Babatunde Seun. "Resource allocation optimisation in heterogeneous cognitive radio networks." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/61327.
Повний текст джерелаThesis (PhD)--University of Pretoria, 2017.
Electrical, Electronic and Computer Engineering
PhD
Unrestricted
Radeschnig, Jessica. "Heterogeneous Optimality of Lifetime Consumption and Asset Allocation : Growing Old in Sweden." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-36119.
Повний текст джерелаMcGarity, Michael Computer Science & Engineering Faculty of Engineering UNSW. "Heterogeneous representations for reinforcement learning control of dynamic systems." Awarded by:University of New South Wales. School of Computer Science and Engineering, 2004. http://handle.unsw.edu.au/1959.4/19350.
Повний текст джерелаEvans, B. J. "The construction of a virtual multicomputer based on heterogeneous processors by use of a lightweight multicast protocol." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357126.
Повний текст джерелаRafique, Muhammad Mustafa. "An Adaptive Framework for Managing Heterogeneous Many-Core Clusters." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/29119.
Повний текст джерелаPh. D.
Chang, Tao. "Evaluation of programming models for manycore and / or heterogeneous architectures for Monte Carlo neutron transport codes." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX099.
Повний текст джерелаIn this thesis we propose to evaluate the different programming models available for addressing manycore and / or heterogeneous architectures within the framework of the Monte Carlo transport codes. A simple but representative application test case will be considered in order to cover a fairly wide range of solutions and compare them in terms of performance, portability of performance, ease of implementation and maintainability. The target architectures are `classic' CPUs, Intel Xeon Phi and GPUs. The most relevant programming models will then be set up in a Monte Carlo transport code
Potluri, Sreeram. "Enabling Efficient Use of MPI and PGAS Programming Models on Heterogeneous Clusters with High Performance Interconnects." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397797221.
Повний текст джерелаLuong, Johannes [Verfasser], Wolfgang [Gutachter] Lehner, and Ziawasch [Gutachter] Abedjan. "A Common Programming Interface for Managed Heterogeneous Data Analysis / Johannes Luong ; Gutachter: Wolfgang Lehner, Ziawasch Abedjan." Dresden : Technische Universität Dresden, 2021. http://d-nb.info/1238140599/34.
Повний текст джерелаCabarcas, Jaramillo Felipe. "Castell: a heterogeneous cmp architecture scalable to hundreds of processors." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/80542.
Повний текст джерела